New Antibiotics for Lower Respiratory Tract Infections
Abstract
1. Introduction
2. Current Guidelines
3. Persisting Challenges
4. New Antibiotics for LRTIs
4.1. Antibiotic Agents for Community-Acquired Pneumonia
4.1.1. Lefamulin
4.1.2. Omadacycline
4.1.3. Delafloxacin
4.1.4. Ceftobiprole
4.2. Antibiotic Agents for Nosocomial Pneumonia
4.2.1. Cefiderocol
4.2.2. Ceftolozane/Tazobactam
4.2.3. Ceftazidime/Avibactam
4.2.4. Meropenem/Vaborbactam
4.2.5. Imipenem/Cilastatin/Relebactam
4.2.6. Sulbactam/Durlobactam
4.2.7. Cefipime/Enmetazobactam
4.2.8. Aztreonam/Avibactam
5. Antibiotics Awaiting Approval
5.1. Tedizolid
5.2. Eravacycline
5.3. Murepavadin
5.4. Zosurabalpin
5.5. Zabofloxacin
5.6. Imipenem/Cilastatin/Funobactam
6. Limitations
7. Antimicrobial Resistance to Newer Antibiotics
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LRTIs | Lower Respiratory tract infections |
S. Pneumoniae | Streptococcus Pneumoniae |
H. influenzae | Haemophilus influenzae |
CAP | Community-acquired pneumonia |
HAP | Hospital-acquired pneumonia |
VAP | Ventilator-associated pneumonia |
MRSA | Methicillin-sensitive Staphylococcus Aureus |
P. aeruginosa | Pseudomonas aeruginosa |
Klebsiella pneumoniae | K. pneumoniae |
Klebsiella oxytoca | K. oxytoca |
E. Coli | Escherichia Coli |
A. baumanni | Acinetobacter baumannii |
CAZ-AVI | Ceftazidime–avibactam |
PSI | Pneumonia severity index |
MDR | Multidrug-resistant |
MSSA | Methicillin-sensitive Staphylococcus Aureus |
C. difficile | Clostridium difficile |
S. Aureus | Staphylococcus Aureus |
ICU | Intensive care unit |
ESBL | Extended-spectrum β Lactamases |
RTI | Respiratory tract infection |
WHO | World Health Organization |
CRE | Carbapenem-resistant Enterobacterales |
CRAB | Carbapenem-resistant Acinetobacter baumannii |
3GCRE | Third-generation cephalosporin-resistant Enterobacterales |
RTI | Respiratory tract infection |
ARIs | Acute respiratory infection |
q12h | Twice a day |
q24h | Once a day |
M. pneumoniae | Mycoplasma pneumoniae |
EMA | European Medicine Agency |
ARDS | Acute respiratory distress syndrome |
ALI | Acute lung injury |
FDA | Food and Drug Administration |
CABP | Community-acquired bacterial pneumonia |
CRP | C-reactive protein |
ELF | Epithelial lining fluid |
ABSSSI | Acute bacterial skin and skin structure infections |
IV | Intravenous |
COPD | Chronic obstructive pulmonary disease |
QTc | Corrected QT interval |
q8h | Every 8 h |
SSTIs | Skin and soft tissue infections |
VRSA | Vancomycin-resistant Staphylococcus aureus |
ITT | Intention-to-treat |
PRSP | Penicillin-resistant Streptococcus pneumoniae |
E. faecalis | Enterococcus faecalis |
BAT | Best available therapy |
S. maltophilia | Stenotrophomonas maltophilia |
XDR | Extensively drug resistant |
MBL | Metallo β-lactamases |
DTR | Difficult-to-treat resistant |
PK | Pharmacokinetics |
TOC | Test of cure |
cMITT | Co-primary clinically modified intention to treat |
CE | Clinically evaluable |
P. mirabilis | Proteus mirabilis |
SUL-DUR | Sulbactam-Durlobactam |
PK-PD | Pharmacokinetics–pharmacodynamics |
HABP | Hospital-acquired bacterial pneumonia |
VABP | Ventilator-associated bacterial pneumonia |
ATM | Aztreonam |
ATM-AVI | Aztreonam–avibactam |
MTZ | Metronidazole |
MER | Meropenem |
TDZ | Tedizolid |
ERV | Eravacycline |
VRE | Vancomycin-resistant enterococci |
IMI/REL | Imipenem/cilastatin/Relebactam |
PBPs | Penicillin-binding proteins |
NK | Natural killer cells |
IDSA | Infectious Diseases Society of America |
ESCMID | European Society of Clinical Microbiology and Infectious Diseases |
AUC | Area under the curve |
COL | Colistin |
SBLs | Serine β-lactamases |
PTA | Probability of target attainment |
AEs | Adverse events |
cIAI | Complicated intra-abdominal infection |
cUTI | Complicated urinary tract infections |
BSI | Bloodstream infections |
ABC | A. baumannii calcoaceticus complex |
E. Cloacae | Enterobacter Cloacae |
MCP | Macrocyclic peptide |
DBO | Diazabicyclooctane |
MIC | Minimum Inhibitory Concentration |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
CFU | Colony-Forming Units |
PMB | Polymyxin B |
qPCR | Quantitative Polymerase Chain Reaction |
qRT-PCR | Quantitative Reverse Transcription Polymerase Chain Reaction |
ISAba1 | Insertion Sequence of Acinetobacter Baumannii 1 |
LptB2FGC | Lipopolysaccharide Transporter Complex |
ST208 | Sequence Type 208 |
QALYs | Quality-adjusted life years |
CCI | Charlson Comorbidity Index |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
LOS | Length of stay |
CAZ-AVI | Ceftazidime/avibactam |
MVB | Meropenem/vaborbactam |
ECR | Early clinical response |
PRSP | Penicillin resistant S. pneumoniae |
MSCNS | Methicillin-susceptible coagulase-negative Staphylococcus |
MMP-9 | Matrix metalloproteinase-9 |
CXCL-1 | CXC motif chemokine ligand 1 |
M. catarrhalis | Moraxella catarrhalis |
q6h | Every 6 h |
MCP | Macrocyclic Peptide |
CRKP | Carbapenem resistant K. pneumoniae |
L. pneumophila | Legionella Pneumophila |
IL-6 | Interleukin 6 |
C. Pneumoniae | Clamydia pneumoniae |
CrCL | creatinine clearance |
NTM | nontuberculous mycobacterial |
AmpC | Ambler class C |
KPC | K. pneumoniae carbapenemase |
GC1 | Global clone 1 |
PCT | Procalcitonin |
PSI | Pneumonia Severity Index |
References
- Yu, X.; Wang, H.; Ma, S.; Chen, W.; Sun, L.; Zou, Z. Estimating the global and regional burden of lower respiratory infections attributable to leading pathogens and the protective effectiveness of immunization programs. Int. J. Infect. Dis. 2024, 149, 107268. [Google Scholar] [CrossRef]
- Kyu, H.H. Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: A systematic analysis from the Global Burden of Disease Study 2021. Lancet Infect. Dis. 2024, 24, 974–1002. [Google Scholar] [CrossRef]
- Jain, V.; Vashisht, R.; Yilmaz, G.; Bhardwaj, A. Pneumonia Pathology. In StatPearls; StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Modi, A.R.; Kovacs, C.S. Hospital-acquired and ventilator-associated pneumonia: Diagnosis, management, and prevention. Cleve Clin. J. Med. 2020, 87, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Miron, M.; Blaj, M.; Ristescu, A.I.; Iosep, G.; Avădanei, A.N.; Iosep, D.G.; Crișan-Dabija, R.; Ciocan, A.; Perțea, M.; Manciuc, C.D.; et al. Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: A Literature Review. Microorganisms 2024, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Torres, A.; Nagavci, B.; Aliberti, S.; Antonelli, M.; Bassetti, M.; Bos, L.D.; Chalmers, J.D.; Derde, L.; de Waele, J.; et al. ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Intensive Care Med. 2023, 49, 615–632. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Castagna, T.; Pantolini, B.; Campanardi, M.C.; Roperti, M.; Grotto, A.; Fattori, M.; Dal Maso, L.; Carrara, F.; Zambarbieri, G.; et al. The challenge of antimicrobial resistance (AMR): Current status and future prospects. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 9603–9615. [Google Scholar] [CrossRef]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Robles Aguilar, G.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Lui, G.C.Y.; Lai, C.K.C. Community acquired pneumonia due to antibiotic resistant-Streptococcus pneumoniae: Diagnosis, management and prevention. Curr. Opin. Pulm. Med. 2025, 31, 211–217. [Google Scholar] [CrossRef]
- Hay, A.D.; Tilling, K. Can 88% of patients with acute lower respiratory infection all be special? Br. J. Gen. Pract. 2014, 64, 60–62. [Google Scholar] [CrossRef]
- Cazzola, M.; Rogliani, P.; Aliberti, S.; Blasi, F.; Matera, M.G. An update on the pharmacotherapeutic management of lower respiratory tract infections. Expert Opin. Pharmacother. 2017, 18, 973–988. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- World Health Organization (WHO) 2024. Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789240093461 (accessed on 1 May 2025).
