Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile
Abstract
1. Introduction
2. Fatty Acids Derived from Microorganisms and Fungi
3. Structure–Activity Relationships and Biological Activities of Natural FA Amides
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitzer, J.; Steiner, K. Amides in nature and biocatalysis. Tetrahedron 1998, 54, 7229–7271. [Google Scholar] [CrossRef] [PubMed]
- Bezuglov, V.V.; Bobrov, M.Y.; Archakov, A.V. Bioactive amides of fatty acids. Biochemistry 1998, 63, 27–37. [Google Scholar]
- Dembitsky, V.M.; Shkrob, I.; Rozentsvet, O.A. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum. Phytochemistry 2000, 54, 965–967. [Google Scholar] [CrossRef]
- Bradshaw, H.B.; Leishman, E. Lipidomics: A corrective lens of enzyme Mopia. Methods Enzymol. 2017, 593, 123–141. [Google Scholar] [PubMed]
- Bode, J.W. Emerging methods in amide- and peptide-bond formation. Curr. Opin. Drug Discov. Develop. 2006, 9, 765–775. [Google Scholar] [CrossRef]
- Divito, E.B.; Cascio, M. Metabolism, physiology, and analyses of primary fatty acid amides. Chem. Rev. 2013, 113, 7343–7353. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Bioactive cyclobutane-containing alkaloids. J. Nat. Med. 2008, 62, 1–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, T.; Ming, Q.; Wu, L. Alkaloids produced by endophytic fungi: A review. Nat. Prod. Commun. 2012, 7, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M. Naturally occurring bioactive cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 2014, 21, 1559–1581. [Google Scholar] [CrossRef]
- Ismail, F.M.D.; Levitsky, D.O.; Dembitsky, V.M. Aziridine alkaloids as potential therapeutic agents. Eur. J. Med. Chem. 2009, 44, 3373–3387. [Google Scholar] [CrossRef]
- Torres, A.; Hochberg, M.; Pergament, I.; Smoum, R.; Niddam, V.; Dembitsky, V.M. A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur. J. Biochem. 2004, 271, 780–784. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Rezanka, T. Metabolites produced by nitrogen fixing Nostoc species. Folia Microbiol. 2005, 50, 363–391. [Google Scholar] [CrossRef] [PubMed]
- Siddiq, A.; Dembitsky, V. Acetylenic anticancer agents. Anti-Cancer Agents Med. Chem. 2008, 8, 132–170. [Google Scholar] [CrossRef]
- Archana, O.; Nagadesi, P.K. Endophytic, non-endophytic fungal alkaloids and its applications. Saudi J. Pathol. Microbiol 2022, 7, 4–19. [Google Scholar]
- Chen, S.; Cai, R.; Liu, Z.; Cui, H.; She, Z. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities. Nat. Prod. Rep. 2022, 39, 560–595. [Google Scholar] [CrossRef]
- Mohan, S.; Krishna, A.; Chandramouli, M.S. Antibacterial natural products from microbial and fungal sources: A decade of advances. Mol. Divers. 2022, 26, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, S.J.; Li, J.J.; Liang, Z.Z.; Zhao, C.Q. Novel natural products from extremophilic fungi. Mar. Drugs 2018, 16, 194. [Google Scholar] [CrossRef]
- Kuo, M.S.; Zielinski, R.J.; Cialdella, J.I.; Marschke, C.K.; Dupuis, M.J. Discovery, isolation, structure elucidation, and biosynthesis of U-106305, a cholesteryl ester transfer protein inhibitor from UC 11136. J. Am. Chem. Soc. 1995, 117, 10629–10634. [Google Scholar] [CrossRef]
- Yoshida, M.; Ezaki, M.; Hashimoto, M.; Yamashita, M.; Shigematsu, N. A novel antifungal antibiotic, FR-900848. I. Production, isolation, physico-chemical and biological properties. J. Antibiot. 1990, 43, 748–754. [Google Scholar] [CrossRef]
- Sasaki, M.; Tsuda, M.; Sekiguchi, M.; Mikami, Y.; Kobayashi, J. Perinadine A, a novel tetracyclic alkaloid from marine-derived fungus Penicillium citrinum. Org. Lett. 2005, 7, 4261–4264. [Google Scholar] [CrossRef]
- Tsuda, M.; Sasaki, M.; Mugishima, T.; Komatsu, K.; Sone, T.; Tanaka, M. Scalusamides A-C, new pyrrolidine alkaloids from the marine-derived fungus Penicillium citrinum. J. Nat. Prod. 2005, 68, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, K.; Zhong, P.; Hu, X.; Fang, Z.X.; Wu, J.L.; Zhang, Q.Q. Tumonoic acids K and L, novel metabolites from the marine-derived fungus Penicillium citrinum. Heterocycles 2012, 85, 413–419. [Google Scholar] [CrossRef]
- Hasegawa, T.; Kamiya, T.; Henmi, T.; Iwasaki, H.; Yamatodani, S. Viridenomycin, a new antibiotic. J. Antibiot. 1975, 28, 167–175. [Google Scholar] [CrossRef] [PubMed]
- McErlean, M.; Liu, X.; Cui, Z.; Gust, B. Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Nat. Prod. Rep. 2021, 38, 1362–1407. [Google Scholar] [CrossRef]
- Barrett, A.G.M.; Kasdorf, K. Total synthesis of the pentacyclopropane antifungal agent FR-900848. J. Am. Chem. Soc. 1996, 118, 11030–11037. [Google Scholar] [CrossRef]
- Barrett, A.G.M.; Doubleday, W.W.; Hamprecht, D. Recent advances in the synthesis of antifungal agents. Pure Appl. Chem. 1997, 69, 383–388. [Google Scholar] [CrossRef]
- Jin, W.B.; Wu, S.; Xu, Y.F.; Yuan, H.; Tang, G.L. Recent advances in HemN-like radical S-adenosyl-l-methionine enzyme-catalyzed reactions. Nat. Prod. Rep. 2020, 37, 17–28. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, W.Q.; Zhu, X.; Zhang, Q. Functional diversity of HemN-like proteins. ACS Bio. Med. Chem. 2022, 2, 109–119. [Google Scholar] [CrossRef]
- Østby, R.B. Syntheses of 3-, 4-and 5-Membered Carbocycles: New Methodology on Old Methods. Ph.D. Thesis, Norwegian University of Life Sciences, Akershus, Norway, 2015. [Google Scholar]
- Ding, G.; Liu, S.C.; Guo, L.D.; Zhou, Y.G.; Che, Y.S. Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J. Nat. Prod. 2008, 71, 615–618. [Google Scholar] [CrossRef]
- Asolkar, R.N.; Jensen, P.R.; Kauffman, C.A.; Fenical, W. Daryamides A−C, weakly cytotoxic polyketides from a marine-derived actinomycete of the genus Streptomyces strain CNQ-085. J. Nat. Prod. 2006, 69, 1756–1759. [Google Scholar] [CrossRef]
- Li, F.; Maskey, R.P.; Qin, S.; Sattler, I.; Fiebig, H.H.; Maier, A.; Zeeck, A.; Laatsch, H. Chinikomycins A and B: Isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. J. Nat. Prod. 2005, 68, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Yu, L.; Ikeda, M.; Oikawa, T. Jomthonic acid A, a modified amino acid from a soil-derived Streptomyces. J. Nat. Prod. 2012, 75, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Bunyapaiboonsri, T.; Yoiprommarat, S.; Intereya, K.; Rachtawee, P.; Hywel-Jones, N.L.; Isaka, M. Isariotins E and F, spirocyclic and bicyclic hemiacetals from the entomopathogenic fungus Isaria tenuipes BCC 12625. J. Nat. Prod. 2009, 72, 756–759. [Google Scholar] [CrossRef]
