Effects of Biochar and Arbuscular Mycorrhizal Fungi on Soil Health in Chinese Kale (Brassica oleracea var. alboglabra L.) Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Soil, Biochar, and Arbuscular Mycorrhiza Fungi
2.2. Soil and Biochar Preparation
2.3. Biochar and Soil Analysis
2.4. Experimental Design
2.5. Planting and Pot Experiment for Chinese Kale Cultivation
2.6. Plant Harvest and Analysis
2.7. Determination of Photosynthetic Pigment Content
2.8. Determination of Total Phenolic Content
2.9. Data Analysis
3. Results and Discussion
3.1. Biochar Analysis
3.2. Effects of Biochar and Biochar with AMF on Soil Chemical Properties
3.3. Effect of Biochar and Biochar with AMF on Chinese Kale Growth Promoting
3.4. Photosynthetic Pigment Content
3.5. Total Phenolic Content
3.6. The Cost of Biochar Production and Its Perspective in Field Cultivation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, X.; Jiang, Y.; Chen, Z.; Osman, A.I.; Farghali, M.; Rooney, D.W.; Yap, P.S. Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: A review. Environ. Chem. Lett. 2023, 21, 765–801. [Google Scholar] [CrossRef]
- Zheng, S.; Yin, K.; Yu, L. Factors influencing the farmer’s chemical fertilizer reduction behavior from the perspective of farmer differentiation. Heliyon 2022, 8, e11918. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tasnady, D. Biochar for soil carbon sequestration: Current knowledge, mechanisms, and future perspectives. C 2023, 9, 67. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Rady, M.M.; Semida, W.M.; Hemida, K.A.; Abdelhamid, M.T. The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. Int. J. Recycl. Org. Waste Agric. 2016, 5, 311–321. [Google Scholar] [CrossRef]
- Nguyen, M.K.; Lin, C.; Hoang, H.G.; Sanderson, P.; Dang, B.T.; Bui, X.T.; Nguyen, N.S.H.; Vo, D.V.N.; Tran, H.T. Evaluate the role of biochar during the organic waste composting process: A critical review. Chemosphere 2022, 299, 134488. [Google Scholar] [CrossRef]
- Kocsis, T.; Ringer, M.; Biró, B. Characteristics and applications of biochar in soil–plant systems: A short review of benefits and potential drawbacks. Appl. Sci. 2022, 12, 4051. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management; Johannes, L., Stephen, J., Eds.; Routledge: New York, NY, USA, 2009; pp. 1–12. [Google Scholar]
- Jabborova, D.; Annapurna, K.; Paul, S.; Kumar, S.; Saad, H.A.; Desouky, S.; Ibrahim, M.F.M.; Elkelish, A. Beneficial features of biochar and arbuscular mycorrhiza for improving spinach plant growth, root morphological traits, physiological properties, and soil enzymatic activities. J. Fungi 2021, 7, 571. [Google Scholar] [CrossRef] [PubMed]
- Nepal, J.; Ahmad, W.; Munsif, F.; Khan, A.; Zou, Z. Advances and prospects of biochar in improving soil fertility, biochemical quality, and environmental applications. Front. Environ. Sci. 2023, 11, 1114752. [Google Scholar] [CrossRef]
- Kabir, E.; Kim, K.H.; Kwon, E.E. Biochar as a tool for the improvement of soil and environment. Front. Environ. Sci. 2023, 11, 1324533. [Google Scholar] [CrossRef]
- Sifton, M.A.; Smith, S.M.; Thomas, S.C. Biochar-biofertilizer combinations enhance growth and nutrient uptake in silver maple grown in an urban soil. PLoS ONE 2023, 18, e0288291. [Google Scholar] [CrossRef] [PubMed]