- Prizão, V.M.; Martins, O.C.; de Hollanda Morais, B.A.A.; Mendes, B.X.; Defante, M.L.R.; de Moura Souza, M. Effectiveness of macrolides as add-on therapy to beta-lactams in community-acquired pneumonia: A meta-analysis of randomized controlled trials. Eur. J. Clin. Pharmacol. 2025, 81, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Walker, A.S.; Eyre, D.W. Addition of macrolide antibiotics for hospital treatment of community-acquired pneumonia. J. Infect. Dis. 2024, 231, e713–e722. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Leventogiannis, K.; Tasouli, E.; Kakavoulis, N.; Niotis, G.; Doulou, S.; Skorda, L.; Iliopoulou, K.; Papailiou, A.; Katsaounou, P.; et al. Clarithromycin for improved clinical outcomes in community-acquired pneumonia: A subgroup analysis of the ACCESS trial. Int. J. Antimicrob. Agents 2025, 65, 107406. [Google Scholar] [CrossRef]
- Butler, A.M.; Nickel, K.B.; Olsen, M.A.; Sahrmann, J.M.; Colvin, R.; Neuner, E.; O’Neil, C.A.; Fraser, V.J.; Durkin, M.J. Comparative safety of different antibiotic regimens for the treatment of outpatient community-acquired pneumonia among otherwise healthy adults. Clin. Infect. Dis. 2024, ciae519. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- Yan, T.; Li, Y.; Sun, Y.; Wang, H.; Wang, J.; Wang, W.; Liu, Y.; Wu, X.; Wang, S. Hospital-acquired lower respiratory tract infections among high risk hospitalized patients in a tertiary care teaching hospital in China: An economic burden analysis. J. Infect. Public Health 2018, 11, 507–513. [Google Scholar] [CrossRef]
- Melsen, W.G.; Rovers, M.M.; Koeman, M.; Bonten, M.J. Estimating the attributable mortality of ventilator-associated pneumonia from randomized prevention studies. Crit. Care Med. 2011, 39, 2736–2742. [Google Scholar] [CrossRef]
- Zhang, S.; Wahi-Singh, P.; Wahi-Singh, B.; Chisholm, A.; Keeling, P.; Nair, H. Costs of management of acute respiratory infections in older adults: A systematic review and meta-analysis. J. Glob. Health 2022, 12, 04096. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Deng, C.; Zelenitsky, S.; Lawrence, C.K.; Adam, H.J.; Golden, A.; Berry, L.; Schweizer, F.; Zhanel, M.A.; Irfan, N.; et al. Lefamulin: A Novel Oral and Intravenous Pleuromutilin for the Treatment of Community-Acquired Bacterial Pneumonia. Drugs 2021, 81, 233–256. [Google Scholar] [CrossRef] [PubMed]
- Paukner, S.; Gelone, S.P.; Arends, S.J.R.; Flamm, R.K.; Sader, H.S. Antibacterial Activity of Lefamulin against Pathogens Most Commonly Causing Community-Acquired Bacterial Pneumonia: SENTRY Antimicrobial Surveillance Program (2015–2016). Antimicrob. Agents Chemother. 2019, 63, e02161-18. [Google Scholar] [CrossRef]
- File, T.M.; Goldberg, L.; Das, A.; Sweeney, C.; Saviski, J.; Gelone, S.P.; Seltzer, E.; Paukner, S.; Wicha, W.W.; Talbot, G.H.; et al. Efficacy and Safety of Intravenous-to-oral Lefamulin, a Pleuromutilin Antibiotic, for the Treatment of Community-acquired Bacterial Pneumonia: The Phase III Lefamulin Evaluation Against Pneumonia (LEAP 1) Trial. Clin. Infect. Dis. 2019, 69, 1856–1867. [Google Scholar] [CrossRef]
- Alexander, E.; Goldberg, L.; Das, A.F.; Moran, G.J.; Sandrock, C.; Gasink, L.B.; Spera, P.; Sweeney, C.; Paukner, S.; Wicha, W.W.; et al. Oral Lefamulin vs Moxifloxacin for Early Clinical Response Among Adults With Community-Acquired Bacterial Pneumonia: The LEAP 2 Randomized Clinical Trial. JAMA 2019, 322, 1661–1671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wicha, W.W.; Bhavnani, S.M.; Rubino, C.M. Prediction of lefamulin epithelial lining fluid penetration after intravenous and oral administration using Phase 1 data and population pharmacokinetics methods. J. Antimicrob. Chemother. 2019, 74 (Suppl. S3), iii27–iii34. [Google Scholar] [CrossRef]
- McCarthy, M.W. Clinical Pharmacokinetics and Pharmacodynamics of Lefamulin. Clin. Pharmacokinet. 2021, 60, 1387–1394. [Google Scholar] [CrossRef]
- Tang, H.J.; Lai, C.C.; Chao, C.M. The clinical efficacy of lefamulin in the treatment of elderly patients with community-acquired bacterial pneumonia. J. Thorac. Dis. 2020, 12, 4588–4590. [Google Scholar] [CrossRef]
- Sawicki, G.S.; Wicha, W.W.; Hiley, T.S.; Close, N.C.; Gelone, S.P.; Guico-Pabia, C.J. Safety and Pharmacokinetics Following Oral or Intravenous Lefamulin in Adults With Cystic Fibrosis. Clin. Ther. 2024, 46, 96–103. [Google Scholar] [CrossRef]
- Wicha, W.W.; Marbury, T.C.; Dowell, J.A.; Crandon, J.L.; Leister, C.; Ermer, J.; Gelone, S.P. Pharmacokinetics and safety of lefamulin after single intravenous dose administration in subjects with impaired renal function and those requiring hemodialysis. Pharmacotherapy 2021, 41, 451–456. [Google Scholar] [CrossRef]
- Wicha, W.W.; Marbury, T.C.; Dowell, J.A.; Crandon, J.L.; Leister, C.; Ermer, J.; Gelone, S.P. Pharmacokinetics and safety of lefamulin after single intravenous dose administration in subjects with impaired-hepatic function. Pharmacotherapy 2021, 41, 457–462. [Google Scholar] [CrossRef]
- Paukner, S.; Kimber, S.; Cumper, C.; Rea-Davies, T.; Sueiro Ballesteros, L.; Kirkham, C.; Hargreaves, A.; Gelone, S.P.; Richards, C.; Wicha, W.W. In Vivo Immune-Modulatory Activity of Lefamulin in an Influenza Virus A (H1N1) Infection Model in Mice. Int. J. Mol. Sci. 2024, 25, 5401. [Google Scholar] [CrossRef]
- Eraikhuemen, N.; Julien, D.; Kelly, A.; Lindsay, T.; Lazaridis, D. Treatment of Community-Acquired Pneumonia: A Focus on Lefamulin. Infect. Dis. Ther. 2021, 10, 149–163. [Google Scholar] [CrossRef]
- Covvey, J.R.; Guarascio, A.J. Clinical use of lefamulin: A first-in-class semisynthetic pleuromutilin antibiotic. J. Intern. Med. 2022, 291, 51–63. [Google Scholar] [CrossRef]
- Pham, J.; Benefield, R.; Baker, N.; Lindblom, S.; Canfield, N.; Gomez, C.; Fisher, M. In vitro activity of omadacycline against clinical isolates of Nocardia. Antimicrob. Agents Chemother. 2024, 68, e0168623. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Steenbergen, J.; Zhanel, G.G. Microbiology and Preclinical Review of Omadacycline. Clin. Infect. Dis. 2019, 69 (Suppl. S1), S6–S15. [Google Scholar] [CrossRef]
- Stets, R.; Popescu, M.; Gonong, J.R.; Mitha, I.; Nseir, W.; Madej, A.; Kirsch, C.; Das, A.F.; Garrity-Ryan, L.; Steenbergen, J.N.; et al. Omadacycline for Community-Acquired Bacterial Pneumonia. N. Engl. J. Med. 2019, 380, 517–527. [Google Scholar] [CrossRef]
- Lakota, E.A.; Van Wart, S.A.; Trang, M.; Tzanis, E.; Bhavnani, S.M.; Safir, M.C.; Friedrich, L.; Steenbergen, J.N.; Ambrose, P.G.; Rubino, C.M. Population Pharmacokinetic Analyses for Omadacycline Using Phase 1 and 3 Data. Antimicrob. Agents Chemother. 2020, 64, e02263-19. [Google Scholar] [CrossRef]
- Bhavnani, S.M.; Hammel, J.P.; Lakota, E.A.; Trang, M.; Bader, J.C.; Bulik, C.C.; VanScoy, B.D.; Rubino, C.M.; Huband, M.D.; Friedrich, L.; et al. Pharmacokinetic-Pharmacodynamic Target Attainment Analyses Evaluating Omadacycline Dosing Regimens for the Treatment of Patients with Community-Acquired Bacterial Pneumonia Arising from Streptococcus pneumoniae and Haemophilus influenzae. Antimicrob. Agents Chemother. 2023, 67, e0221321. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Burgos, R.M.; Tan, X.; Pai, M.P. Omadacycline: A Review of the Clinical Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 2020, 59, 409–425. [Google Scholar] [CrossRef]
- Leviton, I.M.; Amodio-Groton, M. Omadacycline Oral Dosing and Pharmacokinetics in Community-Acquired Bacterial Pneumonia and Acute Bacterial Skin and Skin Structure Infection. Clin. Drug Investig. 2022, 42, 193–197. [Google Scholar] [CrossRef]
- Mingora, C.M.; Bullington, W.; Faasuamalie, P.E.; Levin, A.; Porter, G.; Stadnick, R.; Varley, C.D.; Addrizzo-Harris, D.; Daley, C.L.; Olivier, K.N.; et al. Long-term Safety and Tolerability of Omadacycline for the Treatment of Mycobacterium abscessus Infections. Open Forum Infect. Dis. 2023, 10, ofad335. [Google Scholar] [CrossRef]
- Wang, D.X.; Xiao, L.X.; Deng, X.Y.; Deng, W. Omadacycline for the treatment of severe pneumonia caused by Chlamydia psittaci complicated with acute respiratory distress syndrome during the COVID-19 pandemic. Front. Med. 2023, 10, 1207534. [Google Scholar] [CrossRef]
- Li, B.; Liu, L.; Li, F.; He, C.; Chen, Y.; Tian, X.; Liu, Z.; Zhang, W. Omadacycline successfully treated severe Legionella pneumonia after moxifloxacin treatment failure: Case series. Front. Pharmacol. 2025, 16, 1559857. [Google Scholar] [CrossRef]
- Sanders, M.; Beringer, P. Immunomodulatory activity of omadacycline in vitro and in a murine model of acute lung injury. mSphere 2024, 9, e0067124. [Google Scholar] [CrossRef]
- Cornely, O.A.; File, T.M., Jr.; Garrity-Ryan, L.; Chitra, S.; Noble, R.; McGovern, P.C. Safety and efficacy of omadacycline for treatment of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections in patients with mild-to-moderate renal impairment. Int. J. Antimicrob. Agents 2021, 57, 106263. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Pai, M.P. Pharmacokinetics and Pharmacodynamics of Oral and Intravenous Omadacycline. Clin. Infect. Dis. 2019, 69 (Suppl. S1), S16–S22. [Google Scholar] [CrossRef]
- LaPensee, K.; Mistry, R.; Lodise, T. Budget Impact of Omadacycline for the Treatment of Patients with Community-Acquired Bacterial Pneumonia in the United States from the Hospital Perspective. Am. Health Drug Benefits 2019, 12 (Suppl. S1), S1–S12. [Google Scholar]
- U.S. Food and Drug Administration. FDA-Approved Drugs. Nuzyra. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=209816 (accessed on 15 May 2025).
- Kocsis, B.; Gulyás, D.; Szabó, D. Delafloxacin, Finafloxacin, and Zabofloxacin: Novel Fluoroquinolones in the Antibiotic Pipeline. Antibiotics 2021, 10, 1506. [Google Scholar] [CrossRef] [PubMed]
- Turban, A.; Guérin, F.; Dinh, A.; Cattoir, V. Updated Review on Clinically-Relevant Properties of Delafloxacin. Antibiotics 2023, 12, 1241. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA-Approved Drugs. Baxdela. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=208610 (accessed on 14 May 2025).
