Assessment of the Possibility of Using Bacterial Strains and Bacteriophages for Epidemiological Studies in the Bioaerosol Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survival Studies of Bacterial Strains
2.2. Survival Studies of Bacteriophages
- the phage used, the titer of the phage in the initial suspension;
- the titer of the phage in the test suspension to be nebulized (dependent on the prepared starting suspension, which was obtained after the phage was cultured from the biobank);
- the suspension of the dilution factor of the phage test (factor 1; 2.5; 5);
- nebulization time in the test room (30/90/180 s);
- homogenization (distribution) time of bioaerosol in the infectious room (bioaerosol test bed);
- the volume of air taken by the microbiological sampler.
3. Results
3.1. Results of the Survival Analysis of Bacterial Strains in Physiological Saline and Air
3.2. Results of Bacteriophage Survival Tests in Physiological Fluid and Air
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Motamedi, H.; Shirzadi, M.; Tominaga, Y.; Mirzaei, P.A. CFD modeling of airborne pathogen transmission of COVID-19 in confined spaces under different ventilation strategies. Sustain. Cities Soc. 2022, 76, 103397. [Google Scholar] [CrossRef] [PubMed]
- Basu, S. Computational characterization of inhaled droplet 1 transport in the upper airway leading to SARS-CoV-2 2 infection 3. medRxiv 2020. [Google Scholar] [CrossRef]
- Mirzaei, P.A.; Moshfeghi, M.; Motamedi, H.; Sheikhnejad, Y.; Bordbar, H. A simplified tempo-spatial model to predict airborne pathogen release risk in enclosed spaces: An Eulerian-Lagrangian CFD approach. Build. Environ. 2022, 207, 108428. [Google Scholar] [CrossRef] [PubMed]
- Sheikhnejad, Y.; Aghamolaei, R.; Fallahpour, M.; Motamedi, H.; Moshfeghi, M.; Mirzaei, P.A.; Bordbar, H. Airborne and aerosol pathogen transmission modeling of respiratory events in buildings: An overview of computational fluid dynamics. Sustain. Cities Soc. 2022, 79, 103704. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, S.; Yin, Y.; Zhang, T.; Chen, Q. Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods. Indoor Air 2022, 32, e13056. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed Asymptomatic Carrier Transmission of COVID-19. J. Am. Med. Assoc. 2020, 323, 1406–1407. [Google Scholar] [CrossRef]
- Tang, S.; Mao, Y.; Jones, R.M.; Tan, Q.; Ji, J.S.; Li, N.; Shen, J.; Lv, Y.; Pan, L.; Ding, P.; et al. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ. Int. 2020, 144, 106039. [Google Scholar] [CrossRef]
- Sang-Nourpour, N.; Olfert, J.S. Calibration of optical particle counters with an aerodynamic aerosol classifier. J. Aerosol. Sci. 2019, 138, 105452. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Zhang, A.L.; Wang, Y.; Molina, M.J. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 14857–14863. [Google Scholar] [CrossRef]
- Alghamdi, W.; Neamatallah, A.A.; Alshamrani, M.M.; Al Mehmadi, F.; El-Saed, A. Distribution and the trend of airborne particles and bio-aerosol concentration in pediatric intensive care units with different ventilation setting at two hospitals in Riyadh, Saudi Arabia. J. Infect. Public Health 2023, 16, 588–595. [Google Scholar] [CrossRef]
- Bolookat, F.; Hassanvand, M.S.; Faridi, S.; Hadei, M.; Rahmatinia, M.; Alimohammadi, M. Assessment of bioaerosol particle characteristics at different hospital wards and operating theaters: A case study in Tehran. MethodsX 2018, 5, 1588–1596. [Google Scholar] [CrossRef]