- Yamato, M.; Okimori, Y.; Wibowo, I.F.; Anshori, S.; Ogawa, M. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. 2006, 52, 489–495. [Google Scholar] [CrossRef]
- Martinsen, V.; Alling, V.; Nurida, N.; Mulder, J.; Hale, S.; Ritz, C.; Rutherford, D.; Heikens, A.; Breedveld, G.D.; Cornelissen, G. pH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil Sci. Plant Nutr. 2015, 61, 821–834. [Google Scholar] [CrossRef]
- Qayyum, M.F.; Haider, G.; Raza, M.A.; Mohamed, A.K.S.; Rizwan, M.; El-Sheikh, M.A.; Alyemeni, M.N.; Ali, S. Straw-based biochar mediated potassium availability and increased growth and yield of cotton (Gossypium hirsutum L.). J. Saudi Chem. Soc. 2020, 24, 963–973. [Google Scholar] [CrossRef]
- El Nahhas, N.; AlKahtani, M.D.F.; Abdelaal, K.A.A.; Al Husnain, L.; AlGwaiz, H.I.M.; Hafez, Y.M.; Attia, K.A.; El-Esawi, M.A.; Ibrahim, M.F.M.; Elkelish, A. Biochar and jasmonic acid application attenuates antioxidative systems and improves growth, physiology, nutrient uptake and productivity of Faba bean (Vicia faba L.) irrigated with saline water. Plant Physiol. Biochem. 2021, 166, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Fachini, J.; de Figueiredo, C.C.; do Vale, A.T. Assessing potassium release in natural silica sand from novel K-enriched sewage sludge biochar fertilizers. J. Environ. Manag. 2022, 314, 115080. [Google Scholar] [CrossRef]
- Saito, M.; Marumoto, T. Inoculation with arbuscular mycorrhizal fungi: The status quo in Japan and the future prospects. In Diversity and Integration in Mycorrhizas: Proceedings of the 3rd International Conference on Mycorrhizas (ICOM3) Adelaide, Australia, 8–13 July 2002; Springer: Dordrecht, The Netherlands, 2002; pp. 273–279. [Google Scholar]
- Sun, J.; Jia, Q.; Li, Y.; Zhang, T.; Chen, J.; Ren, Y.; Dong, K.; Xu, S.; Shi, N.; Fu, S. Effects of arbuscular mycorrhizal fungi and biochar on growth, nutrient absorption, and physiological properties of maize (Zea mays L.). J. Fungi 2022, 8, 1275. [Google Scholar] [CrossRef]
- Schüßler, A.; Walker, C. The Glomeromycota: A Species List with New Families and New Genera; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2010; p. 58. [Google Scholar]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; De Pascale, S.; Bonini, P.; Colla, G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Smith, S.; Read, D. Mycorrhiza Symbiosis, 3rd ed.; Academic Press: San Diego, CA, USA, 2008; p. 800. [Google Scholar]
- Prasad, R.; Bhola, D.; Akdi, K.; Cruz, C.; Sairam, K.V.S.S.; Tuteja, N.; Varma, A. Introduction to mycorrhiza: Historical development. In Mycorrhiza-Function, Diversity, State of the Art, 4th ed.; Varma, A., Prasad, R., Tuteja, N., Eds.; Springer: New York, NY, USA, 2017; pp. 1–7. [Google Scholar]
- Fall, A.F.; Nakabonge, G.; Ssekandi, J.; Founoune-Mboup, H.; Apori, S.O.; Ndiaye, A.; Badji, A.; Ngom, K. Roles of arbuscular mycorrhizal fungi on soil fertility: Contribution in the improvement of physical, chemical, and biological properties of the soil. Front. Fungal Biol. 2022, 3, 723892. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, H.; Chu, M.; Niu, X.; Bao, H.; Wang, N.; Zhan, F.; Long, X.; Yang, R.; Lin, Q.; et al. Plant microbiome and mycorrhizal fungi. In mycorrhiza-new insights. In Arbuscular Mycorrhizal Fungi in Agriculture—New Insights; de Sousa, R.N., Ed.; IntechOpen: London, UK, 2022. [Google Scholar]