- Horcajada, J.P.; Salata, R.A.; Álvarez-Sala, R.; Nitu, F.M.; Lawrence, L.; Quintas, M.; Cheng, C.Y.; Cammarata, S. A Phase 3 Study to Compare Delafloxacin With Moxifloxacin for the Treatment of Adults With Community-Acquired Bacterial Pneumonia (DEFINE-CABP). Open Forum Infect. Dis. 2020, 7, ofz514. [Google Scholar] [CrossRef] [PubMed]
- Litwin, J.S.; Benedict, M.S.; Thorn, M.D.; Lawrence, L.E.; Cammarata, S.K.; Sun, E. A thorough QT study to evaluate the effects of therapeutic and supratherapeutic doses of delafloxacin on cardiac repolarization. Antimicrob. Agents Chemother. 2015, 59, 3469–3473. [Google Scholar] [CrossRef]
- Thabit, A.K.; Crandon, J.L.; Nicolau, D.P. Pharmacodynamic and pharmacokinetic profiling of delafloxacin in a murine lung model against community-acquired respiratory tract pathogens. Int. J. Antimicrob. Agents 2016, 48, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.K.; Alcorn, H., Jr.; Lawrence, L.; Paulson, S.K.; Quintas, M.; Cammarata, S.K. Delafloxacin Pharmacokinetics in Subjects With Varying Degrees of Renal Function. J. Clin. Pharmacol. 2018, 58, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Panholzer, J.; Neuboeck, M.; Shao, G.; Heldt, S.; Winkler, M.; Greiner, P.; Fritsch, N.; Lamprecht, B.; Salzer, H. Ciprofloxacin-Resistant Pseudomonas aeruginosa Lung Abscess Complicating COVID-19 Treated with the Novel Oral Fluoroquinolone Delafloxacin. Case Rep. Pulmonol. 2022, 2022, 1008330. [Google Scholar] [CrossRef]
- Lodise, T.P.; Tillotson, G.S.; Spargo, A.; Bozkaya, D.; Massey, J. The Role of Delafloxacin in Patients with Community-Acquired Bacterial Pneumonia in the Outpatient Setting: A Budget Impact Model. Clin. Drug Investig. 2020, 40, 961–971. [Google Scholar] [CrossRef]
- Lupia, T.; Pallotto, C.; Corcione, S.; Boglione, L.; De Rosa, F.G. Ceftobiprole Perspective: Current and Potential Future Indications. Antibiotics 2021, 10, 170. [Google Scholar] [CrossRef]
- Galfo, V.; Tiseo, G.; Riccardi, N.; Falcone, M. Therapeutic drug monitoring of antibiotics for methicillin-resistant Staphylococcus aureus infections: An updated narrative review for clinicians. Clin. Microbiol. Infect. 2024, 31, 194–200. [Google Scholar] [CrossRef]
- Gentile, I.; Giuliano, S.; Corcione, S.; De Rosa, F.G.; Falcone, M.; Giacobbe, D.R.; Maraolo, A.E.; Mastroianni, C.M.; Oliva, A.; Pascale, R.; et al. Current role of ceftobiprole in the treatment of hospital-acquired and community-acquired pneumonia: Expert opinion based on literature and real-life experiences. Expert. Rev. Anti Infect. Ther. 2025, 23, 217–225. [Google Scholar] [CrossRef]
- Barberán, J. Possible clinical indications of ceftobiprole. Rev. Esp. Quimioter. 2019, 32 (Suppl. S3), 29–33. [Google Scholar]
- Corcione, S.; De Benedetto, I.; Carlin, M.; Pivetta, E.E.; Scabini, S.; Grosso, C.; Shbaklo, N.; Porta, M.; Lupia, E.; De Rosa, F.G. Real-World Experience of Ceftobiprole for Community- and Hospital-Acquired Pneumonia from a Stewardship Perspective. Microorganisms 2024, 12, 725. [Google Scholar] [CrossRef] [PubMed]
- Awad, S.S.; Rodriguez, A.H.; Chuang, Y.C.; Marjanek, Z.; Pareigis, A.J.; Reis, G.; Scheeren, T.W.; Sánchez, A.S.; Zhou, X.; Saulay, M.; et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin. Infect. Dis. 2014, 59, 51–61. [Google Scholar] [CrossRef]
- Nicholson, S.C.; Welte, T.; File, T.M., Jr.; Strauss, R.S.; Michiels, B.; Kaul, P.; Balis, D.; Arbit, D.; Amsler, K.; Noel, G.J. A randomised, double-blind trial comparing ceftobiprole medocaril with ceftriaxone with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalisation. Int. J. Antimicrob. Agents 2012, 39, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Bellut, H.; Arrayago, M.; Amara, M.; Roujansky, A.; Micaelo, M.; Bruneel, F.; Bedos, J.P. Real-life use of ceftobiprole for severe infections in a French intensive care unit. Infect. Dis. Now. 2024, 54, 104790. [Google Scholar] [CrossRef]
- Gentile, I.; Buonomo, A.R.; Corcione, S.; Paradiso, L.; Giacobbe, D.R.; Bavaro, D.F.; Tiseo, G.; Sordella, F.; Bartoletti, M.; Palmiero, G.; et al. CEFTO-CURE study: CEFTObiprole Clinical Use in Real-lifE—A multi-centre experience in Italy. Int. J. Antimicrob. Agents 2023, 62, 106817. [Google Scholar] [CrossRef]
- Hidalgo-Tenorio, C.; Pitto-Robles, I.; Arnés García, D.; de Novales, F.J.M.; Morata, L.; Mendez, R.; de Pablo, O.B.; López de Medrano, V.A.; Lleti, M.S.; Vizcarra, P.; et al. Cefto Real-Life Study: Real-World Data on the Use of Ceftobiprole in a Multicenter Spanish Cohort. Antibiotics 2023, 12, 1218. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Kosar, J.; Baxter, M.; Dhami, R.; Borgia, S.; Irfan, N.; Dow, G.; Dube, M.; von den Baumen, T.R.; Tascini, C.; et al. How is ceftobiprole used in Canada: The CLEAR study final results. Expert. Rev. Anti Infect. Ther. 2024, 22, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhou, W.; Chen, Y.; Shen, P.; Xiao, Y. In Vitro Antibacterial Activity of Ceftobiprole and Comparator Compounds against Nation-Wide Bloodstream Isolates and Different Sequence Types of MRSA. Antibiotics 2024, 13, 165. [Google Scholar] [CrossRef]
- Rubino, C.M.; Polak, M.; Schröpf, S.; Münch, H.G.; Smits, A.; Cossey, V.; Tomasik, T.; Kwinta, P.; Snariene, R.; Liubsys, A.; et al. Pharmacokinetics and Safety of Ceftobiprole in Pediatric Patients. Pediatr. Infect. Dis. J. 2021, 40, 997–1003. [Google Scholar] [CrossRef]
- Oliva, A.; Savellon, G.; Cancelli, F.; Valeri, S.; Mauro, V.; Aronica, R.; Romani, F.; Mastroianni, C.M. Real-life experience in the use of ceftobiprole for the treatment of nosocomial pneumonia: A case series. J. Glob. Antimicrob. Resist. 2021, 26, 52–54. [Google Scholar] [CrossRef]
- van der Scheer, F.W.; Kuessner, D.; de Silva, S.; Posthumus, J.; Bergman, G. Economic Evaluation of Ceftobiprole Compared to a Combination of Linezolid with Ceftazidime in the Management of Hospitalised Pneunomia in Scotland. Value Health 2013, 16, A358. [Google Scholar] [CrossRef]
- Wu, J.Y.; Srinivas, P.; Pogue, J.M. Cefiderocol: A Novel Agent for the Management of Multidrug-Resistant Gram-Negative Organisms. Infect. Dis. Ther. 2020, 9, 17–40. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Katsube, T.; Saisho, Y.; Shimada, J.; Furuie, H. Intrapulmonary pharmacokinetics of cefiderocol, a novel siderophore cephalosporin, in healthy adult subjects. J. Antimicrob. Chemother. 2019, 74, 1971–1974. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Tiseo, G.; Leonildi, A.; Sala, L.D.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichetti, F. Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e0214221. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Rando, E.; Cutuli, S.L.; Sangiorgi, F.; Tanzarella, E.S.; Giovannenze, F.; De Angelis, G.; Murri, R.; Antonelli, M.; Fantoni, M.; De Pascale, G. Cefiderocol-containing regimens for the treatment of carbapenem-resistant A. baumannii ventilator-associated pneumonia: A propensity-weighted cohort study. JAC Antimicrob. Resist. 2023, 5, dlad085. [Google Scholar] [CrossRef]
- Giannella, M.; Verardi, S.; Karas, A.; Abdel Hadi, H.; Dupont, H.; Soriano, A.; Santerre Henriksen, A.; Cooper, A.; Falcone, M.; Group, A.S. Carbapenem-Resistant Acinetobacter spp Infection in Critically Ill Patients With Limited Treatment Options: A Descriptive Study of Cefiderocol Therapy During the COVID-19 Pandemic. Open Forum Infect. Dis. 2023, 10, ofad329. [Google Scholar] [CrossRef]
- Mazzitelli, M.; Gregori, D.; Sasset, L.; Trevenzoli, M.; Scaglione, V.; Lo Menzo, S.; Marinello, S.; Mengato, D.; Venturini, F.; Tiberio, I.; et al. Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms 2023, 11, 984. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: A multicentre cohort study. JAC Antimicrob. Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Bruni, A.; Gullì, S.; Borrazzo, C.; Quirino, A.; Lionello, R.; Serapide, F.; Garofalo, E.; Serraino, R.; Romeo, F.; et al. Efficacy of cefiderocol- vs colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int. J. Antimicrob. Agents 2023, 62, 106825. [Google Scholar] [CrossRef]
- Dalfino, L.; Stufano, M.; Bavaro, D.F.; Diella, L.; Belati, A.; Stolfa, S.; Romanelli, F.; Ronga, L.; Di Mussi, R.; Murgolo, F.; et al. Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study. Antibiotics 2023, 12, 1048. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Tiseo, G. Cefiderocol for the Treatment of Metallo-β-Lactamases Producing Gram-Negative Bacilli: Lights and Shadows From the Literature. Clin. Infect. Dis. 2022, 75, 1085–1087. [Google Scholar] [CrossRef]
- Larcher, R.; Laffont-Lozes, P.; Roger, C.; Doncesco, R.; Groul-Viaud, C.; Martin, A.; Loubet, P.; Lavigne, J.P.; Pantel, A.; Sotto, A. Last resort beta-lactam antibiotics for treatment of New-Delhi Metallo-Beta-Lactamase producing Enterobacterales and other Difficult-to-Treat Resistance in Gram-negative bacteria: A real-life study. Front. Cell Infect. Microbiol. 2022, 12, 1048633. [Google Scholar] [CrossRef]
- Meschiari, M.; Volpi, S.; Faltoni, M.; Dolci, G.; Orlando, G.; Franceschini, E.; Menozzi, M.; Sarti, M.; Del Fabro, G.; Fumarola, B.; et al. Real-life experience with compassionate use of cefiderocol for difficult-to-treat resistant Pseudomonas aeruginosa (DTR-P) infections. JAC Antimicrob. Resist. 2021, 3, dlab188. [Google Scholar] [CrossRef]
- Torre-Cisneros, J.; Almirante, B.; Martos, C.D.L.F.; Rascado, P.; Lletí, M.S.; Sánchez-García, M.; Soriano, A.; Soriano-Cuesta, M.C.; Gonzalez Calvo, A.J.; Karas, A.; et al. Effectiveness and safety of cefiderocol treatment in patients with Gram-negative bacterial infections in Spain in the early access programme: Results of the PERSEUS study. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 1375–1390. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; Takemura, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In Vitro Susceptibility of Gram-Negative Pathogens to Cefiderocol in Five Consecutive Annual Multinational SIDERO-WT Surveillance Studies, 2014 to 2019. Antimicrob. Agents Chemother. 2022, 66, e0199021. [Google Scholar] [CrossRef]
- Biagi, M.; Vialichka, A.; Jurkovic, M.; Wu, T.; Shajee, A.; Lee, M.; Patel, S.; Mendes, R.E.; Wenzler, E. Activity of Cefiderocol Alone and in Combination with Levofloxacin, Minocycline, Polymyxin B, or Trimethoprim-Sulfamethoxazole against Multidrug-Resistant Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2020, 64, e00559-20. [Google Scholar] [CrossRef]
- EMA 2020 Report of Fetcroja. International Non-Proprietary Name: Cefiderocol. Available online: https://www.ema.europa.eu/en/documents/assessment-report/fetcroja-epar-public-assessment-report_en.pdf (accessed on 1 May 2025).
- Food and Drug Administration. 2020. Fetroja. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/209445Orig1s002.pdf?utm_source (accessed on 1 May 2025).