- Brodasky, T.F.; Stroman, D.W.; Dietz, A.; Mizsak, S. U-56,407, a new antibiotic related to asukamycin: Isolation and characterization. J. Antibiot. 1983, 36, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Floss, H.G. New type II manumycins produced by Streptomyces nodosus ssp. asukaensis and their biosynthesis. J. Antibiot. 2001, 54, 340–348. [Google Scholar]
- Kohno, J.; Nishio, M.; Kawano, K.; Nakanishi, N.; Suzuki, S.; Uchida, T.; Komatsubara, S. TMC-1 A, B, C and D, new antibiotics of the manumycin group produced by Streptomyces sp. Taxonomy, production, isolation, physico-chemical properties, structure elucidation and biological properties. J. Antibiot. 1996, 49, 1212–1220. [Google Scholar] [CrossRef]
- Tanaka, T.; Tsukuda, E.; Uosaki, Y.; Matsuda, Y. EI-1511-3, -5 and EI-1625-2, novel interleukin-1 beta converting enzyme inhibitors produced by Streptomyces sp. E-1511 and E-1625. III. Biochemical properties of EI-1511-3, -5 and EI-1625-2. J. Antibiot. 1996, 49, 1085–1090. [Google Scholar] [CrossRef][Green Version]
- Kim, S.H.; Shin, Y.; Lee, S.H.; Oh, K.B.; Lee, S.K.; Shin, J.; Oh, D.C. Salternamides A–D from a halophilic Streptomyces sp. Actinobacterium. J. Nat. Prod. 2015, 78, 836–843. [Google Scholar] [CrossRef]
- Sattler, I.; Thiericke, R.; Zeeck, A. The manumycin-group metabolites. Nat. Prod. Rep. 1998, 15, 221–240. [Google Scholar] [CrossRef]
- Grote, R.; Zeeck, A.; Beale, J.M., Jr. Metabolic products of microorganisms. 245. Colabomycins, new antibiotics of the manumycin group from Streptomyces griseoflavus. II. Structure of colabomycin A. J. Antibiot. 1988, 41, 1186–1195. [Google Scholar] [CrossRef]
- Grote, R.; Zeeck, A.; Drautz, H.; Zähner, H. Metabolic products of microorganisms. 244. Colabomycins, new antibiotics of the manumycin group from Streptomyces griseoflavus. I. Isolation, characterization and biological properties. J. Antibiot. 1988, 41, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Slechta, L.; Cialdella, J.I.; Mizsak, S.A.; Hoeksema, H. Isolation and characterization of a new antibiotic U-62162. J. Antibiot. 1982, 35, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Petříčková, K.; Pospíšil, S.; Kuzma, M.; Tylová, T.; Jágr, M.; Tomek, P. Biosynthesis of colabomycin E, a new manumycin-family metabolite, involves an unusual chain-length factor. ChemBioChem 2014, 15, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, H.; Grothe, G. Über Actinomycetenfarbstoffe, II. Mitteil: Limocrocin, ein gelber Actinomycetenfarbstoff. Chem. Berich. 1953, 86, 1110–1115. [Google Scholar] [CrossRef]
- Kido, G.S.; Spyhalski, E. Antimycin A, an antibiotic with insecticidal and miticidal properties. Science 1950, 112, 172–173. [Google Scholar] [CrossRef]
- Nakayama, K.; Okamoto, F.; Harada, Y. Antimycin A: Isolation from a new Streptomyces and activity against rice plant blast fungi. J. Antibiot. 1956, 9, 63–66. [Google Scholar]
- Lennon, R.E. Antimycin A, a piscicidal antibiotic. Adv. Appl. Microbiol. 1973, 16, 55–96. [Google Scholar]
- Slater, E.C. The mechanism of action of the respiratory inhibitor, antimycin. Biochim. Biophys. Acta. 1973, 301, 129–154. [Google Scholar] [CrossRef]
- Cramer, W.A.; Hasan, S.S.; Yamashita, E. The Q cycle of cytochrome bc complexes: A structure perspective. Biochim. Biophys. Acta 2011, 1807, 788–802. [Google Scholar] [CrossRef]
- Seipke, R.F.; Hutchings, M.I. The regulation and biosynthesis of antimycins. Beilstein J. Org. Chem. 2013, 9, 2556–2563. [Google Scholar] [CrossRef]
- Shiomi, K.; Hatae, K.; Hatano, H.; Matsumoto, A.; Takahashi, Y.; Jiang, C.; Tomoda, H.; Kobayashi, S.; Tanaka, H.; Omura, S. A new antibiotic, antimycin a(9), produced by Streptomyces sp. k01–0031. J. Antibiot. 2005, 58, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Viegelmann, C.; Margassery, L.M.; Kennedy, J.; Zhang, T. Metabolomic profiling and genomic study of a marine sponge-associated Streptomyces sp. Mar. Drugs 2014, 12, 3323–3351. [Google Scholar] [CrossRef] [PubMed]
- Hosotani, N.; Kumagai, K.; Nakagawa, H.; Shimatani, T.; Saji, I. Antimycins A10 approximately A16, seven new antimycin antibiotics produced by Streptomyces spp. SPA-10191 and SPA-8893. J. Antibiot. 2005, 58, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Nozaki, H. Kitamycins, new antimycin antibiotics produced by Streptomyces sp. J. Antibiot. 1999, 52, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Imamura, N.; Nishijima, M.; Adachi, K.; Sano, H. Novel antimycin antibiotics, urauchimycins A and B, produced by marine actinomycete. J. Antibiot. 1993, 46, 241–246. [Google Scholar] [CrossRef]
- Barrow, C.J.; Oleynek, J.J.; Marinelli, V.; Sun, H.H.; Kaplita, P.; Sedlock, D.M. Antimycins, inhibitors of ATP-citrate lyase, from a Streptomyces sp. J. Antibiot. 1997, 50, 729–733. [Google Scholar] [CrossRef]
- Fondja Yao, C.B.; Schiebel, M.; Helmke, E.; Anke, H.; Laatsch, H. Prefluostatin and new urauchimycin derivatives produced by Streptomycete isolates. Z. Naturforsch. 2006, 61B, 320–325. [Google Scholar]
- Ishiyama, T.; Endo, T.; Otake, N.; Yonehara, H. Deisovalerylblastmycin produced by Streptomyces sp. J. Antibiot. 1976, 29, 804–808. [Google Scholar] [CrossRef]
- Sakamoto, M.; Kojima, I.; Okabe, M.; Fukagawa, Y.; Ishikura, T. Studies on the OA-6129 group of antibiotics, new carbapenem compounds. II. In vitro evaluation. J. Antibiot. 1982, 35, 1264–1270. [Google Scholar] [CrossRef]
- Yoshioka, T.; Kojima, I.; Isshiki, K.; Watanabe, A.; Shimauchi, Y.; Okabe, M. Structures of OA-6129A, B1, B2 and C, new carbapenem antibiotics produced by Streptomyces sp. OA-6129. J. Antibiot. 1983, 36, 1473–1482. [Google Scholar] [CrossRef]
- Ding, L.; Maier, A.; Fiebig, H.H.; Görls, H.; Lin, W.H.; Peschel, G.; Hertweck, C. Divergolides A-D from a mangrove endophyte reveal an unparalleled plasticity in ansa-macrolide biosynthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 1630–1634. [Google Scholar] [CrossRef]