- Sun, W.; Shahrajabian, M.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef] [PubMed]
- Ebbisa, A. Arbuscular mycorrhizal fungi (AMF) in optimizing nutrient bioavailability and reducing agrochemicals for maintaining sustainable agroecosystems. In Arbuscular Mycorrhizal Fungi in Agriculture-New Insights; de Sousa, R.N., Ed.; IntechOpen: London, UK, 2022. [Google Scholar]
- Ndiate, N.I.; Saeed, Q.; Haider, F.U.; Liqun, C.; Nkoh, J.N.; Mustafa, A. Co-application of biochar and arbuscular mycorrhizal fungi improves salinity tolerance, growth and lipid metabolism of maize (Zea mays L.) in an alkaline soil. Plants 2021, 10, 2490. [Google Scholar] [CrossRef] [PubMed]
- Figueira-Galán, D.; Heupel, S.; Duelli, G.; Morgano, M.T.; Stapf, D.; Requena, N. Exploring the synergistic effects of biochar and arbuscular mycorrhizal fungi on phosphorus acquisition in tomato plants by using gene expression analyses. Sci. Total Environ. 2023, 884, 163506. [Google Scholar] [CrossRef] [PubMed]
- Kotby, R.A.; Mohamed, H.M.; Gomah, H.H.; Usman, A.R. Combined effects of microbial inoculation and activated carbon/biochar on the accumulation and transfer of nutrients and potentially toxic metals in maize plants grown on a contaminated soil. Soil Sediment Contam. 2023, 1–22. [Google Scholar] [CrossRef]
- Mulyadi and Jiang, L. The combined application of biochar and arbuscular mycorrhizal fungi (AMF) enhanced the physical and chemical properties of soil and rice productivity in Indonesia. Sustainability 2023, 15, 9782. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, Y.; Liu, Z.; Meng, J. Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. Eur. J. Soil Biol. 2022, 113, 103448. [Google Scholar] [CrossRef]
- Jabborova, D.; Annapurna, K.; Azimov, A.; Tyagi, S.; Pengani, K.R.; Sharma, P.; Vikram, K.V.; Poczai, P.; Nasif, O.; Ansari, M.J.; et al. Co-inoculation of biochar and arbuscular mycorrhizae for growth promotion and nutrient fortification in soybean under drought conditions. Front. Plant Sci. 2022, 13, 947547. [Google Scholar] [CrossRef]
- Chaiya, L.; Kumla, J.; Suwannarach, N.; Kiatsiriroat, T.; Lumyong, S. Isolation, characterization, and efficacy of actinobacteria associated with arbuscular mycorrhizal spores in promoting plant growth of chili (Capsicum flutescens L.). Microorganisms 2021, 9, 1274. [Google Scholar] [CrossRef]
- Gunes, H.; Demir, S.; Erdinc, C.; Furan, M.A. Effects of arbuscular mycorrhızal fungı (AMF) and bıochar on the growth of pepper (Capsicum annum L.) under salt stress. Gesunde Pflanz. 2023, 75, 2669–2681. [Google Scholar] [CrossRef]
- Kazemi, R.; Ronaghi, A.; Yasrebi, J.; Ghasemi-Fasaei, R.; Zarei, M. Effect of shrimp waste–derived biochar and arbuscular mycorrhizal fungus on yield, antioxidant enzymes, and chemical composition of corn under salinity stress. J. Soil Sci. Plant Nutr. 2019, 19, 758–770. [Google Scholar] [CrossRef]
- Sun, B.; Liu, N.; Zhao, Y.T.; Yan, H.Z.; Wang, Q.M. Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem. 2011, 124, 941–947. [Google Scholar] [CrossRef]
- Sun, B.; Yan, H.Z.; Liu, N.; Wei, J.; Wang, Q.M. Effect of 1-MCP treatment on postharvest quality characters, antioxidants and glucosinolates of Chinese kale. Food Chem. 2012, 131, 519–526. [Google Scholar] [CrossRef]
