Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile
Abstract
:1. Introduction
2. Fatty Acids Derived from Microorganisms and Fungi
3. Structure–Activity Relationships and Biological Activities of Natural FA Amides
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitzer, J.; Steiner, K. Amides in nature and biocatalysis. Tetrahedron 1998, 54, 7229–7271. [Google Scholar] [CrossRef] [PubMed]
- Bezuglov, V.V.; Bobrov, M.Y.; Archakov, A.V. Bioactive amides of fatty acids. Biochemistry 1998, 63, 27–37. [Google Scholar]
- Dembitsky, V.M.; Shkrob, I.; Rozentsvet, O.A. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum. Phytochemistry 2000, 54, 965–967. [Google Scholar] [CrossRef]
- Bradshaw, H.B.; Leishman, E. Lipidomics: A corrective lens of enzyme Mopia. Methods Enzymol. 2017, 593, 123–141. [Google Scholar] [PubMed]
- Bode, J.W. Emerging methods in amide- and peptide-bond formation. Curr. Opin. Drug Discov. Develop. 2006, 9, 765–775. [Google Scholar] [CrossRef]
- Divito, E.B.; Cascio, M. Metabolism, physiology, and analyses of primary fatty acid amides. Chem. Rev. 2013, 113, 7343–7353. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Bioactive cyclobutane-containing alkaloids. J. Nat. Med. 2008, 62, 1–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, T.; Ming, Q.; Wu, L. Alkaloids produced by endophytic fungi: A review. Nat. Prod. Commun. 2012, 7, 963–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dembitsky, V.M. Naturally occurring bioactive cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 2014, 21, 1559–1581. [Google Scholar] [CrossRef]
- Ismail, F.M.D.; Levitsky, D.O.; Dembitsky, V.M. Aziridine alkaloids as potential therapeutic agents. Eur. J. Med. Chem. 2009, 44, 3373–3387. [Google Scholar] [CrossRef]
- Torres, A.; Hochberg, M.; Pergament, I.; Smoum, R.; Niddam, V.; Dembitsky, V.M. A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur. J. Biochem. 2004, 271, 780–784. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Rezanka, T. Metabolites produced by nitrogen fixing Nostoc species. Folia Microbiol. 2005, 50, 363–391. [Google Scholar] [CrossRef] [PubMed]
- Siddiq, A.; Dembitsky, V. Acetylenic anticancer agents. Anti-Cancer Agents Med. Chem. 2008, 8, 132–170. [Google Scholar] [CrossRef]
- Archana, O.; Nagadesi, P.K. Endophytic, non-endophytic fungal alkaloids and its applications. Saudi J. Pathol. Microbiol 2022, 7, 4–19. [Google Scholar]
- Chen, S.; Cai, R.; Liu, Z.; Cui, H.; She, Z. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities. Nat. Prod. Rep. 2022, 39, 560–595. [Google Scholar] [CrossRef]
- Mohan, S.; Krishna, A.; Chandramouli, M.S. Antibacterial natural products from microbial and fungal sources: A decade of advances. Mol. Divers. 2022, 26, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, S.J.; Li, J.J.; Liang, Z.Z.; Zhao, C.Q. Novel natural products from extremophilic fungi. Mar. Drugs 2018, 16, 194. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M.S.; Zielinski, R.J.; Cialdella, J.I.; Marschke, C.K.; Dupuis, M.J. Discovery, isolation, structure elucidation, and biosynthesis of U-106305, a cholesteryl ester transfer protein inhibitor from UC 11136. J. Am. Chem. Soc. 1995, 117, 10629–10634. [Google Scholar] [CrossRef]
- Yoshida, M.; Ezaki, M.; Hashimoto, M.; Yamashita, M.; Shigematsu, N. A novel antifungal antibiotic, FR-900848. I. Production, isolation, physico-chemical and biological properties. J. Antibiot. 1990, 43, 748–754. [Google Scholar] [CrossRef]
- Sasaki, M.; Tsuda, M.; Sekiguchi, M.; Mikami, Y.; Kobayashi, J. Perinadine A, a novel tetracyclic alkaloid from marine-derived fungus Penicillium citrinum. Org. Lett. 2005, 7, 4261–4264. [Google Scholar] [CrossRef]
- Tsuda, M.; Sasaki, M.; Mugishima, T.; Komatsu, K.; Sone, T.; Tanaka, M. Scalusamides A-C, new pyrrolidine alkaloids from the marine-derived fungus Penicillium citrinum. J. Nat. Prod. 2005, 68, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, K.; Zhong, P.; Hu, X.; Fang, Z.X.; Wu, J.L.; Zhang, Q.Q. Tumonoic acids K and L, novel metabolites from the marine-derived fungus Penicillium citrinum. Heterocycles 2012, 85, 413–419. [Google Scholar] [CrossRef]
- Hasegawa, T.; Kamiya, T.; Henmi, T.; Iwasaki, H.; Yamatodani, S. Viridenomycin, a new antibiotic. J. Antibiot. 1975, 28, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McErlean, M.; Liu, X.; Cui, Z.; Gust, B. Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Nat. Prod. Rep. 2021, 38, 1362–1407. [Google Scholar] [CrossRef]
- Barrett, A.G.M.; Kasdorf, K. Total synthesis of the pentacyclopropane antifungal agent FR-900848. J. Am. Chem. Soc. 1996, 118, 11030–11037. [Google Scholar] [CrossRef]
- Barrett, A.G.M.; Doubleday, W.W.; Hamprecht, D. Recent advances in the synthesis of antifungal agents. Pure Appl. Chem. 1997, 69, 383–388. [Google Scholar] [CrossRef]
- Jin, W.B.; Wu, S.; Xu, Y.F.; Yuan, H.; Tang, G.L. Recent advances in HemN-like radical S-adenosyl-l-methionine enzyme-catalyzed reactions. Nat. Prod. Rep. 2020, 37, 17–28. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, W.Q.; Zhu, X.; Zhang, Q. Functional diversity of HemN-like proteins. ACS Bio. Med. Chem. 2022, 2, 109–119. [Google Scholar] [CrossRef]
- Østby, R.B. Syntheses of 3-, 4-and 5-Membered Carbocycles: New Methodology on Old Methods. Ph.D. Thesis, Norwegian University of Life Sciences, Akershus, Norway, 2015. [Google Scholar]
- Ding, G.; Liu, S.C.; Guo, L.D.; Zhou, Y.G.; Che, Y.S. Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J. Nat. Prod. 2008, 71, 615–618. [Google Scholar] [CrossRef]
- Asolkar, R.N.; Jensen, P.R.; Kauffman, C.A.; Fenical, W. Daryamides A−C, weakly cytotoxic polyketides from a marine-derived actinomycete of the genus Streptomyces strain CNQ-085. J. Nat. Prod. 2006, 69, 1756–1759. [Google Scholar] [CrossRef]
- Li, F.; Maskey, R.P.; Qin, S.; Sattler, I.; Fiebig, H.H.; Maier, A.; Zeeck, A.; Laatsch, H. Chinikomycins A and B: Isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. J. Nat. Prod. 2005, 68, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Yu, L.; Ikeda, M.; Oikawa, T. Jomthonic acid A, a modified amino acid from a soil-derived Streptomyces. J. Nat. Prod. 2012, 75, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Bunyapaiboonsri, T.; Yoiprommarat, S.; Intereya, K.; Rachtawee, P.; Hywel-Jones, N.L.; Isaka, M. Isariotins E and F, spirocyclic and bicyclic hemiacetals from the entomopathogenic fungus Isaria tenuipes BCC 12625. J. Nat. Prod. 2009, 72, 756–759. [Google Scholar] [CrossRef]
- Brodasky, T.F.; Stroman, D.W.; Dietz, A.; Mizsak, S. U-56,407, a new antibiotic related to asukamycin: Isolation and characterization. J. Antibiot. 1983, 36, 950–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Floss, H.G. New type II manumycins produced by Streptomyces nodosus ssp. asukaensis and their biosynthesis. J. Antibiot. 2001, 54, 340–348. [Google Scholar]
- Kohno, J.; Nishio, M.; Kawano, K.; Nakanishi, N.; Suzuki, S.; Uchida, T.; Komatsubara, S. TMC-1 A, B, C and D, new antibiotics of the manumycin group produced by Streptomyces sp. Taxonomy, production, isolation, physico-chemical properties, structure elucidation and biological properties. J. Antibiot. 1996, 49, 1212–1220. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Tsukuda, E.; Uosaki, Y.; Matsuda, Y. EI-1511-3, -5 and EI-1625-2, novel interleukin-1 beta converting enzyme inhibitors produced by Streptomyces sp. E-1511 and E-1625. III. Biochemical properties of EI-1511-3, -5 and EI-1625-2. J. Antibiot. 1996, 49, 1085–1090. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Shin, Y.; Lee, S.H.; Oh, K.B.; Lee, S.K.; Shin, J.; Oh, D.C. Salternamides A–D from a halophilic Streptomyces sp. Actinobacterium. J. Nat. Prod. 2015, 78, 836–843. [Google Scholar] [CrossRef]