- Ding, L.; Franke, J.; Hertweck, C. Divergolide congeners illuminate alternative reaction channels for ansamycin diversification. Org. Biomol. Chem. 2015, 13, 1618–1623. [Google Scholar] [CrossRef]
- Xu, J.; Lin, Q.; Wang, B.; Wray, V.; Lin, W.H.; Proksch, P. Pestalotiopamide E, a new amide from the endophytic fungus Pestalotiopsis sp. J. Asian Nat. Prod. Res. 2011, 13, 373–376. [Google Scholar] [CrossRef]
- Hemberger, Y.; Xu, J.; Wray, V.; Proksch, P.; Wu, J.; Bringmann, G. Pestalotiopens A and B: Stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp. Chemistry 2013, 19, 15556–155564. [Google Scholar] [CrossRef]
- Hammerschmidt, L.; Aly, A.H.; Abdel-Aziz, M.; Müller, W.E.; Lin, W.; Daletos, G.; Proksch, P. Cytotoxic acyl amides from the soil fungus Gymnascella dankaliensis. Bioorg. Med. Chem. 2015, 23, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Siriwach, R.; Kinoshita, H.; Kitani, S.; Igarashi, Y. Bipolamides A and B, triene amides isolated from the endophytic fungus Bipolaris sp. MU34. J. Antibiot. 2014, 67, 167–170. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, Z.; Chen, Y.; Che, Q.; Zhu, T.; Gu, Q.; Li, D. Varitatin A, a highly modified fatty acid amide from Penicillium variabile cultured with a DNA methyltransferase inhibitor. J. Nat. Prod. 2015, 78, 2841–2845. [Google Scholar] [CrossRef] [PubMed]
- Delpierre, G.R.; Eastwood, F.W.; Gream, G.E.; Kingston, D.G.; Sarin, P.S.; Todd, L.; Williams, D.H. Antibiotics of the ostreogrycin complex. II. Structure of ostreogrycin A. J. Chem. Soc. Perkin I 1966, 19, 1653–1669. [Google Scholar] [CrossRef]
- Haritakun, R.; Srikitikulchai, P.; Khoyaiklang, P.; Isaka, M. Isariotins A-D, alkaloids from the insect pathogenic fungus Isaria tenuipes BCC 7831. J. Nat. Prod. 2007, 70, 1478–1480. [Google Scholar] [CrossRef]
- Nara, F.; Tanaka, M.; Hosoya, T.; Suzuki-Konagai, K.; Ogita, T. Scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima: Taxonomy of the producing organism, fermentation, isolation, and physico-chemical properties. J. Antibiot. 1999, 52, 525–530. [Google Scholar] [CrossRef]
- Takagi, M.; Motohashi, K.; Izumikawa, M.; Khan, S.T.; Hwang, J.H.; Shin-Ya, K. JBIR-66, a new metabolite isolated from tunicate-derived Saccharopolyspora sp. SS081219JE-28. Biosci. Biotechnol. Biochem. 2010, 74, 2355–2357. [Google Scholar] [CrossRef] [PubMed]
- Kubota, N.K.; Ohta, S.; Ohta, E.; Koizumi, F.; Suzuki, M.; Ichimura, M.; Rahayu, E.S.; Ikegami, S. Two new analogues of the cytotoxic substance BE-52211 from Streptomyces sp. J. Nat. Prod. 2004, 67, 85–87. [Google Scholar] [CrossRef]
- Woo, J.T.; Ono, H.; Tsuji, T. Cathestatins, new cysteine protease inhibitors produced by Penicillium citrinum. Biosci. Biotechnol. Biochem. 1995, 59, 350–352. [Google Scholar] [CrossRef] [PubMed]
- Knöll, W.M.; Rinehart, K.L., Jr.; Wiley, P.F.; Li, L.H. Streptovaricin U, an acyclic ansamycin. J. Antibiot. 1980, 33, 249–251. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rachid, S.; Scharfe, M.; Blöcker, H.; Weissman, K.J.; Müller, R. Unusual chemistry in the biosynthesis of the antibiotic chondrochlorens. Chem. Biol. 2009, 16, 70–81. [Google Scholar] [CrossRef]
- Yang, S.W.; Chan, T.M.; Terracciano, J.; Patel, R.; Loebenberg, D.; Chen, G.; Patel, M.; Gullo, V.; Pramanik, B.; Chu, M. New antibiotic Sch 725424 and its dehydration product Sch 725428 from Kitasatospora sp. J. Antibiot. 2005, 58, 192–195. [Google Scholar] [CrossRef]
- Su, S.S.; Tian, L.; Chen, G.; Li, Z.Q.; Xu, W.F.; Pei, Y.H. Two new compounds from the metabolites of a marine-derived actinomycete Streptomyces cavourensis YY01-17. J. Asian Nat. Prod. Res. 2013, 15, 265–269. [Google Scholar] [CrossRef]
- Ueda, J.Y.; Nagai, A.; Izumikawa, M.; Chijiwa, S.; Takagi, M.; Shin-ya, K. A novel antimycin-like compound, JBIR-06, from Streptomyces sp. ML55. J. Antibiot. 2008, 61, 241–244. [Google Scholar] [CrossRef]
- Krasnoff, S.B.; Englich, U.; Miller, P.G.; Shuler, M.L.; Glahn, R.P.; Donzelli, B.G.G.; Gibson, D.M. Metacridamides A and B, macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum. J. Nat. Prod. 2012, 75, 175–180. [Google Scholar] [CrossRef]
- Kunze, B.; Kohl, W.; Hofle, G.; Reichenbach, H. Production, isolation, physico-chemical and biological properties of angiolam A, a new antibiotic from Angiococcus disciformis (Myxobacterales). J. Antibiot. 1985, 38, 1649–1654. [Google Scholar] [CrossRef]
- Cruz, J.S.; da Silva, C.A.; Hamerski, L. Natural products from endophytic fungi associated with Rubiaceae species. J. Fungi 2020, 6, 128. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Schneider, B.; Riese, U.; Schubert, B.; Li, Z.; Hamburger, M. Farinosones A-C, Neurotrophic alkaloidal metabolites from the entomogenous deuteromycete Paecilomyces farinosus. J. Nat. Prod. 2004, 67, 1854–1858. [Google Scholar] [CrossRef] [PubMed]
- Numata, A.; Amagata, T.; Minoura, K.; Itoa, T. Gymnastatins, novel cytotoxic metabolites produced by a fungal strain from a sponge. Tetrahedron Lett. 1997, 38, 5675–5678. [Google Scholar] [CrossRef]
- Plaza, A.; Baker, H.L.; Bewley, C.A. Mirabilin, an antitumor macrolide lactam from the marine sponge Siliquariaspongia mirabilis. J. Nat. Prod. 2008, 71, 473–477. [Google Scholar] [CrossRef]
- Uchida, R.; Iwatsuki, M.; Kim, Y.P.; Ohte, S.; Ōmura, S. Nosokomycins, new antibiotics discovered in an in vivo-mimic infection model using silkworm larvae. I: Fermentation, isolation and biological properties. J. Antibiot. 2010, 63, 151–155. [Google Scholar] [CrossRef]
- Šmelcerović, A.; Đorđević, S.; Palić, R. A new metabolite from marine bacteria. Hemijska industrija. Chem. Ind. 2001, 55, 399–401. [Google Scholar]
- Gerth, K.; Jansen, R.; Reifenstahl, G.; Höfle, G. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales) I. production, physico-chemical and biological properties, and mechanism of action. J. Antibiot. 1983, 36, 1150–1156. [Google Scholar] [CrossRef]
- Bangi, A.; Itoua, Y.; Sakagamia, Y.; Fudoub, R.; Yamanakac, S.; Ojika, M. Novel antifungal polyene amides from the myxobacterium Cystobacter fuscus: Isolation, antifungal activity and absolute structure determination. Tetrahedron 2004, 60, 10217–10221. [Google Scholar]