- Karlowsky, J.A.; Lob, S.H.; Siddiqui, F.; Akrich, B.; DeRyke, C.A.; Young, K.; Motyl, M.R.; Hawser, S.P.; Sahm, D.F. In vitro activity of ceftolozane/tazobactam against multidrug-resistant Pseudomonas aeruginosa from patients in Western Europe: SMART 2017-2020. Int. J. Antimicrob. Agents 2023, 61, 106772. [Google Scholar] [CrossRef]
- Mojica, M.F.; De La Cadena, E.; Ríos, R.; García-Betancur, J.C.; Díaz, L.; Reyes, J.; Hernández-Gómez, C.; Radice, M.; Gales, A.C.; Castañeda Méndez, P.; et al. Molecular mechanisms leading to ceftolozane/tazobactam resistance in clinical isolates of Pseudomonas aeruginosa from five Latin American countries. Front. Microbiol. 2022, 13, 1035609. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Giacobbe, D.R.; Falcone, M.; Tiseo, G.; Giannella, M.; Pascale, R.; Meschiari, M.; Digaetano, M.; Oliva, A.; et al. Ceftolozane/Tazobactam for Treatment of Severe ESBL-Producing Enterobacterales Infections: A Multicenter Nationwide Clinical Experience (CEFTABUSE II Study). Open Forum Infect. Dis. 2020, 7, ofaa139. [Google Scholar] [CrossRef] [PubMed]
- Chandorkar, G.; Huntington, J.A.; Gotfried, M.H.; Rodvold, K.A.; Umeh, O. Intrapulmonary penetration of ceftolozane/tazobactam and piperacillin/tazobactam in healthy adult subjects. J. Antimicrob. Chemother. 2012, 67, 2463–2469. [Google Scholar] [CrossRef] [PubMed]
- Xiao, A.J.; Miller, B.W.; Huntington, J.A.; Nicolau, D.P. Ceftolozane/tazobactam pharmacokinetic/pharmacodynamic-derived dose justification for phase 3 studies in patients with nosocomial pneumonia. J. Clin. Pharmacol. 2016, 56, 56–66. [Google Scholar] [CrossRef]
- Sader, H.S.; Carvalhaes, C.G.; Duncan, L.R.; Flamm, R.K.; Shortridge, D. Susceptibility trends of ceftolozane/tazobactam and comparators when tested against European Gram-negative bacterial surveillance isolates collected during 2012-18. J. Antimicrob. Chemother. 2020, 75, 2907–2913. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Bauer, K.A.; Esterly, J.; Siddiqui, F.; Young, K.; Motyl, M.R.; Sahm, D.F. Activity of ceftolozane/tazobactam, imipenem/relebactam and ceftazidime/avibactam against clinical Gram-negative isolates—SMART United States 2019-21. JAC-Antimicrob. Resist. 2024, 6, dlad152. [Google Scholar] [CrossRef]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.-F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane–tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef]
- Puzniak, L.; Dillon, R.; Palmer, T.; Collings, H.; Enstone, A. Systematic Literature Review of Real-world Evidence of Ceftolozane/Tazobactam for the Treatment of Respiratory Infections. Infect. Dis. Ther. 2021, 10, 1227–1252. [Google Scholar] [CrossRef]
- Van Anglen, L.J.; Schroeder, C.P.; Couch, K.A. A Real-world Multicenter Outpatient Experience of Ceftolozane/Tazobactam. Open Forum Infect. Dis. 2023, 10, ofad173. [Google Scholar] [CrossRef] [PubMed]
- Timsit, J.F.; Mootien, J.; Akrich, B.; Bourge, X.; Brassac, I.; Castan, B.; Mackosso, C.; Tavares, L.M.; Ruiz, F.; Boutoille, D.; et al. Ceftolozane/Tazobactam for the Treatment of Complicated Infections in Hospital Settings-A French Real-world Study. Open Forum Infect. Dis. 2024, 11, ofae037. [Google Scholar] [CrossRef]
- Pogue, J.M.; Kaye, K.S.; Veve, M.P.; Patel, T.S.; Gerlach, A.T.; Davis, S.L.; Puzniak, L.A.; File, T.M.; Olson, S.; Dhar, S.; et al. Ceftolozane/Tazobactam vs Polymyxin or Aminoglycoside-based Regimens for the Treatment of Drug-resistant Pseudomonas aeruginosa. Clin. Infect. Dis. 2020, 71, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Abbo, L.M.; Ackley, R.; Aitken, S.L.; Albrecht, B.; Babiker, A.; Burgoon, R.; Cifuentes, R.; Claeys, K.C.; Curry, B.N.; et al. Effectiveness of ceftazidime-avibactam versus ceftolozane-tazobactam for multidrug-resistant Pseudomonas aeruginosa infections in the USA (CACTUS): A multicentre, retrospective, observational study. Lancet Infect. Dis. 2024, 25, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Giaccari, L.G.; Pace, M.C.; Passavanti, M.B.; Gargano, F.; Aurilio, C.; Sansone, P. Ceftolozane/Tazobactam for Resistant Drugs Pseudomonas aeruginosa Respiratory Infections: A Systematic Literature Review of the Real-World Evidence. Life 2021, 11, 474. [Google Scholar] [CrossRef]
- Sanz Herrero, F. Ceftazidime-avibactam. Rev. Esp. Quimioter. 2022, 35 (Suppl. 1), 40–42. [Google Scholar] [CrossRef]
- Shirley, M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018, 78, 675–692. [Google Scholar] [CrossRef]
- Dimelow, R.; Wright, J.G.; MacPherson, M.; Newell, P.; Das, S. Population Pharmacokinetic Modelling of Ceftazidime and Avibactam in the Plasma and Epithelial Lining Fluid of Healthy Volunteers. Drugs R D 2018, 18, 221–230. [Google Scholar] [CrossRef]
- Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.-F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis. 2018, 18, 285–295. [Google Scholar] [CrossRef]
- Todi, S.; Sathe, P.; Ramasubramanian, V.; Swaminathan, S.; Talwar, D.; Prayag, P.; Rao, P.V.; Sabnis, K.; Kamat, S.; Mane, A.; et al. Real-World Evidence on Use of Ceftazidime-Avibactam in the Management of Gram-Negative Infections: A Retrospective Analysis. Cureus 2024, 16, e70234. [Google Scholar] [CrossRef]
- Castón, J.J.; Cano, A.; Pérez-Camacho, I.; Aguado, J.M.; Carratalá, J.; Ramasco, F.; Soriano, A.; Pintado, V.; Castelo-Corral, L.; Sousa, A.; et al. Impact of ceftazidime/avibactam versus best available therapy on mortality from infections caused by carbapenemase-producing Enterobacterales (CAVICOR study). J. Antimicrob. Chemother. 2022, 77, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- van Duin, D.; Lok, J.J.; Earley, M.; Cober, E.; Richter, S.S.; Perez, F.; Salata, R.A.; Kalayjian, R.C.; Watkins, R.R.; Doi, Y.; et al. Colistin Versus Ceftazidime-Avibactam in the Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae. Clin. Infect. Dis. 2018, 66, 163–171. [Google Scholar] [CrossRef]
- Balandín, B.; Ballesteros, D.; Pintado, V.; Soriano-Cuesta, C.; Cid-Tovar, I.; Sancho-González, M.; Pérez-Pedrero, M.J.; Chicot, M.; Asensio-Martín, M.J.; Silva, J.A.; et al. Multicentre study of ceftazidime/avibactam for Gram-negative bacteria infections in critically ill patients. Int. J. Antimicrob. Agents 2022, 59, 106536. [Google Scholar] [CrossRef] [PubMed]
- Vena, A.; Giacobbe, D.R.; Castaldo, N.; Cattelan, A.; Mussini, C.; Luzzati, R.; Rosa, F.G.; Del Puente, F.; Mastroianni, C.M.; Cascio, A.; et al. Clinical Experience with Ceftazidime-Avibactam for the Treatment of Infections due to Multidrug-Resistant Gram-Negative Bacteria Other than Carbapenem-Resistant Enterobacterales. Antibiotics 2020, 9, 71. [Google Scholar] [CrossRef]
- Lawandi, A.; Mishuk, A.U.; Yek, C.; Yu, A.; Li, X.; Strich, J.R.; Sarzynski, S.; Warner, S.; Kadri, S.S. 1649. Ceftolozane-Tazobactam or Ceftazidime-Avibactam Versus Best Available Therapy in the Treatment of Difficult-to-Treat Pseudomonas aeruginosa Infections: A Retrospective Comparative Effectiveness Analysis of 195 U.S. Hospitals, 2016–2020. Open Forum Infect. Dis. 2022, 9 (Suppl. S2). [Google Scholar] [CrossRef]
- Soriano, A.; Montravers, P.; Bassetti, M.; Klyasova, G.; Daikos, G.; Irani, P.; Stone, G.; Chambers, R.; Peeters, P.; Shah, M.; et al. The Use and Effectiveness of Ceftazidime-Avibactam in Real-World Clinical Practice: EZTEAM Study. Infect. Dis. Ther. 2023, 12, 891–917. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Wang, R.; Cai, Y. Resistance to ceftazidime–avibactam and underlying mechanisms. J. Glob. Antimicrob. Resist. 2020, 22, 18–27. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Giamarellos-Bourboulis, E.J.; Rahav, G.; Mathers, A.J.; Bassetti, M.; Vazquez, J.; Cornely, O.A.; Solomkin, J.; Bhowmick, T.; Bishara, J.; et al. Effect and Safety of Meropenem-Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial. Infect. Dis. Ther. 2018, 7, 439–455. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Dose-Finding, Pharmacokinetics, and Safety of VABOMERE in Pediatric Subjects with Bacterial Infections (TANGOKIDS). Identifier: NCT02687906. Available online: https://clinicaltrials.gov/ct2/show/NCT02687906 (accessed on 10 May 2023).
- Alosaimy, S.; Lagnf, A.M.; Morrisette, T.; Scipione, M.R.; Zhao, J.J.; Jorgensen, S.C.J.; Mynatt, R.; Carlson, T.J.; Jo, J.; Garey, K.W.; et al. Real-world, Multicenter Experience With Meropenem-Vaborbactam for Gram-Negative Bacterial Infections Including Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa. Open Forum Infect. Dis. 2021, 8, ofab371. [Google Scholar] [CrossRef]
- Ackley, R.; Roshdy, D.; Meredith, J.; Minor, S.; Anderson, W.E.; Capraro, G.A.; Polk, C. Meropenem-Vaborbactam versus Ceftazidime-Avibactam for Treatment of Carbapenem-Resistant Enterobacteriaceae Infections. Antimicrob. Agents Chemother. 2020, 64, e02313-19. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Nathanson, B.H.; Redell, M.A.; Sulham, K.; Shorr, A.F. Comparative Outcomes of Meropenem-Vaborbactam vs. Ceftazidime-Avibactam Among Adults Hospitalized with an Infectious Syndrome in the US, 2019-2021. Antibiotics 2025, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Alosaimy, S.; Jorgensen, S.C.J.; Lagnf, A.M.; Melvin, S.; Mynatt, R.P.; Carlson, T.J.; Garey, K.W.; Allen, D.; Venugopalan, V.; Veve, M.; et al. Real-world Multicenter Analysis of Clinical Outcomes and Safety of Meropenem-Vaborbactam in Patients Treated for Serious Gram-Negative Bacterial Infections. Open Forum Infect. Dis. 2020, 7, ofaa051. [Google Scholar] [CrossRef]
- Tiseo, G.; Galfo, V.; Riccardi, N.; Suardi, L.R.; Pogliaghi, M.; Giordano, C.; Leonildi, A.; Barnini, S.; Falcone, M. Real-world experience with meropenem/vaborbactam for the treatment of infections caused by ESBL-producing Enterobacterales and carbapenem-resistant Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2024. [Google Scholar] [CrossRef]
- Mennini, F.S.; Gori, M.; Vlachaki, I.; Fiorentino, F.; Malfa, P.L.; Urbinati, D.; Andreoni, M. Cost-effectiveness analysis of Vaborem in Carbapenem-resistant Enterobacterales (CRE)-Klebsiella pneumoniae infections in Italy. Health Econ. Rev. 2021, 11, 42. [Google Scholar] [CrossRef]
- Vlachaki, I.; Zinzi, D.; Falla, E.; Mantopoulos, T.; Guy, H.; Jandu, J.; Dodgson, A. Cost-effectiveness analysis of vaborem for the treatment of carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae carbapenemase (CRE-KPC) infections in the UK. Eur. J. Health Econ. 2022, 23, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Duda-Madej, A.; Viscardi, S.; Topola, E. Meropenem/Vaborbactam: β-Lactam/β-Lactamase Inhibitor Combination, the Future in Eradicating Multidrug Resistance. Antibiotics 2023, 12, 1612. [Google Scholar] [CrossRef]
- Carvalhaes, C.G.; Shortridge, D.; Sader, H.S.; Castanheira, M. Activity of Meropenem-Vaborbactam against Bacterial Isolates Causing Pneumonia in Patients in U.S. Hospitals during 2014 to 2018. Antimicrob. Agents Chemother. 2020, 64, e02177-19. [Google Scholar] [CrossRef]