- Sattler, I.; Thiericke, R.; Zeeck, A. The manumycin-group metabolites. Nat. Prod. Rep. 1998, 15, 221–240. [Google Scholar] [CrossRef]
- Grote, R.; Zeeck, A.; Beale, J.M., Jr. Metabolic products of microorganisms. 245. Colabomycins, new antibiotics of the manumycin group from Streptomyces griseoflavus. II. Structure of colabomycin A. J. Antibiot. 1988, 41, 1186–1195. [Google Scholar] [CrossRef] [Green Version]
- Grote, R.; Zeeck, A.; Drautz, H.; Zähner, H. Metabolic products of microorganisms. 244. Colabomycins, new antibiotics of the manumycin group from Streptomyces griseoflavus. I. Isolation, characterization and biological properties. J. Antibiot. 1988, 41, 1178–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slechta, L.; Cialdella, J.I.; Mizsak, S.A.; Hoeksema, H. Isolation and characterization of a new antibiotic U-62162. J. Antibiot. 1982, 35, 556–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petříčková, K.; Pospíšil, S.; Kuzma, M.; Tylová, T.; Jágr, M.; Tomek, P. Biosynthesis of colabomycin E, a new manumycin-family metabolite, involves an unusual chain-length factor. ChemBioChem 2014, 15, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, H.; Grothe, G. Über Actinomycetenfarbstoffe, II. Mitteil: Limocrocin, ein gelber Actinomycetenfarbstoff. Chem. Berich. 1953, 86, 1110–1115. [Google Scholar] [CrossRef]
- Kido, G.S.; Spyhalski, E. Antimycin A, an antibiotic with insecticidal and miticidal properties. Science 1950, 112, 172–173. [Google Scholar] [CrossRef]
- Nakayama, K.; Okamoto, F.; Harada, Y. Antimycin A: Isolation from a new Streptomyces and activity against rice plant blast fungi. J. Antibiot. 1956, 9, 63–66. [Google Scholar]
- Lennon, R.E. Antimycin A, a piscicidal antibiotic. Adv. Appl. Microbiol. 1973, 16, 55–96. [Google Scholar]
- Slater, E.C. The mechanism of action of the respiratory inhibitor, antimycin. Biochim. Biophys. Acta. 1973, 301, 129–154. [Google Scholar] [CrossRef]
- Cramer, W.A.; Hasan, S.S.; Yamashita, E. The Q cycle of cytochrome bc complexes: A structure perspective. Biochim. Biophys. Acta 2011, 1807, 788–802. [Google Scholar] [CrossRef] [Green Version]
- Seipke, R.F.; Hutchings, M.I. The regulation and biosynthesis of antimycins. Beilstein J. Org. Chem. 2013, 9, 2556–2563. [Google Scholar] [CrossRef] [Green Version]
- Shiomi, K.; Hatae, K.; Hatano, H.; Matsumoto, A.; Takahashi, Y.; Jiang, C.; Tomoda, H.; Kobayashi, S.; Tanaka, H.; Omura, S. A new antibiotic, antimycin a(9), produced by Streptomyces sp. k01–0031. J. Antibiot. 2005, 58, 74–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegelmann, C.; Margassery, L.M.; Kennedy, J.; Zhang, T. Metabolomic profiling and genomic study of a marine sponge-associated Streptomyces sp. Mar. Drugs 2014, 12, 3323–3351. [Google Scholar] [CrossRef] [PubMed]
- Hosotani, N.; Kumagai, K.; Nakagawa, H.; Shimatani, T.; Saji, I. Antimycins A10 approximately A16, seven new antimycin antibiotics produced by Streptomyces spp. SPA-10191 and SPA-8893. J. Antibiot. 2005, 58, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Nozaki, H. Kitamycins, new antimycin antibiotics produced by Streptomyces sp. J. Antibiot. 1999, 52, 325–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamura, N.; Nishijima, M.; Adachi, K.; Sano, H. Novel antimycin antibiotics, urauchimycins A and B, produced by marine actinomycete. J. Antibiot. 1993, 46, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Barrow, C.J.; Oleynek, J.J.; Marinelli, V.; Sun, H.H.; Kaplita, P.; Sedlock, D.M. Antimycins, inhibitors of ATP-citrate lyase, from a Streptomyces sp. J. Antibiot. 1997, 50, 729–733. [Google Scholar] [CrossRef] [Green Version]
- Fondja Yao, C.B.; Schiebel, M.; Helmke, E.; Anke, H.; Laatsch, H. Prefluostatin and new urauchimycin derivatives produced by Streptomycete isolates. Z. Naturforsch. 2006, 61B, 320–325. [Google Scholar]
- Ishiyama, T.; Endo, T.; Otake, N.; Yonehara, H. Deisovalerylblastmycin produced by Streptomyces sp. J. Antibiot. 1976, 29, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, M.; Kojima, I.; Okabe, M.; Fukagawa, Y.; Ishikura, T. Studies on the OA-6129 group of antibiotics, new carbapenem compounds. II. In vitro evaluation. J. Antibiot. 1982, 35, 1264–1270. [Google Scholar] [CrossRef]
- Yoshioka, T.; Kojima, I.; Isshiki, K.; Watanabe, A.; Shimauchi, Y.; Okabe, M. Structures of OA-6129A, B1, B2 and C, new carbapenem antibiotics produced by Streptomyces sp. OA-6129. J. Antibiot. 1983, 36, 1473–1482. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Maier, A.; Fiebig, H.H.; Görls, H.; Lin, W.H.; Peschel, G.; Hertweck, C. Divergolides A-D from a mangrove endophyte reveal an unparalleled plasticity in ansa-macrolide biosynthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 1630–1634. [Google Scholar] [CrossRef]
- Ding, L.; Franke, J.; Hertweck, C. Divergolide congeners illuminate alternative reaction channels for ansamycin diversification. Org. Biomol. Chem. 2015, 13, 1618–1623. [Google Scholar] [CrossRef]
- Xu, J.; Lin, Q.; Wang, B.; Wray, V.; Lin, W.H.; Proksch, P. Pestalotiopamide E, a new amide from the endophytic fungus Pestalotiopsis sp. J. Asian Nat. Prod. Res. 2011, 13, 373–376. [Google Scholar] [CrossRef]
- Hemberger, Y.; Xu, J.; Wray, V.; Proksch, P.; Wu, J.; Bringmann, G. Pestalotiopens A and B: Stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp. Chemistry 2013, 19, 15556–155564. [Google Scholar] [CrossRef]
- Hammerschmidt, L.; Aly, A.H.; Abdel-Aziz, M.; Müller, W.E.; Lin, W.; Daletos, G.; Proksch, P. Cytotoxic acyl amides from the soil fungus Gymnascella dankaliensis. Bioorg. Med. Chem. 2015, 23, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Siriwach, R.; Kinoshita, H.; Kitani, S.; Igarashi, Y. Bipolamides A and B, triene amides isolated from the endophytic fungus Bipolaris sp. MU34. J. Antibiot. 2014, 67, 167–170. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, Z.; Chen, Y.; Che, Q.; Zhu, T.; Gu, Q.; Li, D. Varitatin A, a highly modified fatty acid amide from Penicillium variabile cultured with a DNA methyltransferase inhibitor. J. Nat. Prod. 2015, 78, 2841–2845. [Google Scholar] [CrossRef] [PubMed]
- Delpierre, G.R.; Eastwood, F.W.; Gream, G.E.; Kingston, D.G.; Sarin, P.S.; Todd, L.; Williams, D.H. Antibiotics of the ostreogrycin complex. II. Structure of ostreogrycin A. J. Chem. Soc. Perkin I 1966, 19, 1653–1669. [Google Scholar] [CrossRef]
- Haritakun, R.; Srikitikulchai, P.; Khoyaiklang, P.; Isaka, M. Isariotins A-D, alkaloids from the insect pathogenic fungus Isaria tenuipes BCC 7831. J. Nat. Prod. 2007, 70, 1478–1480. [Google Scholar] [CrossRef]
- Nara, F.; Tanaka, M.; Hosoya, T.; Suzuki-Konagai, K.; Ogita, T. Scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima: Taxonomy of the producing organism, fermentation, isolation, and physico-chemical properties. J. Antibiot. 1999, 52, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Takagi, M.; Motohashi, K.; Izumikawa, M.; Khan, S.T.; Hwang, J.H.; Shin-Ya, K. JBIR-66, a new metabolite isolated from tunicate-derived Saccharopolyspora sp. SS081219JE-28. Biosci. Biotechnol. Biochem. 2010, 74, 2355–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, N.K.; Ohta, S.; Ohta, E.; Koizumi, F.; Suzuki, M.; Ichimura, M.; Rahayu, E.S.; Ikegami, S. Two new analogues of the cytotoxic substance BE-52211 from Streptomyces sp. J. Nat. Prod. 2004, 67, 85–87. [Google Scholar] [CrossRef]