- Höfle, G.; Gerth, K.; Reichenbach, H.; Kunze, B.; Sasse, F.; Forche, E.; Prusov, E.V. Isolation, biological activity evaluation, structure elucidation, and total synthesis of eliamid: A novel complex I inhibitor. Chemistry 2012, 18, 11362–11370. [Google Scholar] [CrossRef]
- Aouiche, A.; Sabaou, N.; Meklat, A.; Zitouni, A.; Bijani, C.; Mathieu, F.; Lebrihi, A. Saccharothrix sp. PAL54, a new chloramphenicol-producing strain isolated from a Saharan soil. World J. Microbiol. Biotechnol. 2012, 28, 943–951. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, B.G.; Brauers, G.; Guan, H.S.; Proksch, P.; Ebel, R. Microsphaerones A and B, two novel γ-pyrone derivatives from the sponge-derived fungus Microsphaeropsis sp. J. Nat. Prod. 2002, 65, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, S.; Hirota, H.; Imachi, M.; Fujimuro, M.; Onuki, H. Himeic acid A: A new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, Aspergillus sp. Bioorg. Med. Chem. Lett. 2005, 15, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, A.; Broberg, A.; Johansson, M.; Kenne, L.; Levenfors, J. Pseudotrienic acids A and B, two bioactive metabolites from Pseudomonas sp. MF381-IODS. J. Nat. Prod. 2005, 68, 1380–1385. [Google Scholar] [CrossRef]
- Kunze, B.; Trowitzsch-Kienast, W.; Höfle, G.; Reichenbach, H. Nannochelins A, B and C, new iron-chelating compounds from Nannocystis exedens (myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 1992, 45, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, K.; Takadera, T.; Adachi, K.; Nishijima, M.; Sano, H. Korormicin, a novel antibiotic specifically active against marine gram-negative bacteria, produced by a marine bacterium. J. Antibiot. 1997, 50, 949–953. [Google Scholar] [CrossRef]
- Kanbe, K.; Naganawa, H.; Okamura, M. Amidenin, a new plant growth-regulating substance isolated from Amycolatopsis sp. Biosci. Biotechnol. Biochem. 1993, 57, 1261–1263. [Google Scholar] [CrossRef]
- López-Bucio, J.; Acevedo-Hernández, G. Novel signals for plant development. Current Opin. Plant Biol. 2006, 9, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Hasegawa, Y.; Sakabe, Y.; Tomoda, H. Citrinamides, New potentiators of antifungal miconazole activity, produced by Penicillium sp. FKI-1938. J. Antibiot. 2008, 61, 550–555. [Google Scholar] [CrossRef]
- Barsby, T.; Kelly, M.T.; Andersen, R.J. Tupuseleiamides and basiliskamides, new acyldipeptides and antifungal polyketides produced in culture by a Bacilluslaterosporus isolate obtained from a tropical marine habitat. J. Nat. Prod. 2002, 65, 1447–1451. [Google Scholar] [CrossRef]
- Akhand, M.; Al-Bari, M.A.A.; Islam, M.A.; Khondkar, P. Characterization and antimicrobial activities of a metabolite from a new Streptomyces species from Bangladeshi soil. J. Sci. Res. 2010, 2, 178–185. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Li, X.M.; Cui, C.M.; Feng, C.; Wang, B.G. New sphingolipids with a previously unreported 9-methyl-C20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 2007, 42, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Oka, M.; Nishiyama, Y.; Ohta, S.; Kamei, H. Glidobactins A, B and C, new antitumor antibiotics I. Production, isolation, chemical properties and biological activity. J. Antibiot. 1988, 41, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.; Yim, J.H.; Lee, H.K.; Park, S.M.; Sohn, J.H.; Oh, H. Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett. 2008, 49, 29–31. [Google Scholar] [CrossRef]
- Silber, J.; Ohlendorf, B.; Labes, A.; Näther, C. Calcaripeptides A–C, cyclodepsipeptides from a Calcarisporium strain. J. Nat. Prod. 2013, 76, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Shen, Y.; Bai, L. Biosynthesis of 3,5-AHBA-derived natural products. Nat. Prod. Rep. 2012, 29, 243–263. [Google Scholar] [CrossRef]
- Kakule, T.B.; Sardar, D.; Lin, Z.; Schmidt, E.W. Two related pyrrolidinedione synthetase loci in Fusarium heterosporum ATCC 74349 produce divergent metabolites. ACS Chem. Biol. 2013, 8, 1549–1557. [Google Scholar] [CrossRef]
- Kahner, L.; Dasenbrock, J.; Spiteller, P.; Steglich, W. Polyene pigments from fruit-bodies of Boletus laetissimus and B. rufo-aureus (basidiomycetes). Phytochemistry 1998, 49, 1693–1697. [Google Scholar] [CrossRef]
- Gruber, G.; Steglich, W. Calostomal, a polyene pigment from the gasteromycete Calostoma cinnabarinum (Boletales). Zeitsch. Naturforsch. 2007, 62B, 129–131. [Google Scholar] [CrossRef]
- Aulinger, K.; Besl, H.; Spiteller, P.; Spitelle, M. Melanocrocin, a polyene pigment from Melanogaster broomeianus (Basidiomycetes). Zeitsch. Naturforsch. 2001, 56C, 495–498. [Google Scholar] [CrossRef]
- Zhan, Z.J.; Yue, J.M. New glycosphingolipids from the fungus Catathelasma ventricosa. J. Nat. Prod. 2003, 66, 1013–1016. [Google Scholar] [CrossRef]
- Manam, R.R.; Teisan, S.; White, D.J.; Nicholson, B.; Grodberg, J. Lajollamycin, a nitro-tetraene spiro-beta-lactone-gamma-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J. Nat. Prod. 2005, 68, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Coughlin, J.M.; Ju, J.; Zhu, D.; Wendt-Pienkowski, E.; Zhou, X.; Wang, Z.; Shen, B.; Deng, Z. Oxazolomycin biosynthesis in Streptomyces albus JA3453 featuring an "acyltransferase-less" type I polyketide synthase that incorporates two distinct extender units. J. Biol. Chem. 2010, 285, 20097–20108. [Google Scholar] [CrossRef] [PubMed]
- Moloney, M.G.; Trippier, P.C.; Yaqoob, M.; Wang, Z. The oxazolomycins: A structurally novel class of bioactive compounds. Curr. Drug Discov. Technol. 2004, 1, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Tonew, E.; Tonew, M.; Gräfe, U.; Zöpel, P. On the antiviral activity of diffusomycin (oxazolomycin). Acta Virol. 1992, 36, 166–172. [Google Scholar]
- Kanzaki, H.; Wada, K.; Nitoda, T.; Kawazu, K. Novel bioactive oxazolomycin isomers produced by Streptomyces albus JA3453. Biosci. Biotechnol. Biochem. 1998, 62, 438–442. [Google Scholar] [CrossRef][Green Version]