- Abellán, Á.; Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients 2019, 11, 429. [Google Scholar] [CrossRef]
- Kolton, M.; Graber, E.R.; Tsehansky, L.; Elad, Y.; Cytryn, E. Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytol. 2017, 213, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of the Analytical Chemists International, 15th ed.; AOAC International: Washington, DC, USA, 1998. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis: Part 3 Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996; Volume 5, pp. 1085–1121. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis, Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; John Wiley & Sons Inc.: New York, NY, USA, 1983; pp. 403–430. [Google Scholar]
- David, D.J. The determination of exchangeable sodium, potassium, calcium and magnesium in soils by atomic-absorption spectrophotometry. Analyst 1960, 85, 495–503. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, W.; Jiang, L.; Hou, Y.; Yang, F.; Chen, W.; Li, X. Elicitor activity of algino-oligosaccharide and its potential application in protection of rice plant (Oryza saliva L.) against Magnaporthe grisea. Biotechnol. Biotechnol. Equip. 2015, 29, 646–652. [Google Scholar] [CrossRef]
- Liu, J.; Cai, G.; Qian, M.; Wang, D.; Xu, J.; Yang, J.; Zhu, Q. Effect of Cd on the growth, dry matter accumulation and grain yield of different rice cultivars. J. Sci. Food Agric. 2007, 87, 1088–1095. [Google Scholar] [CrossRef]
- Bornø, M.L.; Müller-Stöver, D.S.; Liu, F. Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Sci. Total Environ. 2018, 627, 963–974. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Rahman, M.d.J.; Costa de Camargo, A.; Shahidi, F. Phenolic profiles and antioxidant activity of defatted camelina and Sophia seeds. Food Chem. 2018, 240, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Feizienė, D.; Tilvikienė, V.; Akhtar, K.; Stulpinaitė, U.; Iqbal, R. Biochar role in the sustainability of agriculture and environment. Sustainability 2021, 13, 1330. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Ali, L.; Manzoor, N.; Li, X.; Naveed, M.; Nadeem, S.M.; Waqas, M.R.; Khalid, M.; Abbas, A.; Ahmed, T.; Li, B.; et al. Impact of corn cob-derived biochar in altering soil quality, biochemical status and improving maize growth under drought stress. Agronomy 2021, 11, 2300. [Google Scholar] [CrossRef]
- Schneider, D.; Escala, M.; Supawittayayothin, K.; Tippayawong, N. Haracterization of biochar from hydrothermal carbonization of bamboo. J. Energy Environ. Eng. 2011, 2, 647–652. [Google Scholar]
- Jagnade, P.; Panwar, N.L.; Gupta, T.; Agrawal, C. Role of biochar in agriculture to enhance crop productivity: An overview. Biointerface Res. Appl. Chem. 2022, 13, 429. [Google Scholar]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Evol. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Prasad, M.; Chrysargyris, A.; McDaniel, N.; Kavanagh, A.; Gruda, N.S.; Tzortzakis, N. Plant nutrient availability and pH of biochars and their fractions, with the possible use as a component in a growing media. Agronomy 2019, 10, 10. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. The biochar dilemma. Soil Res. 2014, 52, 217. [Google Scholar] [CrossRef]