- Woo, J.T.; Ono, H.; Tsuji, T. Cathestatins, new cysteine protease inhibitors produced by Penicillium citrinum. Biosci. Biotechnol. Biochem. 1995, 59, 350–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knöll, W.M.; Rinehart, K.L., Jr.; Wiley, P.F.; Li, L.H. Streptovaricin U, an acyclic ansamycin. J. Antibiot. 1980, 33, 249–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachid, S.; Scharfe, M.; Blöcker, H.; Weissman, K.J.; Müller, R. Unusual chemistry in the biosynthesis of the antibiotic chondrochlorens. Chem. Biol. 2009, 16, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.W.; Chan, T.M.; Terracciano, J.; Patel, R.; Loebenberg, D.; Chen, G.; Patel, M.; Gullo, V.; Pramanik, B.; Chu, M. New antibiotic Sch 725424 and its dehydration product Sch 725428 from Kitasatospora sp. J. Antibiot. 2005, 58, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Su, S.S.; Tian, L.; Chen, G.; Li, Z.Q.; Xu, W.F.; Pei, Y.H. Two new compounds from the metabolites of a marine-derived actinomycete Streptomyces cavourensis YY01-17. J. Asian Nat. Prod. Res. 2013, 15, 265–269. [Google Scholar] [CrossRef]
- Ueda, J.Y.; Nagai, A.; Izumikawa, M.; Chijiwa, S.; Takagi, M.; Shin-ya, K. A novel antimycin-like compound, JBIR-06, from Streptomyces sp. ML55. J. Antibiot. 2008, 61, 241–244. [Google Scholar] [CrossRef]
- Krasnoff, S.B.; Englich, U.; Miller, P.G.; Shuler, M.L.; Glahn, R.P.; Donzelli, B.G.G.; Gibson, D.M. Metacridamides A and B, macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum. J. Nat. Prod. 2012, 75, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Kunze, B.; Kohl, W.; Hofle, G.; Reichenbach, H. Production, isolation, physico-chemical and biological properties of angiolam A, a new antibiotic from Angiococcus disciformis (Myxobacterales). J. Antibiot. 1985, 38, 1649–1654. [Google Scholar] [CrossRef]
- Cruz, J.S.; da Silva, C.A.; Hamerski, L. Natural products from endophytic fungi associated with Rubiaceae species. J. Fungi 2020, 6, 128. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Schneider, B.; Riese, U.; Schubert, B.; Li, Z.; Hamburger, M. Farinosones A-C, Neurotrophic alkaloidal metabolites from the entomogenous deuteromycete Paecilomyces farinosus. J. Nat. Prod. 2004, 67, 1854–1858. [Google Scholar] [CrossRef] [PubMed]
- Numata, A.; Amagata, T.; Minoura, K.; Itoa, T. Gymnastatins, novel cytotoxic metabolites produced by a fungal strain from a sponge. Tetrahedron Lett. 1997, 38, 5675–5678. [Google Scholar] [CrossRef]
- Plaza, A.; Baker, H.L.; Bewley, C.A. Mirabilin, an antitumor macrolide lactam from the marine sponge Siliquariaspongia mirabilis. J. Nat. Prod. 2008, 71, 473–477. [Google Scholar] [CrossRef]
- Uchida, R.; Iwatsuki, M.; Kim, Y.P.; Ohte, S.; Ōmura, S. Nosokomycins, new antibiotics discovered in an in vivo-mimic infection model using silkworm larvae. I: Fermentation, isolation and biological properties. J. Antibiot. 2010, 63, 151–155. [Google Scholar] [CrossRef]
- Šmelcerović, A.; Đorđević, S.; Palić, R. A new metabolite from marine bacteria. Hemijska industrija. Chem. Ind. 2001, 55, 399–401. [Google Scholar]
- Gerth, K.; Jansen, R.; Reifenstahl, G.; Höfle, G. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales) I. production, physico-chemical and biological properties, and mechanism of action. J. Antibiot. 1983, 36, 1150–1156. [Google Scholar] [CrossRef]
- Bangi, A.; Itoua, Y.; Sakagamia, Y.; Fudoub, R.; Yamanakac, S.; Ojika, M. Novel antifungal polyene amides from the myxobacterium Cystobacter fuscus: Isolation, antifungal activity and absolute structure determination. Tetrahedron 2004, 60, 10217–10221. [Google Scholar]
- Höfle, G.; Gerth, K.; Reichenbach, H.; Kunze, B.; Sasse, F.; Forche, E.; Prusov, E.V. Isolation, biological activity evaluation, structure elucidation, and total synthesis of eliamid: A novel complex I inhibitor. Chemistry 2012, 18, 11362–11370. [Google Scholar] [CrossRef]
- Aouiche, A.; Sabaou, N.; Meklat, A.; Zitouni, A.; Bijani, C.; Mathieu, F.; Lebrihi, A. Saccharothrix sp. PAL54, a new chloramphenicol-producing strain isolated from a Saharan soil. World J. Microbiol. Biotechnol. 2012, 28, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Wang, B.G.; Brauers, G.; Guan, H.S.; Proksch, P.; Ebel, R. Microsphaerones A and B, two novel γ-pyrone derivatives from the sponge-derived fungus Microsphaeropsis sp. J. Nat. Prod. 2002, 65, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, S.; Hirota, H.; Imachi, M.; Fujimuro, M.; Onuki, H. Himeic acid A: A new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, Aspergillus sp. Bioorg. Med. Chem. Lett. 2005, 15, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, A.; Broberg, A.; Johansson, M.; Kenne, L.; Levenfors, J. Pseudotrienic acids A and B, two bioactive metabolites from Pseudomonas sp. MF381-IODS. J. Nat. Prod. 2005, 68, 1380–1385. [Google Scholar] [CrossRef]
- Kunze, B.; Trowitzsch-Kienast, W.; Höfle, G.; Reichenbach, H. Nannochelins A, B and C, new iron-chelating compounds from Nannocystis exedens (myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 1992, 45, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, K.; Takadera, T.; Adachi, K.; Nishijima, M.; Sano, H. Korormicin, a novel antibiotic specifically active against marine gram-negative bacteria, produced by a marine bacterium. J. Antibiot. 1997, 50, 949–953. [Google Scholar] [CrossRef] [Green Version]
- Kanbe, K.; Naganawa, H.; Okamura, M. Amidenin, a new plant growth-regulating substance isolated from Amycolatopsis sp. Biosci. Biotechnol. Biochem. 1993, 57, 1261–1263. [Google Scholar] [CrossRef]
- López-Bucio, J.; Acevedo-Hernández, G. Novel signals for plant development. Current Opin. Plant Biol. 2006, 9, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Hasegawa, Y.; Sakabe, Y.; Tomoda, H. Citrinamides, New potentiators of antifungal miconazole activity, produced by Penicillium sp. FKI-1938. J. Antibiot. 2008, 61, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Barsby, T.; Kelly, M.T.; Andersen, R.J. Tupuseleiamides and basiliskamides, new acyldipeptides and antifungal polyketides produced in culture by a Bacilluslaterosporus isolate obtained from a tropical marine habitat. J. Nat. Prod. 2002, 65, 1447–1451. [Google Scholar] [CrossRef]
- Akhand, M.; Al-Bari, M.A.A.; Islam, M.A.; Khondkar, P. Characterization and antimicrobial activities of a metabolite from a new Streptomyces species from Bangladeshi soil. J. Sci. Res. 2010, 2, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, S.; Li, X.M.; Cui, C.M.; Feng, C.; Wang, B.G. New sphingolipids with a previously unreported 9-methyl-C20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 2007, 42, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Oka, M.; Nishiyama, Y.; Ohta, S.; Kamei, H. Glidobactins A, B and C, new antitumor antibiotics I. Production, isolation, chemical properties and biological activity. J. Antibiot. 1988, 41, 1331–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, C.; Yim, J.H.; Lee, H.K.; Park, S.M.; Sohn, J.H.; Oh, H. Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett. 2008, 49, 29–31. [Google Scholar] [CrossRef]
- Silber, J.; Ohlendorf, B.; Labes, A.; Näther, C. Calcaripeptides A–C, cyclodepsipeptides from a Calcarisporium strain. J. Nat. Prod. 2013, 76, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Shen, Y.; Bai, L. Biosynthesis of 3,5-AHBA-derived natural products. Nat. Prod. Rep. 2012, 29, 243–263. [Google Scholar] [CrossRef]
- Kakule, T.B.; Sardar, D.; Lin, Z.; Schmidt, E.W. Two related pyrrolidinedione synthetase loci in Fusarium heterosporum ATCC 74349 produce divergent metabolites. ACS Chem. Biol. 2013, 8, 1549–1557. [Google Scholar] [CrossRef]
- Kahner, L.; Dasenbrock, J.; Spiteller, P.; Steglich, W. Polyene pigments from fruit-bodies of Boletus laetissimus and B. rufo-aureus (basidiomycetes). Phytochemistry 1998, 49, 1693–1697. [Google Scholar] [CrossRef]
- Gruber, G.; Steglich, W. Calostomal, a polyene pigment from the gasteromycete Calostoma cinnabarinum (Boletales). Zeitsch. Naturforsch. 2007, 62B, 129–131. [Google Scholar] [CrossRef] [Green Version]
- Aulinger, K.; Besl, H.; Spiteller, P.; Spitelle, M. Melanocrocin, a polyene pigment from Melanogaster broomeianus (Basidiomycetes). Zeitsch. Naturforsch. 2001, 56C, 495–498. [Google Scholar] [CrossRef]