- Smith, J.R.; Rybak, J.M.; Claeys, K.C. Imipenem-Cilastatin-Relebactam: A Novel β-Lactam-β-Lactamase Inhibitor Combination for the Treatment of Multidrug-Resistant Gram-Negative Infections. Pharmacotherapy 2020, 40, 343–356. [Google Scholar] [CrossRef]
- O’Donnell, J.N.; Lodise, T.P. New Perspectives on Antimicrobial Agents: Imipenem-Relebactam. Antimicrob. Agents Chemother. 2022, 66, e0025622. [Google Scholar] [CrossRef]
- Rizk, M.L.; Rhee, E.G.; Jumes, P.A.; Gotfried, M.H.; Zhao, T.; Mangin, E.; Bi, S.; Chavez-Eng, C.M.; Zhang, Z.; Butterton, J.R. Intrapulmonary Pharmacokinetics of Relebactam, a Novel β-Lactamase Inhibitor, Dosed in Combination with Imipenem-Cilastatin in Healthy Subjects. Antimicrob. Agents Chemother. 2018, 62, e01411-17. [Google Scholar] [CrossRef]
- Titov, I.; Wunderink, R.G.; Roquilly, A.; Rodríguez Gonzalez, D.; David-Wang, A.; Boucher, H.W.; Kaye, K.S.; Losada, M.C.; Du, J.; Tipping, R.; et al. A Randomized, Double-blind, Multicenter Trial Comparing Efficacy and Safety of Imipenem/Cilastatin/Relebactam Versus Piperacillin/Tazobactam in Adults With Hospital-acquired or Ventilator-associated Bacterial Pneumonia (RESTORE-IMI 2 Study). Clin. Infect. Dis. 2021, 73, e4539–e4548. [Google Scholar] [CrossRef] [PubMed]
- Leanza, C.; Mascellino, M.T.; Volpicelli, L.; Covino, S.; Falletta, A.; Cancelli, F.; Franchi, C.; Carnevalini, M.; Mastroianni, C.M.; Oliva, A. Real-world use of imipenem/cilastatin/relebactam for the treatment of KPC-producing Klebsiella pneumoniae complex and difficult-to-treat resistance (DTR) Pseudomonas aeruginosa infections: A single-center preliminary experience. Front. Microbiol. 2024, 15, 1432296. [Google Scholar] [CrossRef]
- Machuca, I.; Dominguez, A.; Amaya, R.; Arjona, C.; Gracia-Ahufinger, I.; Carralon, M.; Giron, R.; Gea, I.; De Benito, N.; Martin, A.; et al. Real-World Experience of Imipenem-Relebactam Treatment as Salvage Therapy in Difficult-to-Treat Pseudomonas aeruginosa Infections (IMRECOR Study). Infect. Dis. Ther. 2025, 14, 283–292. [Google Scholar] [CrossRef]
- Caniff, K.E.; Rebold, N.; Xhemali, X.; Tran, N.; Eubank, T.A.; Garey, K.W.; Guo, Y.; Chang, M.; Barber, K.E.; Krekel, T.; et al. Real-World Applications of Imipenem-Cilastatin-Relebactam: Insights From a Multicenter Observational Cohort Study. Open Forum Infect. Dis. 2025, 12, ofaf112. [Google Scholar] [CrossRef] [PubMed]
- Chaftari, A.M.; Dagher, H.; Hachem, R.; Jiang, Y.; Lamie, P.; Wilson Dib, R.; John, T.; Haddad, A.; Philip, A.; Alii, S.; et al. A randomized non-inferiority study comparing imipenem/cilastatin/relebactam with standard-of-care Gram-negative coverage in cancer patients with febrile neutropenia. J. Antimicrob. Chemother. 2024, 79, 2543–2553. [Google Scholar] [CrossRef] [PubMed]
- Naik, J.; Dillon, R.; Massello, M.; Ralph, L.; Yang, Z. Cost-effectiveness of imipenem/cilastatin/relebactam for hospital-acquired and ventilator-associated bacterial pneumonia. J. Comp. Eff. Res. 2023, 12, e220113. [Google Scholar] [CrossRef]
- Yang, J.; Naik, J.; Massello, M.; Ralph, L.; Dillon, R.J. Cost-Effectiveness of Imipenem/Cilastatin/Relebactam Compared with Colistin in Treatment of Gram-Negative Infections Caused by Carbapenem-Non-Susceptible Organisms. Infect. Dis. Ther. 2022, 11, 1443–1457. [Google Scholar] [CrossRef]
- McLeod, S.M.; O’Donnell, J.P.; Narayanan, N.; Mills, J.P.; Kaye, K.S. Sulbactam-durlobactam: A β-lactam/β-lactamase inhibitor combination targeting Acinetobacter baumannii. Future Microbiol. 2024, 19, 563–576. [Google Scholar] [CrossRef]
- Dan, M.O.; Tǎlǎpan, D. Friends or foes? Novel antimicrobials tackling MDR/XDR Gram-negative bacteria: A systematic review. Front. Microbiol. 2024, 15, 1385475. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; McLeod, S.M.; Miller, A.A. In Vitro Activity of Sulbactam-Durlobactam against Global Isolates of Acinetobacter baumannii-calcoaceticus Complex Collected from 2016 to 2021. Antimicrob. Agents Chemother. 2022, 66, e0078122. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L.; et al. Efficacy and safety of sulbactam–durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii–calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar] [CrossRef]
- McLeod, S.M.; Miller, A.A.; Rana, K.; Altarac, D.; Moussa, S.H.; Shapiro, A.B. Clinical Outcomes for Patients With Monomicrobial vs Polymicrobial Acinetobacter baumannii-calcoaceticus Complex Infections Treated With Sulbactam-Durlobactam or Colistin: A Subset Analysis From a Phase 3 Clinical Trial. Open Forum Infect. Dis. 2024, 11, ofae140. [Google Scholar] [CrossRef] [PubMed]
- McLeod, S.M.; Carter, N.M.; Bradford, P.A.; Miller, A.A. In vitro antibacterial activity of sulbactam-durlobactam in combination with other antimicrobial agents against Acinetobacter baumannii-calcoaceticus complex. Diagn. Microbiol. Infect. Dis. 2024, 109, 116344. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Gotfried, M.H.; Isaacs, R.D.; O’Donnell, J.P.; Stone, E. Plasma and Intrapulmonary Concentrations of ETX2514 and Sulbactam following Intravenous Administration of ETX2514SUL to Healthy Adult Subjects. Antimicrob. Agents Chemother. 2018, 62, e01089-18. [Google Scholar] [CrossRef] [PubMed]
- VanNatta, M.; Grier, L.; Khan, M.H.; Pinargote Cornejo, P.; Alam, M.; Moussa, S.H.; Smith, J.G.; Aitken, S.L.; Malek, A.E. In Vivo Emergence of Pandrug-Resistant Acinetobacter baumannii Strain: Comprehensive Resistance Characterization and Compassionate Use of Sulbactam-Durlobactam. Open Forum Infect. Dis. 2023, 10, ofad504. [Google Scholar] [CrossRef]
- Zaidan, N.; Hornak, J.P.; Reynoso, D. Extensively Drug-Resistant Acinetobacter baumannii Nosocomial Pneumonia Successfully Treated with a Novel Antibiotic Combination. Antimicrob. Agents Chemother. 2021, 65, e0092421. [Google Scholar] [CrossRef]
- Holger, D.J.; Kunz Coyne, A.J.; Zhao, J.J.; Sandhu, A.; Salimnia, H.; Rybak, M.J. Novel Combination Therapy for Extensively Drug-Resistant Acinetobacter baumannii Necrotizing Pneumonia Complicated by Empyema: A Case Report. Open Forum Infect. Dis. 2022, 9, ofac092. [Google Scholar] [CrossRef]
- Iovleva, A.; McElheny, C.L.; Fowler, E.L.; Cober, E.; Herc, E.S.; Arias, C.A.; Hill, C.; Baum, K.; Fowler, V.G., Jr.; Chambers, H.F.; et al. In vitro activity of sulbactam-durlobactam against colistin-resistant and/or cefiderocol-non-susceptible, carbapenem-resistant Acinetobacter baumannii collected in U.S. hospitals. Antimicrob. Agents Chemother. 2024, 68, e0125823. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Ioannou, P.; Kofteridis, D.P. Are cefiderocol or sulbactam/durlobactam better than alternative best available treatment for infection by carbapenem-resistant A. baumannii? A systematic literature review. Infection 2025. [Google Scholar] [CrossRef]
- Das, S.; Fitzgerald, R.; Ullah, A.; Bula, M.; Collins, A.M.; Mitsi, E.; Reine, J.; Hill, H.; Rylance, J.; Ferreira, D.M.; et al. Intrapulmonary Pharmacokinetics of Cefepime and Enmetazobactam in Healthy Volunteers: Towards New Treatments for Nosocomial Pneumonia. Antimicrob. Agents Chemother. 2020, 65, e01468-20. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; McEntee, L.; Farrington, N.; Kolamunnage-Dona, R.; Franzoni, S.; Vezzelli, A.; Massimiliano, M.; Knechtle, P.; Belley, A.; Dane, A.; et al. Pharmacodynamics of Cefepime Combined with the Novel Extended-Spectrum-β-Lactamase (ESBL) Inhibitor Enmetazobactam for Murine Pneumonia Caused by ESBL-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64, e00180-20. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, I.; Hawser, S.; Kothari, N.; Dunkel, N.; Quevedo, J.; Belley, A.; Henriksen, A.S.; Attwood, M. Evaluation of the activity of cefepime/enmetazobactam against Enterobacterales bacteria collected in Europe from 2019 to 2021, including third-generation cephalosporin-resistant isolates. J. Glob. Antimicrob. Resist. 2024, 38, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.; Bonomo, R.A.; Paterson, D.L. New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clin. Microbiol. Infect. 2017, 23, 704–712. [Google Scholar] [CrossRef]
- Biagi, M.; Wu, T.; Lee, M.; Patel, S.; Butler, D.; Wenzler, E. Searching for the Optimal Treatment for Metallo- and Serine-β-Lactamase Producing Enterobacteriaceae: Aztreonam in Combination with Ceftazidime-avibactam or Meropenem-vaborbactam. Antimicrob. Agents Chemother. 2019, 63, e01426-19. [Google Scholar] [CrossRef]
- Davido, B.; Fellous, L.; Lawrence, C.; Maxime, V.; Rottman, M.; Dinh, A. Ceftazidime-Avibactam and Aztreonam, an Interesting Strategy To Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e01008-17. [Google Scholar] [CrossRef]
- Sader, H.S.; Carvalhaes, C.G.; Arends, S.J.R.; Castanheira, M.; Mendes, R.E. Aztreonam/avibactam activity against clinical isolates of Enterobacterales collected in Europe, Asia and Latin America in 2019. J. Antimicrob. Chemother. 2021, 76, 659–666. [Google Scholar] [CrossRef]
- Mojica, M.F.; Papp-Wallace, K.M.; Taracila, M.A.; Barnes, M.D.; Rutter, J.D.; Jacobs, M.R.; LiPuma, J.J.; Walsh, T.J.; Vila, A.J.; Bonomo, R.A. Avibactam Restores the Susceptibility of Clinical Isolates of Stenotrophomonas maltophilia to Aztreonam. Antimicrob. Agents Chemother. 2017, 61, e00777-17. [Google Scholar] [CrossRef]
- Das, S.; Riccobene, T.; Carrothers, T.J.; Wright, J.G.; MacPherson, M.; Cristinacce, A.; McFadyen, L.; Xie, R.; Luckey, A.; Raber, S. Dose selection for aztreonam-avibactam, including adjustments for renal impairment, for Phase IIa and Phase III evaluation. Eur. J. Clin. Pharmacol. 2024, 80, 529–543. [Google Scholar] [CrossRef]
- Chauzy, A.; Gaelzer Silva Torres, B.; Buyck, J.; de Jonge, B.; Adier, C.; Marchand, S.; Couet, W.; Grégoire, N. Semimechanistic Pharmacodynamic Modeling of Aztreonam-Avibactam Combination to Understand Its Antimicrobial Activity Against Multidrug-Resistant Gram-Negative Bacteria. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 815–824. [Google Scholar] [CrossRef]
- Carmeli, Y.; Cisneros, J.M.; Paul, M.; Daikos, G.L.; Wang, M.; Cisneros, J.T.; Singer, G.; Titov, I.; Gumenchuk, I.; Zhao, Y.; et al. 2893 A. Efficacy and Safety of Aztreonam-Avibactam for the Treatment of Serious Infections Due to Gram-Negative Bacteria, Including Metallo-β-Lactamase-Producing Pathogens: Phase 3 REVISIT Study. Open Forum Infect. Dis. 2023, 10 (Suppl. S2), ofad500.2476. [Google Scholar] [CrossRef]
- Efficacy, Safety, and Tolerability of ATM-AVI in the Treatment of Serious Infection Due to MBL-Producing Gram-Negative Bacteria. 2025. Available online: https://clinicaltrials.gov/study/NCT03580044 (accessed on 2 May 2025).
- Emblaveo, INN-Aztreonam/Avibactam. Available online: https://ec.europa.eu/health/documents/community-register/2024/20240422162367/anx_162367_en.pdf (accessed on 2 May 2025).