- Ryu, G.; Hwang, S.; Kim, S.K. 16-Methyloxazolomycin, a new antimicrobial and cytotoxic substance produced by a Streptomyces sp. J. Antibiot. 1997, 50, 1064–1066. [Google Scholar] [CrossRef]
- Ogura, M.; Nakayama, H.; Furihata, K.; Shimazu, A.; Seto, H.; Otake, N. Structure of a new antibiotic curromycin A produced by a genetically modified strain of Streptomyces hygroscopicus, a polyether antibiotic producing organism. J. Antibiot. 1985, 38, 669–673. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Akimoto, M.; Ishikawa, A.; Izawa, M.; Shin-Ya, K. Curromycin A as a GRP78 downregulator and a new cyclic dipeptide from Streptomyces sp. J. Antibiot. 2016, 69, 187–188. [Google Scholar] [CrossRef]
- Nakamura, M.; Honma, H.; Kamada, M.; Ohno, T.; Kunimoto, S.; Ikeda, Y.; Kondo, S.; Takeuchi, T. Inhibitory effect of curromycin A and B on human immunodeficiency virus replication. J. Antibiot. 1994, 47, 616–618. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kondo, S.; Naganawa, H.; Hattori, S.; Hamada, M.; Takeuchi, T. New triene-beta-lactone antibiotics, triedimycins A and B. J. Antibiot. 1991, 44, 453–455. [Google Scholar] [CrossRef]
- Guo, J.-P.; Zhu, C.-Y.; Zhang, C.-P.; Chu, Y.-S.; Wang, Y.-L.; Zhang, J.-X.; Wu, D.-K.; Zhang, K.-Q.; Niu, X.-M. Thermolides, potent nematocidal pks-nrps hybrid metabolites from thermophilic fungus Talaromyces thermophilus. J. Am. Chem. Soc. 2012, 134, 20306–20309. [Google Scholar] [CrossRef] [PubMed]
- Degenkolb, T.; Vilcinskas, A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: Metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Appl. Microbiol. Biotechnol. 2016, 100, 3813–3824. [Google Scholar] [CrossRef] [PubMed]
- Le Goff, G.; Martin, M.T.; Servy, C.; Cortial, S.; Lopes, P. Isolation and characterization of α,β-unsaturated γ-lactono-hydrazides from Streptomyces sp. J. Nat. Prod. 2012, 75, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Le Goff, G.; Martin, M.T.; Iorga, B.I.; Adelin, E.; Servy, C.; Cortial, S.; Ouazzani, J. Isolation and characterization of unusual hydrazides from Streptomyces sp. impact of the cultivation support and extraction procedure. J. Nat. Prod. 2013, 76, 142–149. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Pharmacological and predicted activities of natural azo compounds. Nat. Prod. Bioprospect. 2017, 7, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.M.; Maurya, R.; Vijayakumar, E.K.; Chatterjee, S.; Blumbach, J.; Ganguli, B.N. Alisamycin, a new antibiotic of the manumycin group. I. Taxonomy, production, isolation and biological activity. J. Antibiot. 1991, 44, 1289–1293. [Google Scholar] [CrossRef]
- Silva, L.R.; da Silva-Júnior, E.F. Inhibiting the “Undruggable” RAS/farnesyltransferase (FTase) cancer target by manumycin-related natural products. Current Med. Chem. 2022, 29, 189–211. [Google Scholar] [CrossRef]
- Hayashi, K.; Nakagawa, M.; Fujita, T.; Tanimori, S.; Nakayama, M. Nisamycin, a new manumycin group antibiotic from Streptomyces sp. K106. II. Structure determination and structure-activity relationships. J. Antibiot. 1994, 47, 1110–1115. [Google Scholar] [CrossRef]
- Omura, S.; Kitao, C.; Tanaka, H.; Oiwa, R.; Takahashi, Y. A new antibiotic, asukamycin, produced by Streptomyces. J. Antibiot. 1976, 29, 876–881. [Google Scholar] [CrossRef]
- Caglioti, L.; Misiti, D.; Mondelli, R.; Selva, A.; Arcamone, F.; Cassinelli, G. The structure of neoantimycin. Tetrahedron 1969, 25, 2193–2221. [Google Scholar] [CrossRef]
- Caglioti, L.; Ciranni, G.; Misiti, D.; Arcamone, F.; Minghetti, A. Biosynthesis of the 3,4-dihydroxy-2,2-dimethyl-5-phenylvaleric acid residue of neoantimycin. J. Chem. Soc. Perkin 1 1972, 9, 1235–1237. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zvanych, R.; Vanner, S.A.; Wang, W.; Magarvey, N.A. Chemical variation from the neoantimycin depsipeptide assembly line. Bioorg. Med. Chem. Lett. 2013, 23, 5123–5127. [Google Scholar] [CrossRef] [PubMed]
- Umeda, Y.; Chijiwa, S.; Furihata, K.; Furihata, K.; Sakuda, S.; Nagasawa, H. Prunustatin A, a novel GRP78 molecular chaperone down-regulator isolated from Streptomyces violaceoniger. J. Antibiot. 2005, 58, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.L.; Nogawa, T.; Okano, A.; Futamura, Y.; Kawatani, M. Unantimycin A, a new neoantimycin analog isolated from a microbial metabolite fraction library. J. Antibiot. 2016, 69, 456–458. [Google Scholar] [CrossRef]
- Hosoya, T.; Hirokawa, T.; Takagi, M.; Shin-ya, K. Trichostatin analogues JBIR-109, JBIR-110, and JBIR-111 from the marine sponge-derived Streptomyces sp. RM72. J. Nat. Prod. 2012, 75, 285–289. [Google Scholar] [CrossRef]
- Dewey, R.S.; Arison, B.H.; Hannah, J.; Shih, D.H.; Albers-Schönberg, G. The structure of efrotomycin. J. Antibiot. 1985, 38, 1691–1698. [Google Scholar] [CrossRef]
- Wax, R.; Maises, W.; Weston, R.; Birnbaum, J. Efrotomycin, a new antibiotic from Streptomyces lactamdurans. J. Antibiot. 1976, 29, 670–673. [Google Scholar] [CrossRef]
- Berger, J.; Lehr, H.H.; Teitel, S.; Maehr, H.; Grunberg, E. A new antibiotic X-5108 of Streptomyces origin. I. Production, isolation and properties. J. Antibiot. 1973, 26, 15–22. [Google Scholar] [CrossRef]
- Liu, C.; Hermann, T.; Miller, P.A. Feedback inhibition of the synthesis of an antibiotic: Aurodox (X-5108). J. Antibiot. 1977, 30, 244–251. [Google Scholar] [CrossRef]
- Yu, C.M.; Curtis, J.M.; Walter, J.A.; Wright, J.L.; Ayer, S.W.; Kaleta, J.; Querengesser, L.; Fathi-Afshar, Z.R. Potent inhibitors of cysteine proteases from the marine fungus Microascus longirostris. J. Antibiot. 1996, 49, 395–397. [Google Scholar] [CrossRef]
- Hoberg, K.A.; Cihlar, R.L.; Calderone, R.A. Characterization of cerulenin-resistant mutants of Candida albicans. Infect Immun. 1986, 51, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Jeong, N.Y.; Lee, J.S.; Yoo, K.S.; Oh, S.; Choe, E.; Lee, H.J. Fatty acid synthase inhibitor cerulenin inhibits topoisomerase I catalytic activity and augments SN-38-induced apoptosis. Apoptosis 2013, 18, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Thirkettle, J. SB-253514 and analogues; novel inhibitors of lipoprotein associated phospholipase A2 produced by Pseudomonas fluorescens DSM 11579. III. Biotransformation using naringinase. J. Antibiot. 2000, 53, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Thirkettle, J.; Alvarez, E.; Boyd, H.; Brown, M.; Diez, E.; Hueso, J.; Elson, S.; Fulston, M. SB-253514 and analogues; novel inhibitors of lipoprotein-associated phospholipase A2 produced by Pseudomonas fluorescens DSM 11579. I. Fermentation of producing strain, isolation and biological activity. J. Antibiot. 2000, 53, 664–669. [Google Scholar] [CrossRef]