- Zhan, Z.J.; Yue, J.M. New glycosphingolipids from the fungus Catathelasma ventricosa. J. Nat. Prod. 2003, 66, 1013–1016. [Google Scholar] [CrossRef]
- Manam, R.R.; Teisan, S.; White, D.J.; Nicholson, B.; Grodberg, J. Lajollamycin, a nitro-tetraene spiro-beta-lactone-gamma-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J. Nat. Prod. 2005, 68, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Coughlin, J.M.; Ju, J.; Zhu, D.; Wendt-Pienkowski, E.; Zhou, X.; Wang, Z.; Shen, B.; Deng, Z. Oxazolomycin biosynthesis in Streptomyces albus JA3453 featuring an "acyltransferase-less" type I polyketide synthase that incorporates two distinct extender units. J. Biol. Chem. 2010, 285, 20097–20108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moloney, M.G.; Trippier, P.C.; Yaqoob, M.; Wang, Z. The oxazolomycins: A structurally novel class of bioactive compounds. Curr. Drug Discov. Technol. 2004, 1, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Tonew, E.; Tonew, M.; Gräfe, U.; Zöpel, P. On the antiviral activity of diffusomycin (oxazolomycin). Acta Virol. 1992, 36, 166–172. [Google Scholar]
- Kanzaki, H.; Wada, K.; Nitoda, T.; Kawazu, K. Novel bioactive oxazolomycin isomers produced by Streptomyces albus JA3453. Biosci. Biotechnol. Biochem. 1998, 62, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Ryu, G.; Hwang, S.; Kim, S.K. 16-Methyloxazolomycin, a new antimicrobial and cytotoxic substance produced by a Streptomyces sp. J. Antibiot. 1997, 50, 1064–1066. [Google Scholar] [CrossRef] [Green Version]
- Ogura, M.; Nakayama, H.; Furihata, K.; Shimazu, A.; Seto, H.; Otake, N. Structure of a new antibiotic curromycin A produced by a genetically modified strain of Streptomyces hygroscopicus, a polyether antibiotic producing organism. J. Antibiot. 1985, 38, 669–673. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Akimoto, M.; Ishikawa, A.; Izawa, M.; Shin-Ya, K. Curromycin A as a GRP78 downregulator and a new cyclic dipeptide from Streptomyces sp. J. Antibiot. 2016, 69, 187–188. [Google Scholar] [CrossRef]
- Nakamura, M.; Honma, H.; Kamada, M.; Ohno, T.; Kunimoto, S.; Ikeda, Y.; Kondo, S.; Takeuchi, T. Inhibitory effect of curromycin A and B on human immunodeficiency virus replication. J. Antibiot. 1994, 47, 616–618. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, Y.; Kondo, S.; Naganawa, H.; Hattori, S.; Hamada, M.; Takeuchi, T. New triene-beta-lactone antibiotics, triedimycins A and B. J. Antibiot. 1991, 44, 453–455. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.-P.; Zhu, C.-Y.; Zhang, C.-P.; Chu, Y.-S.; Wang, Y.-L.; Zhang, J.-X.; Wu, D.-K.; Zhang, K.-Q.; Niu, X.-M. Thermolides, potent nematocidal pks-nrps hybrid metabolites from thermophilic fungus Talaromyces thermophilus. J. Am. Chem. Soc. 2012, 134, 20306–20309. [Google Scholar] [CrossRef] [PubMed]
- Degenkolb, T.; Vilcinskas, A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: Metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Appl. Microbiol. Biotechnol. 2016, 100, 3813–3824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Goff, G.; Martin, M.T.; Servy, C.; Cortial, S.; Lopes, P. Isolation and characterization of α,β-unsaturated γ-lactono-hydrazides from Streptomyces sp. J. Nat. Prod. 2012, 75, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Le Goff, G.; Martin, M.T.; Iorga, B.I.; Adelin, E.; Servy, C.; Cortial, S.; Ouazzani, J. Isolation and characterization of unusual hydrazides from Streptomyces sp. impact of the cultivation support and extraction procedure. J. Nat. Prod. 2013, 76, 142–149. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Pharmacological and predicted activities of natural azo compounds. Nat. Prod. Bioprospect. 2017, 7, 151–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, C.M.; Maurya, R.; Vijayakumar, E.K.; Chatterjee, S.; Blumbach, J.; Ganguli, B.N. Alisamycin, a new antibiotic of the manumycin group. I. Taxonomy, production, isolation and biological activity. J. Antibiot. 1991, 44, 1289–1293. [Google Scholar] [CrossRef]
- Silva, L.R.; da Silva-Júnior, E.F. Inhibiting the “Undruggable” RAS/farnesyltransferase (FTase) cancer target by manumycin-related natural products. Current Med. Chem. 2022, 29, 189–211. [Google Scholar] [CrossRef]
- Hayashi, K.; Nakagawa, M.; Fujita, T.; Tanimori, S.; Nakayama, M. Nisamycin, a new manumycin group antibiotic from Streptomyces sp. K106. II. Structure determination and structure-activity relationships. J. Antibiot. 1994, 47, 1110–1115. [Google Scholar] [CrossRef] [Green Version]
- Omura, S.; Kitao, C.; Tanaka, H.; Oiwa, R.; Takahashi, Y. A new antibiotic, asukamycin, produced by Streptomyces. J. Antibiot. 1976, 29, 876–881. [Google Scholar] [CrossRef]
- Caglioti, L.; Misiti, D.; Mondelli, R.; Selva, A.; Arcamone, F.; Cassinelli, G. The structure of neoantimycin. Tetrahedron 1969, 25, 2193–2221. [Google Scholar] [CrossRef]
- Caglioti, L.; Ciranni, G.; Misiti, D.; Arcamone, F.; Minghetti, A. Biosynthesis of the 3,4-dihydroxy-2,2-dimethyl-5-phenylvaleric acid residue of neoantimycin. J. Chem. Soc. Perkin 1 1972, 9, 1235–1237. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zvanych, R.; Vanner, S.A.; Wang, W.; Magarvey, N.A. Chemical variation from the neoantimycin depsipeptide assembly line. Bioorg. Med. Chem. Lett. 2013, 23, 5123–5127. [Google Scholar] [CrossRef] [PubMed]
- Umeda, Y.; Chijiwa, S.; Furihata, K.; Furihata, K.; Sakuda, S.; Nagasawa, H. Prunustatin A, a novel GRP78 molecular chaperone down-regulator isolated from Streptomyces violaceoniger. J. Antibiot. 2005, 58, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.L.; Nogawa, T.; Okano, A.; Futamura, Y.; Kawatani, M. Unantimycin A, a new neoantimycin analog isolated from a microbial metabolite fraction library. J. Antibiot. 2016, 69, 456–458. [Google Scholar] [CrossRef]
- Hosoya, T.; Hirokawa, T.; Takagi, M.; Shin-ya, K. Trichostatin analogues JBIR-109, JBIR-110, and JBIR-111 from the marine sponge-derived Streptomyces sp. RM72. J. Nat. Prod. 2012, 75, 285–289. [Google Scholar] [CrossRef]
- Dewey, R.S.; Arison, B.H.; Hannah, J.; Shih, D.H.; Albers-Schönberg, G. The structure of efrotomycin. J. Antibiot. 1985, 38, 1691–1698. [Google Scholar] [CrossRef] [Green Version]
- Wax, R.; Maises, W.; Weston, R.; Birnbaum, J. Efrotomycin, a new antibiotic from Streptomyces lactamdurans. J. Antibiot. 1976, 29, 670–673. [Google Scholar] [CrossRef] [Green Version]
- Berger, J.; Lehr, H.H.; Teitel, S.; Maehr, H.; Grunberg, E. A new antibiotic X-5108 of Streptomyces origin. I. Production, isolation and properties. J. Antibiot. 1973, 26, 15–22. [Google Scholar] [CrossRef]
- Liu, C.; Hermann, T.; Miller, P.A. Feedback inhibition of the synthesis of an antibiotic: Aurodox (X-5108). J. Antibiot. 1977, 30, 244–251. [Google Scholar] [CrossRef]
- Yu, C.M.; Curtis, J.M.; Walter, J.A.; Wright, J.L.; Ayer, S.W.; Kaleta, J.; Querengesser, L.; Fathi-Afshar, Z.R. Potent inhibitors of cysteine proteases from the marine fungus Microascus longirostris. J. Antibiot. 1996, 49, 395–397. [Google Scholar] [CrossRef] [Green Version]
- Hoberg, K.A.; Cihlar, R.L.; Calderone, R.A. Characterization of cerulenin-resistant mutants of Candida albicans. Infect Immun. 1986, 51, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, N.Y.; Lee, J.S.; Yoo, K.S.; Oh, S.; Choe, E.; Lee, H.J. Fatty acid synthase inhibitor cerulenin inhibits topoisomerase I catalytic activity and augments SN-38-induced apoptosis. Apoptosis 2013, 18, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Thirkettle, J. SB-253514 and analogues; novel inhibitors of lipoprotein associated phospholipase A2 produced by Pseudomonas fluorescens DSM 11579. III. Biotransformation using naringinase. J. Antibiot. 2000, 53, 733–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirkettle, J.; Alvarez, E.; Boyd, H.; Brown, M.; Diez, E.; Hueso, J.; Elson, S.; Fulston, M. SB-253514 and analogues; novel inhibitors of lipoprotein-associated phospholipase A2 produced by Pseudomonas fluorescens DSM 11579. I. Fermentation of producing strain, isolation and biological activity. J. Antibiot. 2000, 53, 664–669. [Google Scholar] [CrossRef]