- Wicha, W.W.; Prince, W.T.; Lell, C.; Heilmayer, W.; Gelone, S.P. Pharmacokinetics and tolerability of lefamulin following intravenous and oral dosing. J. Antimicrob. Chemother. 2019, 74 (Suppl. S3), iii19–iii26. [Google Scholar] [CrossRef] [PubMed]
- Bhavnani, S.M.; Zhang, L.; Rubino, C.M.; Bader, J.C.; Lepak, A.J.; Andes, D.R.; Flamm, R.K.; Cammarata, S.K.; Ambrose, P.G. Pharmacokinetic-Pharmacodynamic (PK-PD) Target Attainment Analyses for Delafloxacin to Provide Dose Selection Support for the Treatment of Patients With Community-Acquired Bacterial Pneumonia (CABP). Open Forum Infect. Dis. 2016, 3 (Suppl. S1), 1972. [Google Scholar] [CrossRef]
- Torres, A.; Mouton, J.W.; Pea, F. Pharmacokinetics and Dosing of Ceftobiprole Medocaril for the Treatment of Hospital- and Community-Acquired Pneumonia in Different Patient Populations. Clin. Pharmacokinet. 2016, 55, 1507–1520. [Google Scholar] [CrossRef]
- Bhavnani, S.M.; Trang, M.; Griffith, D.C.; Lomovskaya, O.; Hammel, J.P.; Loutit, J.S.; Dudley, M.N.; Ambrose, P.G.; Rubino, C.M. Meropenem–Vaborbactam Pharmacokinetic-Pharmacodynamic (PK-PD) Target Attainment Analyses as Support for Dose Selection in Patients with Normal Renal Function and Varying Degrees of Renal Impairment. Open Forum Infect. Dis. 2017, 4 (Suppl. S1), S530–S531. [Google Scholar] [CrossRef]
- Kabbara, W.K.; Sadek, E.; Mansour, H. Sulbactam–Durlobactam: A Novel Antibiotic Combination for the Treatment of Acinetobacter baumannii–Calcoaceticus Complex (ABC) Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia. Can. J. Infect. Dis. Med. Microbiol. 2025, 2025, 2001136. [Google Scholar] [CrossRef] [PubMed]
- Darlow, C.A.; William, H.; and Dubey, V. Cefepime/Enmetazobactam: A microbiological, pharmacokinetic, pharmacodynamic, and clinical evaluation. Expert Opin. Drug Metab. Toxicol. 2025, 21, 115–123. [Google Scholar] [CrossRef]
- Al Musawa, M.; Bleick, C.R.; Herbin, S.R.; Caniff, K.E.; Van Helden, S.R.; Rybak, M.J. Aztreonam-avibactam: The dynamic duo against multidrug-resistant gram-negative pathogens. Pharmacotherapy 2024, 44, 927–938. [Google Scholar] [CrossRef]
- Raber, S.R.; Xie, R.; Soto, E.; Leister-Tebbe, H. P-1256. Pharmacokinetic/Pharmacodynamic (PK/PD) Target Attainment Analyses for Aztreonam-Avibactam Dosing Regimens. Open Forum Infect. Dis. 2025, 12 (Suppl. S1), ofae631.1438. [Google Scholar] [CrossRef]
- Miller, B.; Hershberger, E.; Benziger, D.; Trinh, M.; Friedland, I. Pharmacokinetics and safety of intravenous ceftolozane-tazobactam in healthy adult subjects following single and multiple ascending doses. Antimicrob. Agents Chemother. 2012, 56, 3086–3091. [Google Scholar] [CrossRef]
- Falcone, M.; Paterson, D. Spotlight on ceftazidime/avibactam: A new option for MDR Gram-negative infections. J. Antimicrob. Chemother. 2016, 71, 2713–2722. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Zhou, D.; Nichols, W.W.; Townsend, A.; Newell, P.; Li, J. Selecting the dosage of ceftazidime-avibactam in the perfect storm of nosocomial pneumonia. Eur. J. Clin. Pharmacol. 2020, 76, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Codina, M.; van Os, W.; Pham, A.D.; Jorda, A.; Wölf-Duchek, M.; Bergmann, F.; Lackner, E.; Lier, C.; van Hasselt, J.G.C.; Minichmayr, I.K.; et al. Target-site cefiderocol pharmacokinetics in soft tissues of healthy volunteers. J. Antimicrob. Chemother. 2024, 79, 3281–3288. [Google Scholar] [CrossRef]
- Bilal, M.; El Tabei, L.; Büsker, S.; Krauss, C.; Fuhr, U.; Taubert, M. Clinical Pharmacokinetics and Pharmacodynamics of Cefiderocol. Clin. Pharmacokinet. 2021, 60, 1495–1508. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Roquilly, A.; Croce, M.; Rodriguez Gonzalez, D.; Fujimi, S.; Butterton, J.R.; Broyde, N.; Popejoy, M.W.; Kim, J.Y.; De Anda, C. A Phase 3, Randomized, Double-Blind Study Comparing Tedizolid Phosphate and Linezolid for Treatment of Ventilated Gram-Positive Hospital-Acquired or Ventilator-Associated Bacterial Pneumonia. Clin. Infect. Dis. 2021, 73, e710–e718. [Google Scholar] [CrossRef]
- Burdette, S.D.; Trotman, R. Tedizolid: The First Once-Daily Oxazolidinone Class Antibiotic. Clin. Infect. Dis. 2015, 61, 1315–1321. [Google Scholar] [CrossRef]
- Toyokawa, M.; Ohana, N.; Tanno, D.; Imai, M.; Takano, Y.; Ohashi, K.; Yamashita, T.; Saito, K.; Takahashi, H.; Shimura, H. In vitro activity of tedizolid against 43 species of Nocardia species. Sci. Rep. 2024, 14, 5342. [Google Scholar] [CrossRef]
- Housman, S.T.; Pope, J.S.; Russomanno, J.; Salerno, E.; Shore, E.; Kuti, J.L.; Nicolau, D.P. Pulmonary disposition of tedizolid following administration of once-daily oral 200-milligram tedizolid phosphate in healthy adult volunteers. Antimicrob. Agents Chemother. 2012, 56, 2627–2634. [Google Scholar] [CrossRef]
- Shibata, Y.; Shiota, A.; Mori, N.; Asai, N.; Hagihara, M.; Mikamo, H. Clinical efficacy and safety assessment of tedizolid using therapeutic drug monitoring. J. Infect. Chemother. 2024, 31, 102582. [Google Scholar] [CrossRef]
- Coustilleres, F.; Thillard, E.M.; Khanna, R.K.; Olivereau, S.; Ouaissi, M.; Pansu, N.; Le Lez, M.L. Severe Optic Neuropathy Induced by Very Prolonged Tedizolid as Suppressive Therapy: Description of a Case Report and Implication for Better Assessment. Open Forum Infect. Dis. 2024, 11, ofae517. [Google Scholar] [CrossRef]
- Monogue, M.L.; Thabit, A.K.; Hamada, Y.; Nicolau, D.P. Antibacterial Efficacy of Eravacycline In Vivo against Gram-Positive and Gram-Negative Organisms. Antimicrob. Agents Chemother. 2016, 60, 5001–5005. [Google Scholar] [CrossRef]
- Li, Y.; Cui, L.; Xue, F.; Wang, Q.; Zheng, B. Synergism of eravacycline combined with other antimicrobial agents against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2022, 30, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Connors, K.P.; Housman, S.T.; Pope, J.S.; Russomanno, J.; Salerno, E.; Shore, E.; Redican, S.; Nicolau, D.P. Phase I, open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob. Agents Chemother. 2014, 58, 2113–2118. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.J.; Zhu, E.; Jayakumar, R.A.; Shan, G.; Viswesh, V. Efficacy of Eravacycline Versus Best Previously Available Therapy for Adults With Pneumonia Due to Difficult-to-Treat Resistant (DTR) Acinetobacter baumannii. Ann. Pharmacother. 2022, 56, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.T.; Chen, X.D.; Guo, Y.Y.; Lin, S.W.; Wang, M.Z.; Xu, J.B.; Wang, X.H.; He, G.H.; Tan, X.X.; Zhuo, C.; et al. Emergence of eravacycline heteroresistance in carbapenem-resistant Acinetobacter baumannii isolates in China. Front. Cell Infect. Microbiol. 2024, 14, 1356353. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Liu, Y.; Li, Q.; Liu, H.; Zhou, P.; Liu, Y.; Chen, L.; Yin, W.; Lu, Y. Detection and characterization of eravacycline heteroresistance in clinical bacterial isolates. Front. Microbiol. 2024, 15, 1332458. [Google Scholar] [CrossRef]
- Li, D.; Schneider-Futschik, E.K. Current and Emerging Inhaled Antibiotics for Chronic Pulmonary Pseudomonas aeruginosa and Staphylococcus aureus Infections in Cystic Fibrosis. Antibiotics 2023, 12, 484. [Google Scholar] [CrossRef]
- Zampaloni, C.; Mattei, P.; Bleicher, K.; Winther, L.; Thäte, C.; Bucher, C.; Adam, J.M.; Alanine, A.; Amrein, K.E.; Baidin, V.; et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 2024, 625, 566–571. [Google Scholar] [CrossRef]
- Rhee, C.K.; Chang, J.H.; Choi, E.G.; Kim, H.K.; Kwon, Y.S.; Kyung, S.Y.; Lee, J.H.; Park, M.J.; Yoo, K.H.; Oh, Y.M. Zabofloxacin versus moxifloxacin in patients with COPD exacerbation: A multicenter, double-blind, double-dummy, randomized, controlled, Phase III, non-inferiority trial. Int. J. Chron. Obstr. Pulm. Dis. 2015, 10, 2265–2275. [Google Scholar] [CrossRef]
- Li, Y.; Yan, M.; Xue, F.; Zhong, W.; Liu, X.; Chen, X.; Wu, Y.; Zhang, J.; Wang, Q.; Zheng, B.; et al. In vitro and in vivo activities of a novel β-lactamase inhibitor combination imipenem/XNW4107 against recent clinical Gram-negative bacilli from China. J. Glob. Antimicrob. Resist. 2022, 31, 1–9. [Google Scholar] [CrossRef]
- Imipenem/Cilastatin-XNW4107 Versus Imipenem/Cilastatin/Relebactam for Treatment of Participants with Bacterial Pneumonia (XNW4107-302, REITAB-2) (REITAB-2). Available online: https://clinicaltrials.gov/study/NCT05204563 (accessed on 1 May 2025).