- Sayed, A.M.; Abdel-Wahab, N.M.; Hassan, H.M.; Abdelmohsen, U.R. Saccharopolyspora: An underexplored source for bioactive natural products. J. Appl. Microbiol. 2019, 128, 314–329. [Google Scholar] [CrossRef]
- Masunaka, A.; Ohtani, K.; Peever, T.L.; Timmer, L.W.; Tsuge, T. An isolate of Alternaria alternata that is pathogenic to both tangerines and rough lemon and produces two host-selective toxins, ACT- and ACR-toxins. Phytopathology 2005, 95, 241–247. [Google Scholar] [CrossRef]
- Takaoka, S.; Kurata, M.; Harimoto, Y.; Hatta, R.; Yamamoto, M.; Akimitsu, K.; Tsuge, T. Complex regulation of secondary metabolism controlling pathogenicity in the phytopathogenic fungus Alternaria alternata. New Phytol. 2014, 202, 1297–1309. [Google Scholar] [CrossRef]
- Cheenpracha, S.; Borris, R.P.; Tran, T.T.; Jee, J.M.; Seow, H.F.; Cheah, H.Y.; Hoc, C.C.; Chang, L.C. Three new amides from Streptomyces sp. H7372. J. Braz. Chem. Soc. 2011, 22, 223–229. [Google Scholar] [CrossRef]
- Kunze, B.; Jansen, R.; Höfle, G.; Reichenbach, H. Crocacin, a new electron transport inhibitor from Chondromyces crocatus (myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 1994, 47, 881–886. [Google Scholar] [CrossRef]
- Capon, R.J.; Skene, C.; Lacey, E.; Gill, J.H.; Wicker, J.; Heiland, K.; Friedel, T. Lorneamides A and B: two new aromatic amides from a Southern Australian marine Actinomycete. J. Nat. Prod. 2000, 63, 1682–1683. [Google Scholar] [CrossRef]
- El-Naggar, M.Y.; El-Assar, S.A.; Abdul-Gawad, S.M. Solid-state fermentation for the production of meroparamycin by Streptomyces sp. strain MAR01. J. Microbiol. Biotechnol. 2009, 19, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Sawa, R.; Naganawa, H.; Muraoka, Y.; Aoyagi, T.; Takeuchi, T. Epostatin, new inhibitor of dipeptidyl peptidase II, produced by Streptomyces sp. MJ995-OF5 II. Structure elucidation. J. Antibiot. 1998, 51, 372–373. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.J.; Lu, C.H.; Li, Y.Y.; Li, S.R.; Shen, Y.M. Cuevaenes C-E: Three new triene carboxylic derivatives from Streptomyces sp. LZ35ΔgdmAI. Beilstein J. Org. Chem. 2014, 10, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, N.; Naganawa, H.; Inuma, H.; Hamada, M.; Takeuchi, T.; Kanbe, T.; Hori, M. Thiazinotrienomycins, new ansamycin group antibiotics. J. Antibiot. 1995, 48, 471–478. [Google Scholar] [CrossRef]
- Evano, G.; Schaus, J.V.; Panek, J.S. A convergent synthesis of the macrocyclic core of cytotrienins: Application of RCM for macrocyclization. Org. Lett. 2004, 6, 525–528. [Google Scholar] [CrossRef]
- Huang, Y.F.; Li, L.H.; Tian, L.; Qiao, L.; Hua, H.M.; Pei, Y.H. Sg17-1-4, a novel isocoumarin from a marine fungus Alternaria tenuis Sg17-1. J. Antibiot. 2006, 59, 355–357. [Google Scholar] [CrossRef]
- Sasaki, T.; Igarashi, Y.; Saito, N.; Furumai, T. TPU-0031-A and B, new antibiotics of the novobiocin group produced by Streptomyces sp. TP-A0556. J. Antibiot. 2001, 54, 441–447. [Google Scholar] [CrossRef]
- Bu, Y.Y.; Yamazaki, H.; Ukai, K.; Namikoshi, M. Anti-mycobacterial nucleoside antibiotics from a marine-derived Streptomyces sp. TPU1236A. Mar. Drugs 2014, 12, 6102–6112. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, L.; Li, W.; Yang, Y.; Xu, L.; Ding, Z. Anti-mycobacterium tuberculosis active metabolites from an endophytic Streptomyces sp. YIM65484. Rec. Nat. Prod. 2015, 9, 196–200. [Google Scholar]
- Matsuda, S.; Adachi, K.; Matsuo, Y.; Nukina, M. Salinisporamycin, a novel metabolite from Salinispora arenicora. J. Antibiot. 2009, 62, 519–526. [Google Scholar] [CrossRef]
- Liu, J.; de Brabander, J.K. A concise total synthesis of saliniketal B. J. Am. Chem. Soc. 2009, 131, 12562–12563. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Murai, M.; Abe, M.; Ichimaru, N.; Haradа, T. Crucial structural factors and mode of action of polyene amides as inhibitors for mitochondrial NADH-Ubiquinone oxidoreductase (Complex I). Biochemistry 2007, 46, 10365–10372. [Google Scholar] [CrossRef] [PubMed]
- Jurkiewicz, E.; Jansen, R.; Kunze, B. Three new potent HIV-1 inhibitors from Myxobacteria. Antiviral Chem. Chemother. 1992, 2, 189–193. [Google Scholar] [CrossRef]
- Trowitzsch-Kienast, W.; Forche, E.; Wray, V. Antibiotika aus Gleitenden Bakterien, 45. Phenalamide, neue HIV-1-Inhibitoren aus Myxococcus stipitatus Mx s40. Liebigs Ann. Chem. 1992, 7, 659–664. [Google Scholar] [CrossRef]
- Raju, R.; Piggott, A.M.; Conte, M.; Tnimov, Z. Nocardiopsins: New FKBP12-binding macrolide polyketides from an Australian marine-derived actinomycete, Nocardiopsis sp. Chemistry-A European J. 2010, 16, 3194–3200. [Google Scholar] [CrossRef] [PubMed]
- Raju, R.; Piggott, A.M.; Quezada, M.; Capon, R.J. Nocardiopsins C and D and nocardiopyrone A: New polyketides from an Australian marine-derived Nocardiopsis sp. Tetrahedron 2013, 69, 692–698. [Google Scholar] [CrossRef]
- Wu, Y.; Seyedsayamdost, M.R. The polyene natural product thailandamide A inhibits fatty acid biosynthesis in Gram-positive and Gram-Negative bacteria. Biochemistry 2018, 57, 4247–4251. [Google Scholar] [CrossRef]
- Wozniak, C.E.; Lin, Z.; Schmidt, E.W. Thailandamide, a fatty acid synthesis antibiotic that is coexpressed with a resistant target gene. Antimicro. Agents Chemother. 2018, 62, e00463-18. [Google Scholar] [CrossRef]
- Kim, J.W.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H. Oximidines I and II: novel antitumor macrolides from Pseudomonas sp. J. Org. Chem. 1999, 64, 153–155. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Tomikawa, T.; Shin-Ya, K.; Arao, N. Oximidine III, a new antitumor antibiotic against transformed cells from Pseudomonas sp. II. Structure elucidation. J. Antibiot. 2003, 56, 905–908. [Google Scholar] [CrossRef][Green Version]