- Sayed, A.M.; Abdel-Wahab, N.M.; Hassan, H.M.; Abdelmohsen, U.R. Saccharopolyspora: An underexplored source for bioactive natural products. J. Appl. Microbiol. 2019, 128, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Masunaka, A.; Ohtani, K.; Peever, T.L.; Timmer, L.W.; Tsuge, T. An isolate of Alternaria alternata that is pathogenic to both tangerines and rough lemon and produces two host-selective toxins, ACT- and ACR-toxins. Phytopathology 2005, 95, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Takaoka, S.; Kurata, M.; Harimoto, Y.; Hatta, R.; Yamamoto, M.; Akimitsu, K.; Tsuge, T. Complex regulation of secondary metabolism controlling pathogenicity in the phytopathogenic fungus Alternaria alternata. New Phytol. 2014, 202, 1297–1309. [Google Scholar] [CrossRef]
- Cheenpracha, S.; Borris, R.P.; Tran, T.T.; Jee, J.M.; Seow, H.F.; Cheah, H.Y.; Hoc, C.C.; Chang, L.C. Three new amides from Streptomyces sp. H7372. J. Braz. Chem. Soc. 2011, 22, 223–229. [Google Scholar] [CrossRef]
- Kunze, B.; Jansen, R.; Höfle, G.; Reichenbach, H. Crocacin, a new electron transport inhibitor from Chondromyces crocatus (myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 1994, 47, 881–886. [Google Scholar] [CrossRef]
- Capon, R.J.; Skene, C.; Lacey, E.; Gill, J.H.; Wicker, J.; Heiland, K.; Friedel, T. Lorneamides A and B: two new aromatic amides from a Southern Australian marine Actinomycete. J. Nat. Prod. 2000, 63, 1682–1683. [Google Scholar] [CrossRef]
- El-Naggar, M.Y.; El-Assar, S.A.; Abdul-Gawad, S.M. Solid-state fermentation for the production of meroparamycin by Streptomyces sp. strain MAR01. J. Microbiol. Biotechnol. 2009, 19, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Sawa, R.; Naganawa, H.; Muraoka, Y.; Aoyagi, T.; Takeuchi, T. Epostatin, new inhibitor of dipeptidyl peptidase II, produced by Streptomyces sp. MJ995-OF5 II. Structure elucidation. J. Antibiot. 1998, 51, 372–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, J.J.; Lu, C.H.; Li, Y.Y.; Li, S.R.; Shen, Y.M. Cuevaenes C-E: Three new triene carboxylic derivatives from Streptomyces sp. LZ35ΔgdmAI. Beilstein J. Org. Chem. 2014, 10, 858–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosokawa, N.; Naganawa, H.; Inuma, H.; Hamada, M.; Takeuchi, T.; Kanbe, T.; Hori, M. Thiazinotrienomycins, new ansamycin group antibiotics. J. Antibiot. 1995, 48, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Evano, G.; Schaus, J.V.; Panek, J.S. A convergent synthesis of the macrocyclic core of cytotrienins: Application of RCM for macrocyclization. Org. Lett. 2004, 6, 525–528. [Google Scholar] [CrossRef]
- Huang, Y.F.; Li, L.H.; Tian, L.; Qiao, L.; Hua, H.M.; Pei, Y.H. Sg17-1-4, a novel isocoumarin from a marine fungus Alternaria tenuis Sg17-1. J. Antibiot. 2006, 59, 355–357. [Google Scholar] [CrossRef]
- Sasaki, T.; Igarashi, Y.; Saito, N.; Furumai, T. TPU-0031-A and B, new antibiotics of the novobiocin group produced by Streptomyces sp. TP-A0556. J. Antibiot. 2001, 54, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Bu, Y.Y.; Yamazaki, H.; Ukai, K.; Namikoshi, M. Anti-mycobacterial nucleoside antibiotics from a marine-derived Streptomyces sp. TPU1236A. Mar. Drugs 2014, 12, 6102–6112. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhao, L.; Li, W.; Yang, Y.; Xu, L.; Ding, Z. Anti-mycobacterium tuberculosis active metabolites from an endophytic Streptomyces sp. YIM65484. Rec. Nat. Prod. 2015, 9, 196–200. [Google Scholar]
- Matsuda, S.; Adachi, K.; Matsuo, Y.; Nukina, M. Salinisporamycin, a novel metabolite from Salinispora arenicora. J. Antibiot. 2009, 62, 519–526. [Google Scholar] [CrossRef]
- Liu, J.; de Brabander, J.K. A concise total synthesis of saliniketal B. J. Am. Chem. Soc. 2009, 131, 12562–12563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, T.; Murai, M.; Abe, M.; Ichimaru, N.; Haradа, T. Crucial structural factors and mode of action of polyene amides as inhibitors for mitochondrial NADH-Ubiquinone oxidoreductase (Complex I). Biochemistry 2007, 46, 10365–10372. [Google Scholar] [CrossRef] [PubMed]
- Jurkiewicz, E.; Jansen, R.; Kunze, B. Three new potent HIV-1 inhibitors from Myxobacteria. Antiviral Chem. Chemother. 1992, 2, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Trowitzsch-Kienast, W.; Forche, E.; Wray, V. Antibiotika aus Gleitenden Bakterien, 45. Phenalamide, neue HIV-1-Inhibitoren aus Myxococcus stipitatus Mx s40. Liebigs Ann. Chem. 1992, 7, 659–664. [Google Scholar] [CrossRef]
- Raju, R.; Piggott, A.M.; Conte, M.; Tnimov, Z. Nocardiopsins: New FKBP12-binding macrolide polyketides from an Australian marine-derived actinomycete, Nocardiopsis sp. Chemistry-A European J. 2010, 16, 3194–3200. [Google Scholar] [CrossRef] [PubMed]
- Raju, R.; Piggott, A.M.; Quezada, M.; Capon, R.J. Nocardiopsins C and D and nocardiopyrone A: New polyketides from an Australian marine-derived Nocardiopsis sp. Tetrahedron 2013, 69, 692–698. [Google Scholar] [CrossRef]
- Wu, Y.; Seyedsayamdost, M.R. The polyene natural product thailandamide A inhibits fatty acid biosynthesis in Gram-positive and Gram-Negative bacteria. Biochemistry 2018, 57, 4247–4251. [Google Scholar] [CrossRef]
- Wozniak, C.E.; Lin, Z.; Schmidt, E.W. Thailandamide, a fatty acid synthesis antibiotic that is coexpressed with a resistant target gene. Antimicro. Agents Chemother. 2018, 62, e00463-18. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H. Oximidines I and II: novel antitumor macrolides from Pseudomonas sp. J. Org. Chem. 1999, 64, 153–155. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Tomikawa, T.; Shin-Ya, K.; Arao, N. Oximidine III, a new antitumor antibiotic against transformed cells from Pseudomonas sp. II. Structure elucidation. J. Antibiot. 2003, 56, 905–908. [Google Scholar] [CrossRef] [Green Version]
- Kino, T.; Hatanaka, H.; Hashimoto, M.; Nishiyama, M.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, H. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J. Antibiot. 1987, 40, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Lechner, A.; Wilson, M.C.; Ban, Y.H.; Hwang, J.Y.; Yoon, Y.J.; Moore, B.S. Designed biosynthesis of 36-methyl-FK506 by polyketide precursor pathway engineering. ACS Synth. Biol. 2013, 2, 379–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banskota, A.H.; Mcalpine, J.B.; Sørensen, D.; Ibrahim, A.; Aouidate, M. Genomic analyses lead to novel secondary metabolites. Part 3. ECO-0501, a novel antibacterial of a new class. J. Antibiot. 2006, 59, 533–542. [Google Scholar] [CrossRef] [PubMed]
- McAlpine, J.B.; Bachmann, B.O.; Piraee, M.; Tremblay, S.; Alarco, A.M.; Zazopoulos, E.; Farnet, C.M. Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J. Nat. Prod. 2005, 68, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Piscitelli, S.C.; Danziger, L.H.; Rodvold, K.A. Clarithromycin and azithromycin: New macrolide antibiotics. Clin. Pharm. 1992, 11, 137–152. [Google Scholar]
- Fraschini, F.; Scaglione, F.; Demartini, G. Clarithromycin clinical pharmacokinetics. Clin-Pharmacokinet. 1993, 25, 189–204. [Google Scholar] [CrossRef]
- Alvarez-Elcoro, S.; Enzler, M.J. The macrolides: Erythromycin, clarithromycin, and azithromycin. Mayo Clin. Proceed. 1999, 74, 613–634. [Google Scholar] [CrossRef]
- Furumai, T.; Yamakawa, T.; Yoshida, R.; Igarashi, Y. Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. I. Screening, taxonomy, fermentation, isolation and biological properties. J. Antibiot. 2003, 56, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Fill, T.; Leadlay, P.F. A common origin for guanidinobutanoate starter units in antifungal natural products. Angew. Chem. Int. Ed. Engl. 2013, 52, 13096–13099. [Google Scholar] [CrossRef]