- Li, Y.; Chen, X.; Guo, Y.; Lin, Y.; Wang, X.; He, G.; Wang, M.; Xu, J.; Song, M.; Tan, X.; et al. Overexpression of KPC contributes to ceftazidime-avibactam heteroresistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae. Front. Cell Infect. Microbiol. 2024, 14, 1450530. [Google Scholar] [CrossRef] [PubMed]
- Sadek, M.; Duran, J.B.; Chakraborty, T.; Poirel, L.; Nordmann, P. Combined resistance mechanisms leading to high-level of cefiderocol resistance among NDM-like producing E. coli ST167 clinical isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2025. [Google Scholar] [CrossRef]
- Goenka, S.; Jain, M.; Wanswett, W.; Loomba, P.; Sharma, A.; Mishra, B. Carbapenem-resistant Acinetobacter baumannii: Prevalence, phenotypic and genotypic Analysis in cases of ventilator associated pneumonia from a teaching hospital in Delhi, India. Indian. J. Med. Microbiol. 2025, 56, 100894. [Google Scholar] [CrossRef]
- Rowland, C.E.; Newman, H.; Martin, T.T.; Dods, R.; Bournakas, N.; Wagstaff, J.M.; Lewis, N.; Stanway, S.J.; Balmforth, M.; Kessler, C.; et al. Discovery and chemical optimisation of a potent, Bi-cyclic antimicrobial inhibitor of Escherichia coli PBP3. Commun. Biol. 2025, 8, 819. [Google Scholar] [CrossRef] [PubMed]
- Tellapragada, C.; Razavi, M.; Peris, P.S.; Jonsson, P.; Vondracek, M.; Giske, C.G. Resistance to aztreonam-avibactam among clinical isolates of Escherichia coli is primarily mediated by altered penicillin-binding protein 3 and impermeability. Int. J. Antimicrob. Agents 2024, 64, 107256. [Google Scholar] [CrossRef] [PubMed]
- Nurjadi, D.; Kocer, K.; Chanthalangsy, Q.; Klein, S.; Heeg, K.; Boutin, S. New Delhi Metallo-Beta-Lactamase Facilitates the Emergence of Cefiderocol Resistance in Enterobacter cloacae. Antimicrob. Agents Chemother. 2022, 66, e0201121. [Google Scholar] [CrossRef]
- Yang, C.; Wang, L.; Lv, J.; Wen, Y.; Gao, Q.; Qian, F.; Tian, X.; Zhu, J.; Zhu, Z.; Chen, L.; et al. Effects of different carbapenemase and siderophore production on cefiderocol susceptibility in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2024, 68, e0101924. [Google Scholar] [CrossRef]
- Li, H.; Oliver, A.; Shields, R.K.; Kamat, S.; Stone, G.; Estabrook, M. Molecular characterization of clinically isolated Pseudomonas aeruginosa with varying resistance to ceftazidime-avibactam and ceftolozane-tazobactam collected as a part of the ATLAS global surveillance program from 2020 to 2021. Antimicrob. Agents Chemother. 2024, 68, e0067024. [Google Scholar] [CrossRef]
- Tsai, Y.K.; Liou, C.H.; Lin, J.C.; Fung, C.P.; Chang, F.Y.; Siu, L.K. Effects of different resistance mechanisms on antimicrobial resistance in Acinetobacter baumannii: A strategic system for screening and activity testing of new antibiotics. Int. J. Antimicrob. Agents 2020, 55, 105918. [Google Scholar] [CrossRef]
- Ceylan, A.N.; Kömeç, S.; Şanlı, K.; Öncel, B.; Durmuş, M.A.; Gülmez, A. Are New β-Lactam/β-Lactamase Inhibitor Combinations Promising Against Carbapenem-Resistant K. pneumoniae Isolates? Pathogens 2025, 14, 220. [Google Scholar] [CrossRef]
- Di Bella, S.; Beović, B.; Fabbiani, M.; Valentini, M.; Luzzati, R. Antimicrobial Stewardship: From Bedside to Theory. Thirteen Examples of Old and More Recent Strategies from Everyday Clinical Practice. Antibiotics 2020, 9, 398. [Google Scholar] [CrossRef] [PubMed]
- Pevehouse, R.; Shah, P.J.; Chou, N.; Oolut, P.; Nair, S.; Ahmed, R. Evaluating the utility of procalcitonin and a clinical decision support tool to determine duration of antimicrobial therapy for respiratory tract infections. Am. J. Health Syst. Pharm. 2024, 81 (Suppl. S4), S137–S143. [Google Scholar] [CrossRef]
- Póvoa, P.; Coelho, L.; Cidade, J.P.; Ceccato, A.; Morris, A.C.; Salluh, J.; Nobre, V.; Nseir, S.; Martin-Loeches, I.; Lisboa, T.; et al. Biomarkers in pulmonary infections: A clinical approach. Ann. Intensive Care 2024, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Dagher, H.; Chaftari, A.M.; Hachem, R.; Jiang, Y.; Philip, A.; Mulanovich, P.; Haddad, A.; Lamie, P.; Wilson Dib, R.; John, T.M.; et al. Procalcitonin Level Monitoring in Antibiotic De-Escalation and Stewardship Program for Patients with Cancer and Febrile Neutropenia. Cancers 2024, 16, 3450. [Google Scholar] [CrossRef]
- Zahavi, I.; Kunwar, D.; Olchowski, J.; Dallasheh, H.; Paul, M. Short vs. long antibiotic treatment for pyelonephritis and complicated urinary tract infections: A living systematic review and meta-analysis of randomized controlled trials. Clin. Microbiol. Infect. 2025. [Google Scholar] [CrossRef] [PubMed]
- Møller Gundersen, K.; Nygaard Jensen, J.; Bjerrum, L.; Hansen, M.P. Short-course vs long-course antibiotic treatment for community-acquired pneumonia: A literature review. Basic Clin. Pharmacol. Toxicol. 2019, 124, 550–559. [Google Scholar] [CrossRef]
- Gray, J.; Zhang, C.; Earl, A.; Spivak, E.S. Short versus long treatment duration for streptococcal bloodstream infection. Antimicrob. Steward. Healthc. Epidemiol. 2025, 5, e47. [Google Scholar] [CrossRef]
- Karaiskos, I.; Gkoufa, A.; Polyzou, E.; Schinas, G.; Athanassa, Z.; Akinosoglou, K. High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review. Microorganisms 2023, 11, 1459. [Google Scholar] [CrossRef]
- Moreno Núñez, L.; Garmendia Fernández, C.; Ruiz Muñoz, M.; Collado Álvarez, J.; Jimeno Griño, C.; Prieto Callejero, Á.; Pérez Fernández, E.; González Anglada, I.; Emilio Losa García, J. A step further: Antibiotic stewardship programme in home hospital. Infect. Dis. Now. 2024, 54, 105008. [Google Scholar] [CrossRef]
- Burch, A.R.; Ledergerber, B.; Ringer, M.; Padrutt, M.; Reiber, C.; Mayer, F.; Zinkernagel, A.S.; Eberhard, N.; Kaelin, M.B.; Hasse, B. Improving antimicrobial treatment in terms of antimicrobial stewardship and health costs by an OPAT service. Infection 2024, 52, 1367–1376. [Google Scholar] [CrossRef]
Antimicrobial | Mechanism of Action | Spectrum of Activity | Administration | Pneumonia Approval Clinical Trials and Drug Comparator/Results | Major Side Effects |
---|---|---|---|---|---|
Antibiotic agents for community-acquired pneumonia | |||||
Lefamulin | Binds to the 50S bacterial ribosomal subunit in the PTC. | S. pneumoniae MSSA H. influenzae Legionella pneumophila Mycoplasma pneumoniae Chlamydophila pneumoniae | 600 mg PO q12h or 150 mg IV q12h infused over 1 h | LEAP 1 clinical trial (NCT02559310)—A study to evaluate the efficacy and safety of IV-to-PO lefamulin VS moxifloxacin in patients with CABP. Result: Lefamulin was noninferior to moxifloxacin for early clinical response (87.3% vs. 90.2%) and investigator assessment of clinical response (mITT, 81.7% vs. 84.2%, respectively). LEAP 2 (NCT02813694)–A study to evaluate the efficacy and adverse events of a 5-day oral lefamulin regimen in patients with CABP. Result: Lefamulin and moxifloxacin showed similar early clinical response rates (90.8% for both). The rates of clinical response success were similar: 87.5% for lefamulin and 89.1% for moxifloxacin in the mITT population, and 89.7% for lefamulin and 93.6% for moxifloxacin in the clinically evaluable population. | QT prolongation Fetal loss Diarrhea Administration-site reactions Hepatic enzyme elevation Nausea Hypokalemia, insomnia Headache |
Omadacycline | Binds to 30S ribosomal subunits in the mRNA translation complex of bacteria and inhibits the binding of aminoacyl–tRNA to the mRNA–ribosome complex. | S. pneumoniae MSSA H. influenzae L. pneumophila M. pneumoniae Ch. pneumoniae | IV and PO therapy Loading dose on day 1: 200 mg IV infusion over 1 h OR 100 mg IV over 30 min q12h OR 300 mg po q12h on day 1. Maintenance dose: 100 mg IV over 30 min q24h, or 300 mg p.o q24h for 7–14 days | OPTIC clinical trial—(NCT02531438)—A phase 3 randomized, double-blind, multi-center study to compare the safety and efficacy of omadacycline IV/PO to moxifloxacin IV/PO for treating adults with CAP. Result: Non inferiority for omadacycline compared to moxifloxacin. NCT04160260—A phase 1 multi-center study to measure the pharmacokinetics of oral omadacycline in adults with CABP. All participants received a LD of omadacycline (300 mg po q12h on day 1), followed by maintenance treatment of 300 mg po q24h) for a total treatment duration of 7–10 days. All study participants achieved clinical success for overall clinical response. | Nausea Vomiting Infusion-site reactions ↑ AST, ALT, γ-GT hypertension Headache Diarrhea Insomnia Constipation |
Delafloxacin | Inhibits both bacterial DNA topoisomerase IV and DNA gyrase (topoisomerase II) With similar potency. | MSSA levofloxacin-resistant S. aureus and S. pneumoniae E. coli H. influenzae M. catarrhalis atypical species | 300 mg IV q12h Or 450 mg PO q12h | DEFINE clinical trial—(NCT02679573)—A phase 3, multicenter, randomized, double-blind, comparator-controlled study to evaluate the safety and efficacy of IV to PO delafloxacin in adults with CABP. In the ITT population ITT, ECR rates were 88.9% in the delafloxacin and 89.0% in the moxifloxacin group Result: Noninferiority of delafloxacin compared with moxifloxacin. | Nausea Diarrhea Headache ↑ transaminase Vomiting |
Ceftobiprole | The active moiety of ceftobiprole medocaril binds to essential PBPs and inhibits their transpeptidase activity. | Gram-positive and Gram-negative bacteria, e.g., antibiotic-resistant strains of S. aureus (MRSA and VRSA) penicillin-resistant S. pneumoniae (PRSP), Enterococcus faecalis, non-ESBL Enterobacteria P. aeruginosa | 500 mg IV q8h | NCT00326287-A randomized, double-blind, multicenter study of ceftobiprole medocaril Versus placebo in the treatment of hospitalized patients with CAP. Result: Ceftobiprole was non-inferior to the comparator (ceftriaxone ± linezolid) in all clinical and microbiological analyses conducted. NCT00229008—A phase 3 randomized double-blind study of ceftobiprole medocaril versus linezolid plus ceftazidime in the treatment of nosocomial pneumonia. Result: Ceftobiprole monotherapy was as efficacious as ceftazidime/linezolid for clinical and microbiological cure and was noninferior to ceftazidime/linezolid in the subgroup of patients with HAP excluding VAP. | Nausea Vomiting |
Antibiotic agents for nosocomial pneumonia | |||||
Cefiderocol | Inhibition of bacterial cell wall synthesis: Binds iron. Entry into the bacterial cell is accomplished via the siderophore pathway. Binds to PBPs (especially PBP3). | CRAB, Carbapenem resistant K. pneumoniae, P. aeruginosa, S. maltophilia | 2 g IV q8h infused over 3 h | CREDIBLE-CR Trial (NCT02714595)—Evaluated cefiderocol in adult patients with Carbapenem-resistant pathogen infections, including nosocomial pneumonia. Results: Clinical cure rate of 50% for cefiderocol (compared to 53% for BAT). Findings: Comparable efficacy to best BAT, but higher deaths in A. baumannii infections treated with cefiderocol. | ↑ liver function tests Hypokalemia Diarrhea Hypomagnesemia Atrial fibrillation |
Ceftolozane/tazobactam | Ceftolozane: Inhibition of bacterial cell wall synthesis. Binds to PBPs (especially PBP1b, PBP1c, and PBP3) Tazobactam: Beta-lactamase inhibitor. Extends ceftolozane’s activity against ESBL-producing Enterobacterales. | P. aeruginosa (including MDR and XDR strains), ESBL-producing Enterobacteriales | 3 g IV q8h infused over 3 h | ASPECT-NP Trial (NCT02105636): Compared ceftolozane/tazobactam (3 g q8h) to meropenem (1 g q8h) for nosocomial pneumonia (including VAP). Results: Ceftolozane/tazobactam non-inferior to meropenem with a 28-day all-cause mortality rate of 24% vs. 25.3% | ↑ risk of C. difficile infection |
Ceftazidime/Avibactam | Ceftazidime: inhibition of bacterial cell wall synthesis. Binds to PBPs (e.g., PBP3). Avibactam: inhibits a broad range of β-lactamases including class A (KPC and ESBL), Class C (AmpC), and some class D serine enzymes. Ineffective against metallo-β-lactamases. | P. aeruginosa (including MDR and Carbapenem-resistant strains), Enterobacteriaceae | 2.5 g IV q8h (2 g ceftazidime and 0.5 g avibactam), infused over 3 h | REPROVE Trial (NCT02238083): ceftazidime/avibactam (2.5 g q8h) vs. meropenem (1 g q8h) for nosocomial pneumonia (including VAP). Results: Ceftazidime/avibactam non-inferior to meropenem. The clinical cure rate was 68.8% for ceftazidime/avibactam and 73.0% for meropenem (not statistically significant). | Diarrhea Nausea Headache Vomiting Fever |