- Ali, S.; McDermott, S. Impact of the COVID-19 pandemic on the incidence of healthcare-associated Clostridioides difficile infection in a tertiary healthcare facility in the Republic of Ireland. Infect. Prev. Pract. 2023, 5, 100300. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Q.; Yang, F.; Zhang, J.; Fu, Y.; Zhu, Z.; Guo, J.; Li, X.; Yang, L. Associations between COVID-19 infection experiences and mental health problems among Chinese adults: A large cross-section study. J. Affect. Disord. 2023, 340, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ji, L.; Xiong, G.; Ning, K. The distinct microbial community patterns and pathogen transmission routes in intensive care units. J. Hazard. Mater. 2023, 441, 129964. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. J. Am. Med. Assoc. 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.M. Personal protective equipment during the coronavirus disease (COVID) 2019 pandemic–a narrative review. Anaesthesia 2020, 75, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Cowling, B.J.; Leung, G.M. Epidemiological research priorities for public health control of the ongoing global novel coronavirus (2019-nCoV) outbreak. Eurosurveillance 2020, 25, 2000110. [Google Scholar] [CrossRef] [PubMed]
- Macher, J.M. Positive-Hole Correction of Multiple-Jet Impactors for Collecting Viable Microorganisms. Am. Ind. Hyg. Assoc. J. 1989, 50, 561–568. [Google Scholar] [CrossRef]
- Sanmark, E.; Kuula, J.; Laitinen, S.; Oksanen, L.M.A.H.; Bamford, D.H.; Atanasova, N.S. Safe use of PHI6 IN the experimental studies. Heliyon 2023, 9, e13565. [Google Scholar] [CrossRef]
- Bailey, R.; Fielding, L.; Young, A.; Griffith, C. Effect of Ozone and Open Air Factor against Aerosolized Micrococcus luteus. J. Food Prot. 2007, 70, 2769–2773. [Google Scholar] [CrossRef]
- Borkar, S.B.; Negi, M.; Jaiswal, A.; Raj Acharya, T.; Kaushik, N.; Choi, E.H.; Kaushik, N.K. Plasma-generated nitric oxide water: A promising strategy to combat bacterial dormancy (VBNC state) in environmental contaminant Micrococcus luteus. J. Hazard. Mater. 2024, 461, 132634. [Google Scholar] [CrossRef] [PubMed]
Bacterial Strain (Host) | Phage | Medium | Temperature | Incubation Time [h] |
---|---|---|---|---|
Pseudomonas sp. DSM 21482 | fag Phi6 | TSB/TSA Merck | 25 °C | 24 |
E. coli DSM 13127 | fag PhiX174 | LB broth/LB with agar Merck | 37 °C | 18–24 |
E. coli DSM 613 | fag T4 | TSB/TSA Merck | 37 °C | 18–24 |
Time, h | Average Survival Rate of Escherichia coli ATCC 26922–cfu/mL | Average Survival Rate of Micrococcus luteus ATCC 7468–cfu/mL | Average Survival Rate of Staphylococcus aureus ATCC 6538 P-cfu/mL |
---|---|---|---|
0 | 1.08E+09 | 1.10E+08 | 2.67E+09 |
1 | 1.04E+09 | 1.66E+08 | 2.84E+09 |
2 | 9.25E+08 | 2.00E+08 | 2.34E+09 |
3 | 9.53E+08 | 1.54E+08 | 2.31E+09 |
4 | 8.85E+08 | 8.90E+07 | 2.07E+09 |
Time, min | Average Survival Rate of Escherichia coli ATCC 26922–cfu/mL | Average Survival Rate of Micrococcus luteus ATCC 7468–cfu/mL | Average Survival Rate of Staphylococcus aureus ATCC 6538 P-cfu/mL |
---|---|---|---|
0 | 1.31E+04 | 8.8E+02 | 6.65E+02 |
5 | 1.31E+05 | 9.5E+02 | 5.9E+02 |
10 | 2.91E+03 | 1E+03 | 2.95E+02 |
15 | 5.3E+02 | 7.2E+02 | 1.7E+02 |
20 | 1.9E+02 | 7.05E+02 | 1.05E+01 |
25 | 7.5E+01 | 6.2E+02 | 6.5E+01 |
30 | 4.5E+01 | 5.5E+02 | 1E+01 |