- Kino, T.; Hatanaka, H.; Hashimoto, M.; Nishiyama, M.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, H. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J. Antibiot. 1987, 40, 1249–1255. [Google Scholar] [CrossRef]
- Lechner, A.; Wilson, M.C.; Ban, Y.H.; Hwang, J.Y.; Yoon, Y.J.; Moore, B.S. Designed biosynthesis of 36-methyl-FK506 by polyketide precursor pathway engineering. ACS Synth. Biol. 2013, 2, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.H.; Mcalpine, J.B.; Sørensen, D.; Ibrahim, A.; Aouidate, M. Genomic analyses lead to novel secondary metabolites. Part 3. ECO-0501, a novel antibacterial of a new class. J. Antibiot. 2006, 59, 533–542. [Google Scholar] [CrossRef] [PubMed]
- McAlpine, J.B.; Bachmann, B.O.; Piraee, M.; Tremblay, S.; Alarco, A.M.; Zazopoulos, E.; Farnet, C.M. Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J. Nat. Prod. 2005, 68, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Piscitelli, S.C.; Danziger, L.H.; Rodvold, K.A. Clarithromycin and azithromycin: New macrolide antibiotics. Clin. Pharm. 1992, 11, 137–152. [Google Scholar]
- Fraschini, F.; Scaglione, F.; Demartini, G. Clarithromycin clinical pharmacokinetics. Clin-Pharmacokinet. 1993, 25, 189–204. [Google Scholar] [CrossRef]
- Alvarez-Elcoro, S.; Enzler, M.J. The macrolides: Erythromycin, clarithromycin, and azithromycin. Mayo Clin. Proceed. 1999, 74, 613–634. [Google Scholar] [CrossRef]
- Furumai, T.; Yamakawa, T.; Yoshida, R.; Igarashi, Y. Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. I. Screening, taxonomy, fermentation, isolation and biological properties. J. Antibiot. 2003, 56, 700–704. [Google Scholar] [CrossRef][Green Version]
- Hong, H.; Fill, T.; Leadlay, P.F. A common origin for guanidinobutanoate starter units in antifungal natural products. Angew. Chem. Int. Ed. Engl. 2013, 52, 13096–13099. [Google Scholar] [CrossRef]
- Sun, F.; Xu, S.; Jiang, F. Genomic-driven discovery of an amidinohydrolase involved in the biosynthesis of mediomycin A. Appl. Microbiol. Biotechnol. 2018, 102, 2225–2234. [Google Scholar] [CrossRef]
- Friedrich, R.M.; GK Friestad. Inspirations from tetrafibricin and related polyketides: New methods and strategies for 1, 5-polyol synthesis. Nat. Prod. Rep. 2020, 37, 1229–1261. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.C.; Fraser, T.R. The connection of chemical constitution and physiological action. Trans. R. Soc. Edinb. 1868, 25, 224–242. [Google Scholar]
- Cros, A.F.A. Action de l’Alcohol Amylique Sur l’Organisme. Ph.D. Thesis, University of Strasbourg, Strasbourg, France, 1863. [Google Scholar]
- Richet, M.C. Note sur le rapport entre la toxicité et les propriétes physiques des corps. Compt. Rend. Soc. Biol. 1893, 45, 775–776. [Google Scholar]
- Meyer, H. Zur Theorie der AIkoholnarkose. Arch. Exp. Path. Pharm. 1899, 42, 109–118. [Google Scholar] [CrossRef]
- Overton, C.E. Studien Über Die Narkose; Fischer: Jena, Germany, 1901. [Google Scholar]
- Hammett, L.P. Some relations between reaction rates and equilibrium constants. Chem. Rev. 1935, 17, 125–136. [Google Scholar] [CrossRef]
- Hammett, L.P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 1937, 59, 96–103. [Google Scholar] [CrossRef]
- Taft, R.W. Separation of polar, steric and resonance effects in reactivity. In Steric Effects in Organic Chemistry; Newman, M.S., Ed.; Wiley: Hoboken, NJ, USA, 1956; pp. 556–675. [Google Scholar]
- Hansch, C.; Fujita, T. p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 1964, 86, 1616–1626. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A. Exploring QSAR; American Chemical Society: Washington, DC, USA, 1995. [Google Scholar]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr. Computational methods in drug discovery. Pharm. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef]
- Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem. 2016, 12, 2694–2718. [Google Scholar] [CrossRef]
- Kokh, D.B.; Amaral, M.; Bomke, J.; Grädler, U.; Musil, D. Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. J. Chem. Theor. Comput. 2018, 14, 3859–3869. [Google Scholar] [CrossRef]
- Cherkasov, A.M.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014, 57, 4977–5010. [Google Scholar] [CrossRef] [PubMed]
- Poroikov, V.V. Computer-aided drug design: From discovery of novel pharmaceutical agents to systems pharmacology. Biochemistry 2020, 14, 216–227. [Google Scholar]
- Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.V. QSAR without borders. Chem. Soc. Rev. 2020, 49, 3525–3564. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Antitumor profile of carbon-bridged steroids (CBS) and triterpenoids. Mar. Drugs 2021, 19, 324. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Antitumor and hepatoprotective activity of natural and synthetic neo steroids. Prog. Lipid Res. 2020, 79, 101048. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Dzhemileva, L.; Gloriozova, T.; D’yakonov, D. Natural and synthetic drugs used for the treatment of the dementia. Biochem. Biophys. Res. Commun. 2020, 524, 772–783. [Google Scholar] [CrossRef]
- Dembitsky, V.M. In silico prediction of steroids and triterpenoids as potential regulators of lipid metabolism. Mar. Drugs 2021, 19, 650. [Google Scholar] [CrossRef]
- Pounina, T.A.; Gloriozova, T.A.; Savidov, N.; Dembitsky, V.M. Sulfated and sulfur-containing steroids and their pharmacological profile. Mar. Drugs 2021, 19, 240. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Hydrobiological aspects of saturated, methyl-branched, and cyclic fatty acids derived from aquatic ecosystems: Origin, distribution, and biological activity. Hydrobiology 2022, 1, 7. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Natural polyether ionophores and their pharmacological profile. Mar. Drugs 2022, 20, 292. [Google Scholar] [CrossRef]
Amides and Their FA | Predicted Biological Activity, Pa * |
---|---|
FR-900848 | Antifungal (0.924); Antineoplastic (0.831); Antibacterial (0.782) Antineoplastic (lymphocytic leukemia) (0.677) |
1 FA | Antiviral (Arbovirus) (0.874); Anti-inflammatory (0.857); Antifungal (0.836) Antiviral (Picornavirus) (0.735); Alzheimer’s disease treatment (0.726) |