- Sun, F.; Xu, S.; Jiang, F. Genomic-driven discovery of an amidinohydrolase involved in the biosynthesis of mediomycin A. Appl. Microbiol. Biotechnol. 2018, 102, 2225–2234. [Google Scholar] [CrossRef]
- Friedrich, R.M.; GK Friestad. Inspirations from tetrafibricin and related polyketides: New methods and strategies for 1, 5-polyol synthesis. Nat. Prod. Rep. 2020, 37, 1229–1261. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.C.; Fraser, T.R. The connection of chemical constitution and physiological action. Trans. R. Soc. Edinb. 1868, 25, 224–242. [Google Scholar]
- Cros, A.F.A. Action de l’Alcohol Amylique Sur l’Organisme. Ph.D. Thesis, University of Strasbourg, Strasbourg, France, 1863. [Google Scholar]
- Richet, M.C. Note sur le rapport entre la toxicité et les propriétes physiques des corps. Compt. Rend. Soc. Biol. 1893, 45, 775–776. [Google Scholar]
- Meyer, H. Zur Theorie der AIkoholnarkose. Arch. Exp. Path. Pharm. 1899, 42, 109–118. [Google Scholar] [CrossRef]
- Overton, C.E. Studien Über Die Narkose; Fischer: Jena, Germany, 1901. [Google Scholar]
- Hammett, L.P. Some relations between reaction rates and equilibrium constants. Chem. Rev. 1935, 17, 125–136. [Google Scholar] [CrossRef]
- Hammett, L.P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 1937, 59, 96–103. [Google Scholar] [CrossRef]
- Taft, R.W. Separation of polar, steric and resonance effects in reactivity. In Steric Effects in Organic Chemistry; Newman, M.S., Ed.; Wiley: Hoboken, NJ, USA, 1956; pp. 556–675. [Google Scholar]
- Hansch, C.; Fujita, T. p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 1964, 86, 1616–1626. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A. Exploring QSAR; American Chemical Society: Washington, DC, USA, 1995. [Google Scholar]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr. Computational methods in drug discovery. Pharm. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef] [Green Version]
- Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem. 2016, 12, 2694–2718. [Google Scholar] [CrossRef] [Green Version]
- Kokh, D.B.; Amaral, M.; Bomke, J.; Grädler, U.; Musil, D. Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. J. Chem. Theor. Comput. 2018, 14, 3859–3869. [Google Scholar] [CrossRef]
- Cherkasov, A.M.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014, 57, 4977–5010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poroikov, V.V. Computer-aided drug design: From discovery of novel pharmaceutical agents to systems pharmacology. Biochemistry 2020, 14, 216–227. [Google Scholar]
- Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.V. QSAR without borders. Chem. Soc. Rev. 2020, 49, 3525–3564. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Antitumor profile of carbon-bridged steroids (CBS) and triterpenoids. Mar. Drugs 2021, 19, 324. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Antitumor and hepatoprotective activity of natural and synthetic neo steroids. Prog. Lipid Res. 2020, 79, 101048. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Dzhemileva, L.; Gloriozova, T.; D’yakonov, D. Natural and synthetic drugs used for the treatment of the dementia. Biochem. Biophys. Res. Commun. 2020, 524, 772–783. [Google Scholar] [CrossRef]
- Dembitsky, V.M. In silico prediction of steroids and triterpenoids as potential regulators of lipid metabolism. Mar. Drugs 2021, 19, 650. [Google Scholar] [CrossRef]
- Pounina, T.A.; Gloriozova, T.A.; Savidov, N.; Dembitsky, V.M. Sulfated and sulfur-containing steroids and their pharmacological profile. Mar. Drugs 2021, 19, 240. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Hydrobiological aspects of saturated, methyl-branched, and cyclic fatty acids derived from aquatic ecosystems: Origin, distribution, and biological activity. Hydrobiology 2022, 1, 7. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Natural polyether ionophores and their pharmacological profile. Mar. Drugs 2022, 20, 292. [Google Scholar] [CrossRef]
Amides and Their FA | Predicted Biological Activity, Pa * |
---|---|
FR-900848 | Antifungal (0.924); Antineoplastic (0.831); Antibacterial (0.782) Antineoplastic (lymphocytic leukemia) (0.677) |
1 FA | Antiviral (Arbovirus) (0.874); Anti-inflammatory (0.857); Antifungal (0.836) Antiviral (Picornavirus) (0.735); Alzheimer’s disease treatment (0.726) |
Perinadine A | Antineoplastic (0.926); Antifungal (0.709); Antibacterial (0.626) |
2 FA | Preneoplastic conditions treatment (0.898); Antiviral (Arbovirus) (0.706); Antifungal (0.702); Antineoplastic (0.685); Antibacterial (0.568) |
Viridenomycin | Antineoplastic (0.872); Antineoplastic (sarcoma) (0.766); Antibacterial (0.733) Prostate disorders treatment (0.672); Antifungal (0.528) |
FA V | Antineoplastic (0.859); Antiviral (Arbovirus) (0.774); Cytoprotectant (0.744) Antiparasitic (0.724); Antibacterial (0.655); Antiviral (Picornavirus) (0.636) Antifungal (0.635); Preneoplastic conditions treatment (0.532) |
Amino-alcohol | Antiviral (Arbovirus) (0.875); Leukopoiesis stimulant (0.648); Anti-inflammatory (0.574) Cytoprotectant (0.526); Preneoplastic conditions treatment (0.522) |
No. | Predicted Biological Activity, Pa * |
---|---|
3 | Preneoplastic conditions treatment (0.747); Antiviral (Arbovirus) (0.742); Antineoplastic (0.687) |
4 | Preneoplastic conditions treatment (0.794); Antiviral (Arbovirus) (0.692); Antineoplastic (0.642) |
5 | Preneoplastic conditions treatment (0.762); Antiviral (Arbovirus) (0.706); Antifungal (0.702) Antineoplastic (0.685); Cytoprotectant (0.647); Antibacterial (0.568) |
6 | Preneoplastic conditions treatment (0.762); Antifungal (0.702); Antineoplastic (0.685) |
7 | Antifungal (0.891); Antibacterial (0.761); Lipid metabolism regulator (0.578) |
8 | Lipid metabolism regulator (0.808); Antiviral (Arbovirus) (0.699) |
9 | Antiviral (Arbovirus) (0.853); Antiviral (Picornavirus) (0.760); Antineoplastic (0.722) |
10 | Antiviral (Arbovirus) (0.819); Apoptosis agonist (0.810); Antineoplastic (0.805) |
11 | Antineoplastic (0.871); Apoptosis agonist (0.837); Preneoplastic conditions treatment (0.706) |
12 | Apoptosis agonist (0.879); Antineoplastic (0.878); Preneoplastic conditions treatment (0.618) |
13 | Antiviral (Arbovirus) (0.944); Preneoplastic conditions treatment (0.768) |
14 | Antineoplastic (0.835); Antiviral (Arbovirus) (0.801); Antiviral (Picornavirus) (0.743) |
15 | Antiviral (Arbovirus) (0.819); Apoptosis agonist (0.810); Antineoplastic (0.805) Antiviral (Picornavirus) (0.780); Preneoplastic conditions treatment (0.713) |
16 | Antiviral (Arbovirus) (0.853); Antiviral (Picornavirus) (0.760); Antineoplastic (0.722) |
17 | Antiviral (Arbovirus) (0.873); Antiviral (Picornavirus) (0.735); Antineoplastic (0.718) |
18 | Antiviral (Arbovirus) (0.821); Antineoplastic (0.792); Antiviral (Picornavirus) (0.761) |
19 | Antineoplastic (0.789); Preneoplastic conditions treatment (0.757); Cytoprotectant (0.553) |
20 | Lipid metabolism regulator (0.932); Hypolipemic (0.805); Anti-hypercholesterolemic (0.774) Antineoplastic (0.714); Preneoplastic conditions treatment (0.670) |
21 | Lipid metabolism regulator (0.859); Antineoplastic (0.854); Apoptosis agonist (0.799) |
22 | Anti-hypercholesterolemic (0.769); Antineoplastic (0.741); |
23 | Antiviral (Arbovirus) (0.853); Antiviral (Picornavirus) (0.760); Apoptosis agonist (0.731) |
24 | Antineoplastic (0.835); Apoptosis agonist (0.713); Preneoplastic conditions treatment (0.658) |
25 | Antineoplastic (0.746); Preneoplastic conditions treatment (0.685); Cytoprotectant (0.607) |
26 | Antiviral (Arbovirus) (0.861); Antineoplastic (0.791); Antiviral (Picornavirus) (0.776) |
27 | Antiviral (Arbovirus) (0.861); Antineoplastic (0.791); Antiviral (Picornavirus) (0.776) |