Meropenem/vaborbactam | Meropenem: inhibition of bacterial cell wall synthesis. Binds to PBPs. Vaborbactam: inhibits class A (e.g., KPC) and class C β-lactamases. Ineffective against class B (metallo-β-lactamases) or class D β-lactamases. | Meropenem-non-susceptible strains of Enterobacteriaceae, including KPC and ESBL-producing strains. CRE | 2 g meropenem,2 g vaborbactam q8h, administered as a 3 h IV infusion | TANGO II Trial (NCT02644339): Clinical Cure Rates: End of Treatment: 65.6% for meropenem/vaborbactam vs. 33.3% for the BAT, (p = 0.03). Test of Cure: 59.4% for meropenem/vaborbactam vs. 26.7% for BAT, also showing a statistically significant difference (p = 0.02). | Diarrhea Anemia Hypokalemia |
Imipenem/Cilastatin/Relebactam | Imipenem: inhibition of bacterial cell wall synthesis. Binds to PBPs (especially PBP2 and PBP1b). Cilastatin: renal dehydropeptidase inhibitor. Relebactam: potentiates imipenem’s activity by binding to the active site of serine β-lactamases of Ambler classes A and C. | ESBL- and KPC-producing Enterobacterales. | 1.25 g IV q6h infused over 30 min | RESTORE-IMI 1 (NCT02111524): imipenem/cilastatin/relebactam vs. colistin plus imipenem for imipenem-non-susceptible infections, including HAP and VAP. Result: 87.5% (imipenem/cilastatin/relebactam) vs. 66.7% (colistin plus imipenem). RESTORE-IMI 2 (NCT02493764): imipenem/cilastatin/relebactam vs. piperacillin/tazobactam for HAP/VAP caused by Enterobacterales. Mortality rate: 15.9% (imipenem/cilastatin/relebactam) vs. 21.3% (piperacillin/tazobactam). Result: Non-inferior efficacy. | Diarrhea Nausea Vomiting |
Sulbactam/Durlobactam | Sulbactam: Inhibition of bacterial cell wall synthesis. Binds to PBPs (especially PBPs1 and PBP3). Durlobactam: inhibits Amber Class A, C, and D serine β-lactamases but not class B metallo-β-lactamases. | A. baumannii–calcoaceticus complex (ABC)-CRAB | 2 g (1 g sulbactam, 1 g durlobactam) IV q6h infused over 3 h | ATTACK clinical trial (NCT03894046)—A study to evaluate the efficacy and safety of IV sulbactam/durlobactam vs. colistin in the treatment of patients with infections caused by A. baumannii–calcoaceticus complex. Result: the 28-day all-cause mortality was lower in the sulbactam–durlobactam group (19%) compared to the colistin group (32%). Nephrotoxicity was significantly lower with sulbactam–durlobactam (13%) than colistin (38%). | Liver test abnormalities Diarrhea Anemia Hypokalemia |
h | |||||
Cefepime/enmetazobactam | Cefepime: inhibition of bacterial cell wall synthesis. Binds to PBPs (especially PBP2 and PBP3). Enmetazobactam: inactivates Ambler Class A β-lactamases. | Broad-spectrum antimicrobial activity against a range of multidrug-resistant Enterobacteriaceae | 2.5 g IV (2 g cefepime, 0.5 g enmetazobactam) q8h infused over 4 h | Twenty healthy volunteers were assed to study the intrapulmonary pharmacokinetics of a regimen of 2 g cefepime-1 g enmetazobactam q8h IV. Result: concentration-time profiles of both agents in plasma and ELF were similar. | ↑ transaminases, ↑ bilirubin Headache Phlebitis/infusion site reactions |
Aztreonam/avibactam | Aztreonam: Inhibition of bacterial cell wall synthesis. Binds to PBPs (Especially PBP3) Avibactam: β-lactamase inhibitor. | MBL-producing bacteria, that may co-produce SBLs–including ESBLs, AmpC and the carbapenemase enzymes, KPC, and OXA-48-like1–7, S. maltophilia | Loading dose: 2 g/0.67 g IV Maintenance dose: 1.5 g/0.5 g IV q6h infused over 3 h. * maintenance dose is adjusted based on renal function | REVISIT Study (NCT03329092): A phase 3, randomized, multicenter, open-label trial tested aztreonam/avibactam vs. meropenem for cIAI and HAP/VAP caused by Gram-negative, MDR, and MBL-producing bacteria. Result: Clinical cure rates were similar between groups, with aztreonam–avibactam showing lower 28-day all-cause mortality. Microbiological response was 75.7% for Aztreonam–avibactam vs. 73.9% for meropenem. The 28-day all-cause mortality for HAP/VAP was 10.8% for aztreonam–avibactam vs. 19.4% for meropenem. ASSEMBLE Study (NCT03580044): assessed aztreonam–avibactam vs. best available therapy for infections caused by MBL-producing bacteria. Aztreonam–avibactam showed a 41.7% clinical cure rate, compared to 0% for Best available therapy. 15 patients were included—the small sample size limits the study results. | ↑ transaminases, hepatic function abnormalities |
Antibiotic | PK Characteristics | ELF/Plasma Ratio | Probability of Achieving Target Attainment |
---|---|---|---|
Lefamulin [171] | T1/2 13.2 h rapid oral absorption with 2 peaks 25% oral bioavalability (comparable variability in PK parameters following oral and IV administration) Administration with food delays drug absorption | Penetration in the ELF of the lung (measured by AUC0–24) is comparable following iv and oral administration in both fed and fasted states | >98% in the plasma and ELF for oral administration on the first day of dosing in both fed and fasted states |
Omadacycline [42] | T1/2 13.5–13.8 h Linear PK Oral bioavailability (fasted) 34.5%-decreased with high-fat meals Low protein-binding Mostly biliary excretion | ELF and alveovar macrophage concentrations exceed plasma (ELF/plasma AUC ratio 1.47) | Concentration-dependent activity (AUC/MIC) Good lung penetration (especially with IV administration) PTA > 90% for S. pneumoniae at MIC ≤ 0.25 mg/L |
Delafloxacin [53,172] | T1/2 ranges from 10–14 h (IV or oral administration, respectively) Oral bioavailability 59% High protein binding Primarily renal excretion | Higher concentrations in the ELF than those in plasma | ≥99.5% for S. pneumoniae at MIC 1 mg/L ≥96.3% for S. aureus at MIC 0.5 mg/L |
Ceftobiprole [173] | T1/2 3.1–3.3 h Prodrug rapidly hydrolyzed to active agent Linear PK, time independent (125–1000 mg) Low protein binding (16%) Renal elimination (80–90%) | ELF concentrations lower than plasma (mean ELF penetration 25.5%) | Observed target attainment of higher than 90% for %fT > MIC of up to 70% in patients with HAP for MIC values up to 4 mg/L |
Meropenem/Vaborbactam [134,174] | T1/2 1.36 ± 0.07 and 1.47 ± 0.14 h for meropenem and vaborbactam, respectively Low plasma protein binding Renal excretion 25% hepatic metabolism of meropenem | 63% for meropenem 53% for vaborbactam | High percent probabilities of PK-PD target attainment at or above the upper margins of meropenem–vaborbactam MIC distributions for ENT, KPC-producing ENT, and P. aeruginosa |
Imipenem/Cilastatin/Relebactam [136,138] | T1/2 1.2 h for relebactam and 1.0 for imipenem Dose adjustment is required based on renal function High renal excretion for relebactam (94.7–100%) | Exposures in ELF versus plasma are 54% for relebactam and 55% for imipenem | High PTA across a wide range of MICs for HAP/VAP maintained across different levels of renal impairment |
Sulbactam/Durlobactam [175] | T1/2 2.15 ± 1.16 h for sulbactam and 2.52 ± 0.77 h for durlobactam 38% and 10% plasma protein binding for sulbactam and relebactam, respectively Renal elimination Dose-proportional PK—stable between single and multiple doses | 0.36 for durlobactam | High PTA across in vivo/in vitro models |
Cefepime/Enmetazobactam [158,176] | T1/2 2.7 h for cefepime and 2.6 h for enmetazobactam 16.2–19% protein binding for cefepime Renal excretion | 0.61 for cefepeme 0.53 for enmetazobactam | PTA ≥90% for Enterobacteriaceae with cefepime-enmetazobactam MICs of ≤8 mg/liter |
Aztreonam/Avibactam [177,178] | T1/2 2.8 h for aztreonam and 2.2 h for avibactam Protein binding of 38% and 8%, respectively 70% and 97% renal elimination | The average ratio of aztreonam concentration in ELF to plasma concentration ranges from 21% to 60%. Avibactam’s concentration in ELF is 30% of the plasma concentration | High joint PTA across renal function groups |
Ceftolozane/Tazobactam [102,179] | T1/2 2.6 h Linear PK up to 2 g (single dose) Renal excretion (100% unchanged in urine within 24 h) Addition of tazobactam causes no significant change for ceftolozane’s PK parameters | Approximately 50% plasma-to-ELF penetration ratio | For nosocomial pneumoniae PTA for ceftolozane is 98.4% against pathogens with an MIC up to 8 mg/L in ELF (at 3 g-dose scheme) |
Ceftazidime/Avibactam [114,180,181] | T1/2 ~2.7 h Linear PK Low protein binding (21% for ceftazidime and 8% for avibactam) Renally excreted (>80% ceftazidime, >97% avibactam unchanged) Dose adjustment needed in renal impairment | Ceftazidime (52%) and avibactam (42%) in healthy volunteers | >96% joint PTA across different renal function categories in patients with nosocomial pneumonia |
Cefiderocol [182,183] | T1/2 ~2.0–2.8 h linear PK moderate protein binding (~58%) Primarily renally excreted unchanged (~90% in urine). Low metabolism Low drug–drug interaction potential | ELF/plasma AUC ratio 0.09–0.12 | PTA ≥ 90% for MIC values up to 4 mg/L |
Antimicrobials | Ongoing Pneumonia Clinical Trials | Status of Trial |
---|---|---|
TEDIZOLID | NCT05534750—Evaluation of the Early Bactericidal Activity of Tedizolid and Linezolide Against Mycobacterium Tuberculosis (TEDITUB) | NCT05534750—RECRUITING |
ERAVACYCLINE | NCT06282835—The Effectiveness and Safety Study of Eravacycline Combination Therapy for Multidrug-Resistant A. Baumannii Pneumonia NCT06670872—A Study on the Combination Therapy of Eravacycline for Treating CRAB Pneumonia NCT06666998—Real-World Pharmacokinetic/Pharmacodynamic Study of Eravacycline in Critically III Patients NCT06440304—Therapeutic Options for CRAB (TheraCRAB) NCT05568654—Reducing Antimicrobial Overuse Through Targeted Therapy for Patients With CAP | NCT06282835—RECRUITING NCT06670872—NOT YET RECRUITING. NCT06666998—NOT YET RECRUITING. NCT06440304—NOT YET RECRUITING NCT05568654—RECRUITING |
MUREPAVADIN | NO ONGOING CLINICAL TRIALS | - |
ZOSURABALPIN | NO ONGOING CLINICAL TRIALS | - |
ZABOFLOXACIN | NO ONGOING CLINICAL TRIALS | - |
IMIPENEM/CILASTATIN/FUNOBACTAM | NCT05204563—Comparison of the Efficacy and Safety of Imipenem/Cilastatin–Funobactam vs. Imipenem/Cilastatin/Relebactam in adult patients with HAP or VAP | NCT05204563—Completed |
Antibiotic | Trial | Limitations |
---|---|---|
Lefamulin | LEAP 1 (NCT02559310) |
|
Lefamulin | LEAP 2 (NCT02813694) |
|
Omadacyclin | OPTIC (NCT02531438) |
|
Delafloxacin | DEFINE (NCT02679573) |
|
Ceftobiprole | NCT00326287 |
|
Ceftobiprole | NCT00229008 |
|
Cefiderocol | CREDIBLE-CR Trial (NCT02714595) |
|
Ceftolozane/tazobactam | ASPECT-NP Trial (NCT02105636) |
|
Ceftazidime/Avibactam | REPROVE Trial (NCT02238083) |
|
Meropenem/vaborbactam | TANGO II Trial (NCT02644339) |
|
Imipenem/Cilastatin/Relebactam | RESTORE-IMI 1 (NCT02111524) |
|
Sulbactam/Durlobactam | ATTACK (NCT03894046) |
|
Aztreonam/avibactam |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papageorgiou, D.; Gavatha, M.; Efthymiou, D.; Polyzou, E.; Tsiakalos, A.; Akinosoglou, K. New Antibiotics for Lower Respiratory Tract Infections. Microbiol. Res. 2025, 16, 135. https://doi.org/10.3390/microbiolres16070135
Papageorgiou D, Gavatha M, Efthymiou D, Polyzou E, Tsiakalos A, Akinosoglou K. New Antibiotics for Lower Respiratory Tract Infections. Microbiology Research. 2025; 16(7):135. https://doi.org/10.3390/microbiolres16070135
Chicago/Turabian StylePapageorgiou, Despoina, Maria Gavatha, Dimitrios Efthymiou, Eleni Polyzou, Aristotelis Tsiakalos, and Karolina Akinosoglou. 2025. "New Antibiotics for Lower Respiratory Tract Infections" Microbiology Research 16, no. 7: 135. https://doi.org/10.3390/microbiolres16070135
APA StylePapageorgiou, D., Gavatha, M., Efthymiou, D., Polyzou, E., Tsiakalos, A., & Akinosoglou, K. (2025). New Antibiotics for Lower Respiratory Tract Infections. Microbiology Research, 16(7), 135. https://doi.org/10.3390/microbiolres16070135