- Sahoo, S.S.; Vijay, V.K.; Chandra, R.; Kumar, H. Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Clean. Eng. Technol. 2021, 3, 100101. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, Y.J.; Naidu, R.; Parikh, S.J.; Du, J.H.; Qi, F.J.; Willett, I.R. Infuences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Sci. Total. Environ. 2020, 744, 140714. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.R.; Torres, E.; Zalazar, D.; Zhang, H.; Rodriguez, R.; Mazza, G. Infuence of pyrolysis temperature and bio-waste composition on biochar characteristics. Renew. Energy 2020, 155, 837–847. [Google Scholar] [CrossRef]
- Tu, P.; Zhang, G.; Wei, G.; Li, J.; Li, Y.; Deng, L.; Yuan, H. Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. Bioresour. Bioprocess 2022, 9, 131. [Google Scholar] [CrossRef]
- Almutairi, A.A.; Ahmad, M.; Rafique, M.I.; Al-Wabel, M.I. Variations in composition and stability of biochars derived from different feedstock types at varying pyrolysis temperature. J. Saudi Soc. Agric. Sci. 2023, 22, 25–34. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, J.; Zhao, J.; Luo, Z.; Tu, S.; Yin, Y. Properties of biochar obtained from pyrolysis of bamboo shoot shell. J. Anal. Appl. Pyrolysis 2015, 114, 172–178. [Google Scholar] [CrossRef]
- Zhang, H.; Voroney, R.P.; Price, G.W. Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations. Soil Biol. Biochem. 2015, 83, 19–28. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Dey, D.; Mavi, M.S. Co-application of biochar with non-pyrolyzed organic material accelerates carbon accrual and nutrient availability in soil. Environ. Technol. Innov. 2022, 25, 102128. [Google Scholar] [CrossRef]
- Tsai, W.T.; Liu, S.C.; Chen, H.R.; Chang, Y.M.; Tsai, Y.L. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 2012, 89, 198–203. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Zhao, J.; Luo, Y.; Novak, J.; Herbert, S.; Xing, B. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour. Technol. 2013, 130, 463–471. [Google Scholar] [CrossRef]
- Idbella, M.; Baronti, S.; Giagnoni, L.; Renella, G.; Becagli, M.; Cardelli, R.; Maienza, A.; Vaccari, F.P.; Bonanomi, G. Long-term effects of biochar on soil chemistry, biochemistry, and microbiota: Results from a 10-year field vineyard experiment. Appl. Soil Ecol. 2023, 195, 105217. [Google Scholar] [CrossRef]
- Qian, X.; Li, Q.; Chen, H.; Zhao, L.; Wang, F.; Zhang, Y.; Zhang, J.; Müller, C.; Yi, Z. Enhancing soil nitrogen retention capacity by biochar incorporation in the acidic soil of pomelo orchards: The crucial role of pH. Agronomy 2023, 13, 2110. [Google Scholar] [CrossRef]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- Kizito, S.; Luo, H.; Lu, J.; Bah, H.; Dong, R.; Wu, S. Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability 2019, 11, 3211. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Qu, Z.; Xu, X.; Huang, Q.; Huang, G. Impact of biochar addition on soil properties and water-fertilizer productivity of tomato in semi-arid region of Inner Mongolia, China. Geoderma 2018, 331, 100–108. [Google Scholar] [CrossRef]
- Mohawesh, O.; Albalasmeh, A.; Gharaibeh, M.; Deb, S.; Simpson, C.; Singh, S.; Al-Soub, B.; Hanandeh, A.E. Potential use of biochar as an amendment to improve soil fertility and tomato and bell pepper growth performance under arid conditions. J. Soil Sci. Plant Nutr. 2021, 21, 2946–2956. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y.; Shi, L.; Li, G.; Han, J.; Pang, Z.; Liu, S.; Chen, Y.; Jia, B. Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant Soil Environ. 2022, 68, 272–289. [Google Scholar] [CrossRef]