28 | Antiviral (Arbovirus) (0.861); Antineoplastic (0.791); Antiviral (Picornavirus) (0.776) |
29 | Anti-inflammatory (0.902); Antiviral (Picornavirus) (0.776); Antifungal (0.774) |
30 | Antiviral (Arbovirus) (0.938); Antiviral (Picornavirus) (0.887); Anti-inflammatory (0.815) Antineoplastic (0.784); Preneoplastic conditions treatment (0.728); Antimutagenic (0.628) |
No. | Predicted Biological Activity, Pa * |
---|---|
31 | Antidiabetic symptomatic (0.916); Anti-infective (0.741); Antidiabetic (0.729); Antifungal (0.680) |
32 | Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Antidiabetic symptomatic (0.756) |
33 | Anti-inflammatory (0.752); Antiviral (Arbovirus) (0.750); Antiviral (HIV) (0.735) |
34 | Anti-inflammatory (0.754); Antidiabetic symptomatic (0.735); Antiviral (Arbovirus) (0.666) Antifungal (0.647); Lipid metabolism regulator (0.634); Antiviral (HIV) (0.606) |
35 | Lipid metabolism regulator (0.774); Anti-inflammatory (0.752); Antidiabetic symptomatic (0.733) Anti-infective (0.673); Antiviral (Arbovirus) (0.672); Antifungal (0.625) |
36 | Anti-inflammatory (0.742); Antidiabetic symptomatic (0.736); Antiviral (Arbovirus) (0.684) Anti-infective (0.669); Antifungal (0.563) |
37 | Anti-hypoxic (0.711); Antiviral (Arbovirus) (0.688); Antiviral (HIV) (0.610) |
38 | Antidiabetic symptomatic (0.736); Antiviral (Arbovirus) (0.730); Antiviral (HIV) (0.535) |
39 | Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Antidiabetic symptomatic (0.756) Anti-infective (0.741); Antidiabetic (0.629); Antiviral (Picornavirus) (0.623) |
40 | Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Anti-infective (0.741) Antifungal (0.680); Antiviral (Picornavirus) (0.623) |
41 | Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Anti-infective (0.741) Antifungal (0.680); Antiviral (Picornavirus) (0.623) |
No. | Predicted Biological Activity, Pa * |
---|---|
42 | Lipid metabolism regulator (0.936); Hematinic (0.923); Multiple sclerosis treatment (0.918) Autoimmune disorders treatment (0.857); Neurodegenerative diseases treatment (0.816) Hypolipemic (0.783); Anti-hypercholesterolemic (0.632); Atherosclerosis treatment (0.589) |
43 | Lipid metabolism regulator (0.812); Hypolipemic (0.787); Atherosclerosis treatment (0.638) |
44 | Lipid metabolism regulator (0.941); Acute neurologic disorders treatment (0.748) Anti-hypercholesterolemic (0.735); Hypolipemic (0.699); Immunosuppressant (0.646) |
45 | Antineoplastic (0.904); Apoptosis agonist (0.854); Preneoplastic conditions treatment (0.676) |
46 | Antineoplastic (0.845); Preneoplastic conditions treatment (0.643); DNA synthesis inhibitor (0.527) |
47 | Antineoplastic (0.865); Apoptosis agonist (0.763); Preneoplastic conditions treatment (0.629) |
48 | Antineoplastic (0,854); Apoptosis agonist (0.799); Preneoplastic conditions treatment (0.706) |
49 | Antineoplastic (0.881); Antifungal (0.798); Preneoplastic conditions treatment (0.641) |
50 | Lipid metabolism regulator (0.913); Hypolipemic (0.855); Anti-hypercholesterolemic (0.786) Apoptosis agonist (0.717); Preneoplastic conditions treatment (0.687) |
51 | Antibacterial (0.842); Antiviral (Arbovirus) (0.790); Antiviral (Picornavirus) (0.659) |
52 | Antiviral (Arbovirus) (0.902); Antimutagenic (0.782); Antiviral (Picornavirus) (0.726) |
53 | Anti-eczematic (0.956); Antiviral (Arbovirus) (0.893); Antimutagenic (0.838) Anti-psoriatic (0.753); Antifungal (0.739); Antiparasitic (0.744) |
54 | Anti-eczematic (0.920); Antiviral (Arbovirus) (0.903); Antimutagenic (0.818) Anti-psoriatic (0.730); Antiviral (Picornavirus) (0.680); Antifungal (0.657) |
55 | Hypolipemic (0.915); Lipid metabolism regulator (0.795); Apoptosis agonist (0.795) |
56 | Lipid metabolism regulator (0.949); Apoptosis agonist (0.861); Hypolipemic (0.791) Anti-hypercholesterolemic (0.629); Atherosclerosis treatment (0.627) |
57 | Antineoplastic (0.939); Apoptosis agonist (0.910); Antimitotic (0.826) Lipid metabolism regulator (0.783); Antifungal (0.763); Antiparasitic (0.675) |
58 | Antineoplastic (0.906); Antifungal (0.812); Apoptosis agonist (0.720); Antiparasitic (0.646) |
59 | Antineoplastic (0.883); Antifungal (0.807); Antiparasitic (0.681); Apoptosis agonist (0.665) |
60 | Lipid metabolism regulator (0.921); Antifungal (0.818); Antibacterial (0.761) |
No. | Predicted Biological Activity, Pa * |
---|---|
61 | Acute neurologic disorders treatment (0.892); Antineoplastic (0.758) Preneoplastic conditions treatment (0.612); Antiviral (Picornavirus) (0.547) |
62 | Anti-asthmatic (0.908); Acute neurologic disorders treatment (0.731); Antifungal (0.700) Anti-inflammatory (0.697); Antibacterial (0.617); Spasmolytic (0.537) |
63 | Antineoplastic (0.806); Anti-inflammatory (0.801); Apoptosis agonist (0.764) Acute neurologic disorders treatment (0.763); Antibacterial (0.657) |
64 | Hypolipemic (0.908); Antineoplastic (0.901); Apoptosis agonist (0.852); Antifungal (0.820) |
65 | Antineoplastic (0.916); Hypolipemic (0.905); Apoptosis agonist (0.864); Antifungal (0.797) |
66 | Antineoplastic (0.854); Antifungal (0.826); Hypolipemic (0.793); Apoptosis agonist (0.709) |
67 | Lipid metabolism regulator (0.962); Antiviral (Arbovirus) (0.917); Antineoplastic (0.867) |
68 | Antineoplastic (0.865); Apoptosis agonist (0.763); Preneoplastic conditions treatment (0.629) |
69 | Lipid metabolism regulator (0.931); Hypolipemic (0.853); Anti-hypercholesterolemic (0.748) Atherosclerosis treatment (0.659); Antibacterial (0.595) |
70 | Antineoplastic (0.813); Antiviral (Arbovirus) (0.748); Antiviral (Picornavirus) (0.585) |
71 | Lipid metabolism regulator (0.961); Hypolipemic (0.915); Lipoprotein disorders treatment (0.707) Anti-hypercholesterolemic (0.669); Antihypertriglyceridemic (0.532) |
72 | Antiviral (Arbovirus) (0.870); Anti-inflammatory (0.859); Antiviral (Picornavirus) (0.691) |
73 | Antineoplastic (0.912); Apoptosis agonist (0.833); Antiviral (Arbovirus) (0.686) |
74 | Antineoplastic (0.909); Apoptosis agonist (0.873); Lipid metabolism regulator (0.863) |
75 | Antineoplastic (0,907); Lipid metabolism regulator (0.898); Apoptosis agonist (0.871) |
76 | Antineoplastic (0.916); Lipid metabolism regulator (0.890); Apoptosis agonist (0.883) |
No. | Predicted Biological Activity, Pa * |
---|---|
77 | Antineoplastic (0.917); Apoptosis agonist (0.870); Lipid metabolism regulator (0.858) Hypolipemic (0.855); Antifungal (0.808); Anti-inflammatory (0.768); Antibacterial (0.665) |
78 | Antineoplastic (0.929); Apoptosis agonist (0.883); Hypolipemic (0.835); Antifungal (0.788) |
79 | Antineoplastic (0.929); Apoptosis agonist (0.883); Hypolipemic (0.835); Antifungal (0.788) |
80 | Antineoplastic (0.929); Apoptosis agonist (0.883); Hypolipemic (0.835); Antifungal (0.788) |
81 | Antineoplastic (0.914); Hypolipemic (0.829); Apoptosis agonist (0.809); Antifungal (0.791) |
82 | Apoptosis agonist (0.970); Antineoplastic (0.788); Mucositis treatment (0.705) |
83 | Lipid metabolism regulator (0.907); Antineoplastic (0.869); Apoptosis agonist (0.843) |
84 | Lipid metabolism regulator (0.964); Hypolipemic (0.873); Atherosclerosis treatment (0.689) |
85 | Lipid metabolism regulator (0.937); Hypolipemic (0.866); Atherosclerosis treatment (0.653) |
86 | Lipid metabolism regulator (0.937); Hypolipemic (0.866); Atherosclerosis treatment (0.653) |
87 | Lipoprotein disorders treatment (0.912); Atherosclerosis treatment (0.910); Hypolipemic (0.903) Lipid metabolism regulator (0.776); Anti-hypercholesterolemic (0.673) |
88 | Antifungal (0.728); Antibacterial (0.680); Antiviral (Arbovirus) (0.675) |
89 | Antiviral (Arbovirus) (0.952); Anti-inflammatory (0.808); Antiviral (Picornavirus) (0.790) |
90 | Sclerosant (0.906); Anesthetic general (0.881); Anticonvulsant (0.854) Neuroprotector (0.835); Acute neurologic disorders treatment (0.746); Mucositis treatment (0.717) |