Fag | Phage Titer, pfu/mL | Dilution Factor | Nebulisation Time, s | Homogenisation Time, min | Air Volume, L | Average pfu/Plate | Bioaerosol Concentration, pfu/m3 |
---|---|---|---|---|---|---|---|
phi6 | 7E+07 | 2.5 | 30 | 5 | 100 | >219 | >1307 |
phi6 | 7E+07 | 5 | 90 | 0 | 200 | 114 | 800 |
phiX174 | 2.5E+05 | 5 | 180 | 3 | 200 | 0 | 0 |
phiX174 | 2.5E+05 | 1 | 180 | 0 | 200 | 94 | 610 |
T4 | 1.6E+06 | 1 | 180 | 3 | 200 | 0 | 0 |
T4 | 1.6E+06 | 1 | 180 | 3 | 500 | 0 | 0 |
Time, h | Phi6 pfu/mL | PhiX174 pfu/mL | T4 Phage pfu/ml |
---|---|---|---|
0 | 1.65E+06 | 9.5E+04 | 3.37E+08 |
1 | 2.00E+06 | 7.5E+04 | 3.46E+06 |
2 | 1.83E+06 | 7.2E+04 | 2.49E+06 |
3 | 6.25E+05 | 7.7E+04 | 2.78E+05 |
4 | 8.75E+05 | 7.8E_04 | 4.62E+05 |
Time, min | Phi6 pfu/mL | PhiX174 pfu/mL | T4 Phage pfu/mL |
---|---|---|---|
0 | 680 | 0 | 0 |
5 | 895 | 0 | 0 |
10 | 0 | 0 | 0 |
15 | 0 | 0 | 0 |
20 | 0 | 0 | 0 |
25 | 0 | 0 | 0 |
30 | 0 | 0 | 0 |
Time, min | 0.5 | 1.5 | 2.0 | 3.3 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Average Survivability of Phi6 in air—pfu/m3 (N = 2) | 218 | 350 | 420 | 200 | 280 | 90 | 103 | 15 | 40 | 30 |
Observations | Escherichia coli ATCC 26922 | Micrococcus luteus ATCC 7468 | Staphylococcus aureus ATCC 6538 P |
---|---|---|---|
Ability to obtain countable bioaerosol from suspension with McFarland scale turbidity range | ++ | +++ | ++ |
Ease of colony reading (colour, shape, colony size) | + | +++ | ++ |
Survival in physiological fluid | +++ | +++ | +++ |
Survival in the air | + | +++ | + |
Observations | Phage phi6 | Phage phiX174 | Phage T4 |
---|---|---|---|
Ability to obtain countable bioaerosol | +++ | + | - |
Number of phages in the suspension (phage titer) | +++ | + | ++ |
Ease of plaque reading (size of clearings) | ++ | +++ | +++ |
Survival in physiological fluid | +++ | +++ | + |
Survival in the air | + | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel, R.; Andrych-Zalewska, M.; Matla, J.; Molska, J.; Sierzputowski, G.; Szulak, A.; Włostowski, R.; Włóka, A.; Rutkowska-Gorczyca, M. Assessment of the Possibility of Using Bacterial Strains and Bacteriophages for Epidemiological Studies in the Bioaerosol Environment. Microbiol. Res. 2024, 15, 236-246. https://doi.org/10.3390/microbiolres15010017
Wróbel R, Andrych-Zalewska M, Matla J, Molska J, Sierzputowski G, Szulak A, Włostowski R, Włóka A, Rutkowska-Gorczyca M. Assessment of the Possibility of Using Bacterial Strains and Bacteriophages for Epidemiological Studies in the Bioaerosol Environment. Microbiology Research. 2024; 15(1):236-246. https://doi.org/10.3390/microbiolres15010017
Chicago/Turabian StyleWróbel, Radosław, Monika Andrych-Zalewska, Jędrzej Matla, Justyna Molska, Gustaw Sierzputowski, Agnieszka Szulak, Radosław Włostowski, Adriana Włóka, and Małgorzata Rutkowska-Gorczyca. 2024. "Assessment of the Possibility of Using Bacterial Strains and Bacteriophages for Epidemiological Studies in the Bioaerosol Environment" Microbiology Research 15, no. 1: 236-246. https://doi.org/10.3390/microbiolres15010017
APA StyleWróbel, R., Andrych-Zalewska, M., Matla, J., Molska, J., Sierzputowski, G., Szulak, A., Włostowski, R., Włóka, A., & Rutkowska-Gorczyca, M. (2024). Assessment of the Possibility of Using Bacterial Strains and Bacteriophages for Epidemiological Studies in the Bioaerosol Environment. Microbiology Research, 15(1), 236-246. https://doi.org/10.3390/microbiolres15010017