- Alotaibi, K.D.; Schoenau, J.J. Application of two bioenergy byproducts with contrasting carbon availability to a prairie soil: Three year crop response and changes in soil biological and chemical properties. Agronomy 2016, 6, 13. [Google Scholar] [CrossRef]
- Abujabhah, I.S.; Doyle, R.; Bound, S.A.; Bowman, J.P. The effect of biochar loading rates on soil fertility, soil biomass, potential nitrification, and soil community metabolic profiles in three different soils. J. Soils Sediments 2016, 16, 2211–2222. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, K.; Han, L.; Chen, Y.; Liu, J.; Xing, B. Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biol. Biochem. 2022, 169, 108657. [Google Scholar] [CrossRef]
- Novair, S.B.; Cheraghi, M.; Faramarzi, F.; Lajayer, B.A.; Senapathi, V.; Astatkie, T.; Price, G.W. Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. Ecotoxicol. Environ. Saf. 2023, 263, 115228. [Google Scholar] [CrossRef] [PubMed]
- Bo, X.; Zhang, Z.; Wang, J.; Guo, S.; Li, Z.; Lin, H.; Huang, Y.; Han, Z.; Kuzyakov, Y.; Zou, J. Benefits and limitations of biochar for climate-smart agriculture: A review and case study from China. Biochar 2023, 5, 115228. [Google Scholar] [CrossRef]
- Kuryntseva, P.; Karamova, K.; Galitskaya, P.; Selivanovskaya, S.; Evtugyn, G. Biochar functions in soil depending on feedstock and pyrolyzation properties with particular emphasis on biological properties. Agriculture 2023, 13, 2003. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Jindo, K.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Mastrolonardo, G.; Sánchez-Monedero, M.A.; Mondini, C. Role of biochar in promoting circular economy in the agriculture sector. Part 1: A review of the biochar roles in soil N, P and K cycles. Chem. Biol. Technol. Agric. 2020, 7, 15. [Google Scholar] [CrossRef]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. Gcb Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wei, Q.; Gu, X.; Liu, L.; Gou, J. Biochar application ameliorated the nutrient content and fungal community structure in different yellow soil depths in the karst area of Southwest China. Front. Plant Sci. 2022, 13, 1020832. [Google Scholar] [CrossRef]
- Semida, W.M.; Beheiry, H.R.; Sétamou, M.; Simpson, C.R.; Abd El-Mageed, T.A.; Rady, M.M.; Nelson, S.D. Biochar implications for sustainable agriculture and environment: A review. S. Afr. J. Bot. 2019, 127, 333–347. [Google Scholar] [CrossRef]
- Javeed, H.M.R.; Ali, M.; Zamir, M.S.I.; Qamar, R.; Kanwal, S.; Andleeb, H.; Qammar, N.; Jhangir, K.; Elkelish, A.; Mubeen, M.; et al. Biochar and arbuscular mycorrhizae fungi to improve soil organic matter and fertility. In Sustainable Agriculture Reviews 61: Biochar to Improve Crop Production and Decrease Plant Stress under a Changing Climate; Fahad, S., Danish, S., Datta, R., Saud, S., Lichtfouse, E., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 331–354. [Google Scholar]