91 | Lipid metabolism regulator (0.868); Hypolipemic (0.680); Anti-hypercholesterolemic (0.641) |
92 | Antiviral (Arbovirus) (0.814); Antifungal (0.769); Antibacterial (0.626) |
93 | Anti-eczematic (0.939); Antimutagenic (0.832); Mucositis treatment (0.781) |
94 | Anti-eczematic (0.912); Lipid metabolism regulator (0.911); Anti-infective (0.876) |
95 | Anti-eczematic (0.957); Antiviral (Arbovirus) (0.952); Antiviral (Picornavirus) (0.790) |
96 | Sclerosant (0.834); Antifungal (0.698); Antiviral (Arbovirus) (0.693) |
97 | Antifungal (0.771); Apoptosis agonist (0.719); Antibacterial (0.632) |
98 | Antineoplastic (0.857); Apoptosis agonist (0.746); Lipid metabolism regulator (0.629) |
99 | Anti-ischemic, cerebral (0.835); Acute neurologic disorders treatment (0.783) |
No. | Predicted Biological Activity, Pa * |
---|---|
100 | Antineoplastic (0.945); Apoptosis agonist (0.884); Antifungal (0.809) |
101 | Antineoplastic (0.892); Antifungal (0.755); Antibacterial (0.640) |
102 | Antiviral (Arbovirus) (0.930); Antiviral (Picornavirus) (0.917); Anti-inflammatory (0.815) |
103 | Apoptosis agonist (0.949); Angiogenesis inhibitor (0.892); Antineoplastic (0.881) |
104 | Lipid metabolism regulator (0.947); Antiviral (Arbovirus) (0.903); Anti-inflammatory (0.715) |
105 | Antineoplastic (0.987); Apoptosis agonist (0.858) |
106 | Lipid metabolism regulator (0.800); Antineoplastic (0.789); Hypolipemic (0.705) |
107 | Anti-inflammatory (0.844); Antineoplastic (0.802); Apoptosis agonist (0.793) |
108 | Lipid metabolism regulator (0.935); Hypolipemic (0.917); Anti-hypercholesterolemic (0.893) |
109 | Cell adhesion molecule inhibitor (0.889); Antileukemic (0.840); Antihypertensive (0.765) |
110 | Antineoplastic (0.864); Apoptosis agonist (0.800); Preneoplastic conditions treatment (0.676) |
111 | Antineoplastic (0.946); Apoptosis agonist (0.898); Allergic conjunctivitis treatment (0.537) |
112 | Antineoplastic (0.946); Apoptosis agonist (0.898); Allergic conjunctivitis treatment (0.537) |
No. | Predicted Biological Activity, Pa * |
---|---|
113 | Antifungal (0.876); Anti-inflammatory (0.776); Antimutagenic (0.674) |
114 | Antifungal (0.898); Anti-inflammatory (0.823); Antimutagenic (0.672) |
115 | Hepatic disorders treatment (0.793); Cytoprotectant (0.661) |
116 | Anti-inflammatory (0.905); Antiviral (Arbovirus) (0.755); Antiviral (Picornavirus) (0.747) |
117 | Anti-eczematic (0.920); Anti-psoriatic (0.822); Antiviral (Arbovirus) (0.812) |
118 | Anti-eczematic (0.920); Anti-psoriatic (0.822); Antiviral (Arbovirus) (0.812) |
119 | Anti-psoriatic (0.929); Dermatologic (0.923); Anti-eczematic (0.695) |
120 | Lipid metabolism regulator (0.765); Anti-hypercholesterolemic (0.660); Hypolipemic (0.625) |
121 | Apoptosis agonist (0.834); Antineoplastic (0.817); Proliferative diseases treatment (0.737) |
122 | Growth stimulant (0.899); Antibacterial (0.897); Antifungal (0.889) |
123 | Growth stimulant (0.937); Anti-helmintic (0.866); Antiprotozoal (Coccidial) (0.806) |
124 | Myasthenia Gravis treatment (0.962); Anti-osteoporotic (0.866); Antiarthritic (0.831) |
125 | Anti-eczematic (0.933); Myasthenia Gravis treatment (0.794); Anti-osteoporotic (0.578) |
126 | Anti-infective (0.961); Antifungal (0.892); Anti-inflammatory (0.754) |
127 | Anti-infective (0.966); Antineoplastic (0.842); Antifungal (0.819) |
128 | Antiviral (Arbovirus) (0.858); Anti-inflammatory (0.785); Antiviral (Picornavirus) (0.723) |
129 | Antiviral (Arbovirus) (0.858); Anti-inflammatory (0.785); Antiviral (Picornavirus) (0.723) |
130 | Anti-hypercholesterolemic (0.881); Atherosclerosis treatment (0.859) |
No. | Predicted Biological Activity, Pa * |
---|---|
131 | Antineoplastic (0.892); Lipid metabolism regulator (0.862); Antifungal (0.777) |
132 | Anti-inflammatory, intestinal (0.833); Antiviral (Arbovirus) (0.724); Antifungal (0.522) |
133 | Anti-inflammatory (0.741); Antiviral (Arbovirus) (0.683) |
134 | Preneoplastic conditions treatment (0.819); Acute neurologic disorders treatment (0.646) |
135 | Autoimmune disorders treatment (0.977); Antiarthritic (0.968) Systemic lupus erythematosus treatment (0.880); Antiviral (Arbovirus) (0.741) |
136 | Antineoplastic (0.763); Apoptosis agonist (0.740); Antifungal (0.710) |
137 | Antineoplastic (0.763); Apoptosis agonist (0.740); Antifungal (0.710) |
138 | Antineoplastic (0.782); Apoptosis agonist (0.700); Antifungal (0.673) |
139 | Antiviral (Arbovirus) (0.723); Antiviral (Picornavirus) (0.673); Anti-inflammatory (0.570) |
140 | Antiviral (Arbovirus) (0.710); Anti-inflammatory (0.680); Antiviral (Picornavirus) (0.594) |
141 | Antineoplastic (0.813); Antiviral (Arbovirus) (0.748); Antiviral (Picornavirus) (0.585) |
142 | Anti-infective (0.780); Antiviral (Arbovirus) (0.728); Anti-inflammatory (0.716) Antiviral (Picornavirus) (0.633); Antifungal (0.542); Antibacterial (0.533) |
143 | Anti-Helicobacter pylori (0.744); Antiviral (Arbovirus) (0.715); Antiviral (Picornavirus) (0.547) |
144 | Preneoplastic conditions treatment (0.833); Antimutagenic (0.829); Antineoplastic (0.767) |
145 | Antineoplastic (0.921); Apoptosis agonist (0.798); Chemoprotective (0.590) |
146 | Antineoplastic (0.922); Antifungal (0.860); Antibacterial (0.824); Apoptosis agonist (0.751) |
147 | Lipid metabolism regulator (0.956); Vasodilator (0.928); Hypolipemic (0.814) |
No. | Predicted Biological Activity, Pa * |
---|---|
148 | Antineoplastic (0.875); Apoptosis agonist (0.818); Antifungal (0.727); Antiparasitic (0.584) |
149 | Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621) |
150 | Antineoplastic (0.906); Apoptosis agonist (0.834); Antifungal (0.792); Antibacterial (0.645) |
151 | Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621) |
152 | Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621) |
153 | Antineoplastic (0.944); Apoptosis agonist (0.823); Antifungal (0.814); Antibacterial (0.652) |
154 | Lipid metabolism regulator (0.937); Hypolipemic (0.866); Radioprotector (0.850) |
155 | Lipoprotein disorders treatment (0.912); Atherosclerosis treatment (0.910); Hypolipemic (0.903) |
156 | Lipid metabolism regulator (0.730); Acute neurologic disorders treatment (0.729) Hypolipemic (0.720); Anti-hypercholesterolemic (0.706); Atherosclerosis treatment (0.566) |
157 | Antiviral (Arbovirus) (0.761); Antiallergic (0.622); Antifungal (0.541); Antibacterial (0.505) |
158 | Immunosuppressant (0.933); Antibacterial (0.904); Antineoplastic (0.874); Antifungal (0.867) |
159 | Immunosuppressant (0.916); Antibacterial (0.893); Antineoplastic (0.880); Antifungal (0.828) |
160 | Antifungal (0.896); Antibacterial (0.803); Anti-inflammatory (0.747) |
161 | Antifungal (0.918); Antineoplastic (0.897); Antibacterial (0.849); Apoptosis agonist (0.773) |
162 | Antifungal (0.906); Antineoplastic (0.871); Antibacterial (0.828); Apoptosis agonist (0.659) |
163 | Antineoplastic (0.879); Antifungal (0.863); Antibacterial (0.757) |
164 | Antifungal (0.896); Antineoplastic (0.895); Antibacterial (0.826); Apoptosis agonist (0.739) |
165 | Antineoplastic (0.905); Antifungal (0.864); Apoptosis agonist (0.837); Antibacterial (0.753) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dembitsky, V.M. Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile. Microbiol. Res. 2022, 13, 377-417. https://doi.org/10.3390/microbiolres13030030
Dembitsky VM. Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile. Microbiology Research. 2022; 13(3):377-417. https://doi.org/10.3390/microbiolres13030030
Chicago/Turabian StyleDembitsky, Valery M. 2022. "Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile" Microbiology Research 13, no. 3: 377-417. https://doi.org/10.3390/microbiolres13030030
APA StyleDembitsky, V. M. (2022). Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile. Microbiology Research, 13(3), 377-417. https://doi.org/10.3390/microbiolres13030030