Antimicrobial and Antioxidant Properties of Hawthorn Vinegar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hawthorn Vinegar and Extract Preparation
2.2. Antimicrobial Assay
2.3. Antioxidant Assays
2.3.1. DPPH Radical Scavenging Assay
2.3.2. Hydroxyl Radical Scavenging Assay
2.3.3. Superoxide Anion Radical Scavenging Assay
2.4. Statistical Analysis
3. Results and Discussion
3.1. Antimicrobial Activity of Hawthorn Vinegar
3.2. Antioxidant Activity of Hawthorn Vinegar
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, M.; Liu, L.; Xing, Y.; Yang, S.; Li, H.; Cao, Y. Roles and Mechanisms of Hawthorn and Its Extracts on Atherosclerosis: A Review. Front. Pharmacol. 2020, 11, 118. [Google Scholar] [CrossRef]
- Seyidoglu, N.; Karakçı, D.; Bakır, B.; Yıkmış, S. Hawthorn Vinegar in Health with a Focus on Immune Responses. Nutrients 2024, 16, 1868. [Google Scholar] [CrossRef]
- Seyidoglu, N.; Karakçı, D.; Ergin Eğritağ, H.; Yıkmış, S. A New Alternative Nutritional Source Hawthorn Vinegar: How It Interacts with Protein, Glucose and GLP-1. Nutrients 2024, 16, 2163. [Google Scholar] [CrossRef]
- Karakçı, D.; Bakır, B.; Seyidoglu, N.; Yıkmış, S. Ultrasound-Treated and Thermal-Pasteurized Hawthorn Vinegar: Antioxidant and Lipid Profiles in Rats. Nutrients 2023, 15, 3933. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, B.; Duan, W.; Zhang, J.; Wang, M. Nutrients and Bioactive Components from Vinegar: A Fermented and Functional Food. J. Funct. Foods 2020, 64, 103681. [Google Scholar] [CrossRef]
- Garcia-Parrilla, M.; Torija, M.; Mas, A.; Cerezo, A.; Troncoso, A. Vinegars and Other Fermented Condiments. In Fermented Foods in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2017; pp. 577–591. [Google Scholar]
- Özdemir, G.B.; Özdemir, N.; Ertekin-Filiz, B.; Gökırmaklı, Ç.; Kök-Taş, T.; Budak, N.H. Volatile Aroma Compounds and Bioactive Compounds of Hawthorn Vinegar Produced from Hawthorn Fruit (Crataegus tanacetifolia (lam.) pers.). J. Food Biochem. 2022, 46, e13676. [Google Scholar] [CrossRef]
- Zhang, J.; Chai, X.; Zhao, F.; Hou, G.; Meng, Q. Food Applications and Potential Health Benefits of Hawthorn. Foods 2022, 11, 2861. [Google Scholar] [CrossRef]
- Karatepe, P.; Akgöl, M.; İncili, C.A.; Tekin, A.; İncili, G.K.; Hayaloğlu, A.A. Effect of Hawthorn Vinegar-Based Marinade on the Quality Parameters of Beef Tenderloins. Food Biosci. 2023, 56, 103098. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants And Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef]
- Skenderi, K.; Haligiannis, I.; Sitaras, N.M. Total Antioxidant Capacity and Phenolic Compounds of Selected Vinegars in the Greek Market. J. Food Nutr. Disord. 2013, 2, 2–7. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, G.-Y.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Antioxidant Activities, Phenolic Profiles, and Organic Acid Contents of Fruit Vinegars. Antioxidants 2019, 8, 78. [Google Scholar] [CrossRef]
- Cortesia, C.; Vilchèze, C.; Bernut, A.; Contreras, W.; Gómez, K.; De Waard, J.; Jacobs, W.R., Jr.; Kremer, L.; Takiff, H. Acetic Acid, the Active Component of Vinegar, Is an Effective Tuberculocidal Disinfectant. mBio 2014, 5, e00013-14. [Google Scholar] [CrossRef]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Am. Soc. Microbiol. 2009, 15, 1–23. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for In Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Cos, P.; Calomme, M.; Pieters, L.; Vlietinck, A.; Berghe, D.V. Structure-Activity Relationship of Flavonoids as Antioxidant and Pro-Oxidant Compounds. Stud. Nat. Prod. Chem. 2000, 22, 307–341. [Google Scholar]
- Sowndhararajan, K.; Kang, S.C. Free Radical Scavenging Activity from Different Extracts of Leaves of Bauhinia Vahlii Wight & Arn. Saudi J. Biol. Sci. 2013, 20, 319–325. [Google Scholar]
- Lalhminghlui, K.; Jagetia, G.C. Evaluation of the Free-Radical Scavenging and Antioxidant Activities of Chilauni, Schima Wallichii Korth In Vitro. Future Sci. OA 2018, 4, FSO272. [Google Scholar] [CrossRef]
- Martinelli, F.; Perrone, A.; Yousefi, S.; Papini, A.; Castiglione, S.; Guarino, F.; Cicatelli, A.; Aelaei, M.; Arad, N.; Gholami, M. Botanical, Phytochemical, Anti-Microbial and Pharmaceutical Characteristics of Hawthorn (Crataegus monogyna Jacq.), Rosaceae. Molecules 2021, 26, 7266. [Google Scholar] [CrossRef]
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, Food Safety and Food Handling Practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Reygaert, W.C. An overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiol. 2018, 4, 482. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant Activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Andrés Juan, C.; Plou, F.J.; Pérez-Lebeña, E. Superoxide Anion Chemistry—Its Role at the Core of the Innate Immunity. Int. J. Mol. Sci. 2023, 24, 1841. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, K.; Xue, S.; Du, Y.; Peng, L.; Chen, W.; Yu, X.; Cao, X.; Fang, R.; Li, Z. Antimicrobial and Antioxidant Properties of Hawthorn Vinegar. Microbiol. Res. 2024, 15, 2048-2055. https://doi.org/10.3390/microbiolres15040137
Jia K, Xue S, Du Y, Peng L, Chen W, Yu X, Cao X, Fang R, Li Z. Antimicrobial and Antioxidant Properties of Hawthorn Vinegar. Microbiology Research. 2024; 15(4):2048-2055. https://doi.org/10.3390/microbiolres15040137
Chicago/Turabian StyleJia, Kaixiang, Song Xue, Yangyang Du, Lianci Peng, Weifeng Chen, Xiaoying Yu, Xuefeng Cao, Rendong Fang, and Zhiwei Li. 2024. "Antimicrobial and Antioxidant Properties of Hawthorn Vinegar" Microbiology Research 15, no. 4: 2048-2055. https://doi.org/10.3390/microbiolres15040137
APA StyleJia, K., Xue, S., Du, Y., Peng, L., Chen, W., Yu, X., Cao, X., Fang, R., & Li, Z. (2024). Antimicrobial and Antioxidant Properties of Hawthorn Vinegar. Microbiology Research, 15(4), 2048-2055. https://doi.org/10.3390/microbiolres15040137