- Khaliq, A.; Perveen, S.; Alamer, K.H.; Zia Ul Haq, M.; Rafique, Z.; Alsudays, I.M.; Althobaiti, A.T.; Saleh, M.A.; Hussain, S.; Attia, H. Arbuscular mycorrhizal fungi symbiosis to enhance plant–soil interaction. Sustainability 2022, 14, 7840. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Bano, R.; Bharwana, S.A.; Rehman, M.Z.U.; Hussain, M.B.; Al-Wabel, M.I. Effects of biochar on growth, photosynthesis, and chromium (Cr) uptake in Brassica rapa L. under Cr stress. Arab. J. Geosci. 2018, 11, 507. [Google Scholar] [CrossRef]
- Kamran, M.; Malik, Z.; Parveen, A.; Huang, L.; Riaz, M.; Bashir, S.; Mustafa, A.; Abbasi, G.H.; Xue, B.; Ali, U. Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J. Plant Growth Regul. 2020, 39, 266–281. [Google Scholar] [CrossRef]
- Bibi, S.; Ullah, R.; Burni, T.; Ullah, Z.; Kazi, M. Impact of resorcinol and biochar application on the growth attributes, metabolite contents, and antioxidant systems of tomato (Lycopersicon esculentum Mill.). ACS Omega 2023, 8, 45750–45762. [Google Scholar] [CrossRef] [PubMed]
- Janyasupab, P.; Brix, H.; Jampeetong, A. Effects of longan biochar as filter materials on plant responses and wastewater treatment by Typha angustifolia L. Nat. Life Sci. Commun. 2023, 22, e2023035. [Google Scholar] [CrossRef]
- Ma, W.; Tang, S.; Dengzeng, Z.; Zhang, D.; Zhang, T.; Ma, X. Root exudates contribute to belowground ecosystem hotspots: A review. Front. Microbiol. 2022, 13, 937940. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Srivastava, A.K.; Rajput, V.D.; Chauhan, P.K.; Bhojiya, A.A.; Jain, D.; Chaubey, G.; Dwivedi, P.; Sharma, B.; Minkina, T. Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Front. Microbiol. 2022, 13, 916488. [Google Scholar] [CrossRef]
- Vahedi, R.; Rasouli-Sadaghiani, M.H.; Barin, M.; Vetukuri, R.R. Effect of biochar and microbial inoculation on P, Fe, and Zn bioavailability in a calcareous soil. Processes 2022, 10, 343. [Google Scholar] [CrossRef]
- Panwar, N.L.; Pawar, A.; Salvi, B.L. Comprehensive review on production and utilization of biochar. SN Appl. Sci. 2019, 1, 168. [Google Scholar] [CrossRef]
- Zhang, P.; Duan, W.; Peng, H.; Pan, B.; Xing, B. Functional biochar and its balanced design. ACS Environ. Au. 2021, 2, 115–127. [Google Scholar] [CrossRef] [PubMed]
Treatment Number | Treatment Details |
---|---|
T1 | Soil without any material (control) |
T2 | Soil + 5% CC-char |
T3 | Soil + 10% CC-char |
T4 | Soil + 5% BB-char |
T5 | Soil + 10% BB-char |
T6 | Soil + 5% CG-char |
T7 | Soil + 10% CG-char |
T8 | Soil + AMF |
T9 | Soil + 5% CC-char + AMF |
T10 | Soil + 10% CC-char + AMF |
T11 | Soil + 5% BB-char + AMF |
T12 | Soil + 10% BB-char + AMF |
T13 | Soil + 5% CG-char + AMF |
T14 | Soil + 10% CG-char + AMF |
Parameter | Type of Biochar | ||
---|---|---|---|
BB-Char | CC-Char | CG-Char | |
Moisture content; % | 5.44 ± 0.12 a | 2.49 ± 0.18 b | 1.33 ± 0.33 c |
Dry matter; % | 94.56 ± 0.12 c | 97.51 ± 0.18 b | 98.67 ± 0.33 a |
pH | 8.83 ± 0.03 c | 9.94 ± 0.03 b | 10.05 ± 0.03 a |
Electrical conductivity (EC); mS/cm | 11.33 ± 0.05 c | 12.44 ± 0.15 b | 16.80 ± 0.35 a |
Total organic carbon (OC); % | 4.57 ± 0.04 b | 5.63 ± 0.03 a | 2.93 ± 0.04 c |
Total nitrogen (N); % | 1.10 ± 0.03 b | 0.80 ± 0.01 b | 3.74 ± 0.04 a |
C:N ratio | 4.16 ± 0.07 b | 7.04 ± 0.13 a | 0.79 ± 0.02 c |
Total phosphorus (P); % | 0.28 ± 0.03 b | 0.18 ± 0.05 c | 0.44 ± 0.02 a |
Total potassium (K); % | 2.15 ± 0.06 a | 2.16 ± 0.02 a | 1.79 ± 0.05 b |
Treatment | Parameter | ||||||
---|---|---|---|---|---|---|---|
pH | EC (mS/cm) | OM (%) | OC (%) | Total N (%) | Total P (%) | Total K (%) | |
Initial soil | 6.31 ± 0.02 h | 0.49 ± 0.02 i | 1.12 ± 0.05 g | 0.65 ± 0.09 h | 0.15 ± 0.04 e | 0.002 ± 0.001 d | 0.04 ± 0.01 f |
T1 | 7.06 ± 0.02 g | 0.77 ± 0.06 h | 2.64 ± 0.09 f | 1.49 ± 0.08 fg | 0.12 ± 0.03 e | 0.033 ± 0.02 c | 0.98 ± 0.08 cd |
T2 | 7.44 ± 0.07 f | 0.91 ± 0.06 g | 3.40 ± 0.07 bc | 2.30 ± 0.10 a | 0.16 ± 0.06 e | 0.043 ± 0.02 c | 1.09 ± 0.06 abc |
T3 | 7.72 ± 0.07 cde | 1.16 ± 0.06 de | 3.31 ± 0.06 cd | 1.92 ± 0.05 bc | 0.18 ± 0.07 de | 0.033 ± 0.01 bc | 1.14 ± 0.05 ab |
T4 | 7.67 ± 0.02 de | 1.04 ± 0.02 f | 3.24 ± 0.09 cd | 1.88 ± 0.10 bcd | 0.18 ± 0.05 de | 0.047 ± 0.01 abc | 1.10 ± 0.08 ab |
T5 | 7.74 ± 0.12 bcde | 1.17 ± 0.06 cde | 3.52 ± 0.09 ab | 2.04 ± 0.07 b | 0.25 ± 0.04 cd | 0.050 ± 0.01 abc | 1.14 ± 0.09 ab |
T6 | 7.82 ± 0.03 ab | 0.93 ± 0.05 g | 3.20 ± 0.07 d | 1.86 ± 0.13 cd | 0.41 ± 0.04 ab | 0.060 ± 0.01 ab | 0.75 ± 0.06 e |
T7 | 7.86 ± 0.06 a | 1.21 ± 0.06 cd | 3.00 ± 0.08 e | 1.74 ± 0.09 de | 0.48 ± 0.03 a | 0.070 ± 0.01 a | 1.10 ± 0.04 ab |
T8 | 7.46 ± 0.05 f | 1.15 ± 0.05 de | 2.64 ± 0.12 f | 1.53 ± 0.10 fg | 0.12 ± 0.03 e | 0.033 ± 0.02 c | 0.94 ± 0.09 d |
T9 | 7.75 ± 0.02 bcd | 1.26 ± 0.07 bc | 3.36 ± 0.11 bcd | 1.95 ± 0.09 bc | 0.17 ± 0.05 de | 0.033 ± 0.02 c | 1.04 ± 0.09 abcd |
T10 | 7.85 ± 0.05 a | 1.33 ± 0.06 ab | 3.61 ± 0.13 a | 2.21 ± 0.11 a | 0.25 ± 0.05 cd | 0.043 ± 0.02 bc | 1.10 ± 0.07 ab |
T11 | 7.65 ± 0.05 e | 1.26 ± 0.05 bc | 3.35 ± 0.09 bcd | 1.94 ± 0.09 bc | 0.19 ± 0.06 de | 0.033 ± 0.02 c | 1.02 ± 0.07 bcd |
T12 | 7.72 ± 0.05 cde | 1.41 ± 0.05 a | 3.48 ± 0.05 ab | 2.02 ± 0.11 bc | 0.27 ± 0.05 c | 0.063 ± 0.02 ab | 1.14 ± 0.05 ab |
T13 | 7.78 ± 0.06 abc | 0.95 ± 0.03 g | 2.58 ± 0.13 f | 1.53 ± 0.09 g | 0.37 ± 0.07 b | 0.057 ± 0.02 abc | 0.96 ± 0.07 d |
T14 | 7.86 ± 0.01 a | 1.08 ± 0.04 ef | 2.88 ± 0.08 e | 1.67 ± 0.11 ef | 0.44 ± 0.03 ab | 0.067 ± 0.01 ab | 1.15 ± 0.06 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jatuwong, K.; Aiduang, W.; Kiatsiriroat, T.; Kamopas, W.; Lumyong, S. Effects of Biochar and Arbuscular Mycorrhizal Fungi on Soil Health in Chinese Kale (Brassica oleracea var. alboglabra L.) Cultivation. Microbiol. Res. 2024, 15, 404-421. https://doi.org/10.3390/microbiolres15010027
Jatuwong K, Aiduang W, Kiatsiriroat T, Kamopas W, Lumyong S. Effects of Biochar and Arbuscular Mycorrhizal Fungi on Soil Health in Chinese Kale (Brassica oleracea var. alboglabra L.) Cultivation. Microbiology Research. 2024; 15(1):404-421. https://doi.org/10.3390/microbiolres15010027
Chicago/Turabian StyleJatuwong, Kritsana, Worawoot Aiduang, Tanongkiat Kiatsiriroat, Wassana Kamopas, and Saisamorn Lumyong. 2024. "Effects of Biochar and Arbuscular Mycorrhizal Fungi on Soil Health in Chinese Kale (Brassica oleracea var. alboglabra L.) Cultivation" Microbiology Research 15, no. 1: 404-421. https://doi.org/10.3390/microbiolres15010027
APA StyleJatuwong, K., Aiduang, W., Kiatsiriroat, T., Kamopas, W., & Lumyong, S. (2024). Effects of Biochar and Arbuscular Mycorrhizal Fungi on Soil Health in Chinese Kale (Brassica oleracea var. alboglabra L.) Cultivation. Microbiology Research, 15(1), 404-421. https://doi.org/10.3390/microbiolres15010027