Perinadine A | Antineoplastic (0.926); Antifungal (0.709); Antibacterial (0.626) |
2 FA | Preneoplastic conditions treatment (0.898); Antiviral (Arbovirus) (0.706); Antifungal (0.702); Antineoplastic (0.685); Antibacterial (0.568) |
Viridenomycin | Antineoplastic (0.872); Antineoplastic (sarcoma) (0.766); Antibacterial (0.733) Prostate disorders treatment (0.672); Antifungal (0.528) |
FA V | Antineoplastic (0.859); Antiviral (Arbovirus) (0.774); Cytoprotectant (0.744) Antiparasitic (0.724); Antibacterial (0.655); Antiviral (Picornavirus) (0.636) Antifungal (0.635); Preneoplastic conditions treatment (0.532) |
Amino-alcohol | Antiviral (Arbovirus) (0.875); Leukopoiesis stimulant (0.648); Anti-inflammatory (0.574) Cytoprotectant (0.526); Preneoplastic conditions treatment (0.522) |
No. | Predicted Biological Activity, Pa * |
---|---|
3 | Preneoplastic conditions treatment (0.747); Antiviral (Arbovirus) (0.742); Antineoplastic (0.687) |
4 | Preneoplastic conditions treatment (0.794); Antiviral (Arbovirus) (0.692); Antineoplastic (0.642) |
5 | Preneoplastic conditions treatment (0.762); Antiviral (Arbovirus) (0.706); Antifungal (0.702) Antineoplastic (0.685); Cytoprotectant (0.647); Antibacterial (0.568) |
6 | Preneoplastic conditions treatment (0.762); Antifungal (0.702); Antineoplastic (0.685) |
7 | Antifungal (0.891); Antibacterial (0.761); Lipid metabolism regulator (0.578) |
8 | Lipid metabolism regulator (0.808); Antiviral (Arbovirus) (0.699) |
9 | Antiviral (Arbovirus) (0.853); Antiviral (Picornavirus) (0.760); Antineoplastic (0.722) |
10 | Antiviral (Arbovirus) (0.819); Apoptosis agonist (0.810); Antineoplastic (0.805) |
11 | Antineoplastic (0.871); Apoptosis agonist (0.837); Preneoplastic conditions treatment (0.706) |
12 | Apoptosis agonist (0.879); Antineoplastic (0.878); Preneoplastic conditions treatment (0.618) |
13 | Antiviral (Arbovirus) (0.944); Preneoplastic conditions treatment (0.768) |
14 | Antineoplastic (0.835); Antiviral (Arbovirus) (0.801); Antiviral (Picornavirus) (0.743) |
15 | Antiviral (Arbovirus) (0.819); Apoptosis agonist (0.810); Antineoplastic (0.805) Antiviral (Picornavirus) (0.780); Preneoplastic conditions treatment (0.713) |
16 | Antiviral (Arbovirus) (0.853); Antiviral (Picornavirus) (0.760); Antineoplastic (0.722) |
17 | Antiviral (Arbovirus) (0.873); Antiviral (Picornavirus) (0.735); Antineoplastic (0.718) |
18 | Antiviral (Arbovirus) (0.821); Antineoplastic (0.792); Antiviral (Picornavirus) (0.761) |
19 | Antineoplastic (0.789); Preneoplastic conditions treatment (0.757); Cytoprotectant (0.553) |
20 | Lipid metabolism regulator (0.932); Hypolipemic (0.805); Anti-hypercholesterolemic (0.774) Antineoplastic (0.714); Preneoplastic conditions treatment (0.670) |
21 | Lipid metabolism regulator (0.859); Antineoplastic (0.854); Apoptosis agonist (0.799) |
22 | Anti-hypercholesterolemic (0.769); Antineoplastic (0.741); |
23 | Antiviral (Arbovirus) (0.853); Antiviral (Picornavirus) (0.760); Apoptosis agonist (0.731) |
24 | Antineoplastic (0.835); Apoptosis agonist (0.713); Preneoplastic conditions treatment (0.658) |
25 | Antineoplastic (0.746); Preneoplastic conditions treatment (0.685); Cytoprotectant (0.607) |
26 | Antiviral (Arbovirus) (0.861); Antineoplastic (0.791); Antiviral (Picornavirus) (0.776) |
27 | Antiviral (Arbovirus) (0.861); Antineoplastic (0.791); Antiviral (Picornavirus) (0.776) |
28 | Antiviral (Arbovirus) (0.861); Antineoplastic (0.791); Antiviral (Picornavirus) (0.776) |
29 | Anti-inflammatory (0.902); Antiviral (Picornavirus) (0.776); Antifungal (0.774) |
30 | Antiviral (Arbovirus) (0.938); Antiviral (Picornavirus) (0.887); Anti-inflammatory (0.815) Antineoplastic (0.784); Preneoplastic conditions treatment (0.728); Antimutagenic (0.628) |
No. | Predicted Biological Activity, Pa * |
---|---|
31 | Antidiabetic symptomatic (0.916); Anti-infective (0.741); Antidiabetic (0.729); Antifungal (0.680) |
32 | Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Antidiabetic symptomatic (0.756) |
33 | Anti-inflammatory (0.752); Antiviral (Arbovirus) (0.750); Antiviral (HIV) (0.735) |
34 | Anti-inflammatory (0.754); Antidiabetic symptomatic (0.735); Antiviral (Arbovirus) (0.666) Antifungal (0.647); Lipid metabolism regulator (0.634); Antiviral (HIV) (0.606) |
35 | Lipid metabolism regulator (0.774); Anti-inflammatory (0.752); Antidiabetic symptomatic (0.733) Anti-infective (0.673); Antiviral (Arbovirus) (0.672); Antifungal (0.625) |
36 | Anti-inflammatory (0.742); Antidiabetic symptomatic (0.736); Antiviral (Arbovirus) (0.684) Anti-infective (0.669); Antifungal (0.563) |
37 | Anti-hypoxic (0.711); Antiviral (Arbovirus) (0.688); Antiviral (HIV) (0.610) |
38 | Antidiabetic symptomatic (0.736); Antiviral (Arbovirus) (0.730); Antiviral (HIV) (0.535) |
39 | Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Antidiabetic symptomatic (0.756) Anti-infective (0.741); Antidiabetic (0.629); Antiviral (Picornavirus) (0.623) |
40 | Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Anti-infective (0.741) Antifungal (0.680); Antiviral (Picornavirus) (0.623) |
41 | Antiviral (Arbovirus) (0.761); Anti-inflammatory (0.758); Anti-infective (0.741) Antifungal (0.680); Antiviral (Picornavirus) (0.623) |
No. | Predicted Biological Activity, Pa * |
---|---|
42 | Lipid metabolism regulator (0.936); Hematinic (0.923); Multiple sclerosis treatment (0.918) Autoimmune disorders treatment (0.857); Neurodegenerative diseases treatment (0.816) Hypolipemic (0.783); Anti-hypercholesterolemic (0.632); Atherosclerosis treatment (0.589) |
43 | Lipid metabolism regulator (0.812); Hypolipemic (0.787); Atherosclerosis treatment (0.638) |
44 | Lipid metabolism regulator (0.941); Acute neurologic disorders treatment (0.748) Anti-hypercholesterolemic (0.735); Hypolipemic (0.699); Immunosuppressant (0.646) |
45 | Antineoplastic (0.904); Apoptosis agonist (0.854); Preneoplastic conditions treatment (0.676) |
46 | Antineoplastic (0.845); Preneoplastic conditions treatment (0.643); DNA synthesis inhibitor (0.527) |
47 | Antineoplastic (0.865); Apoptosis agonist (0.763); Preneoplastic conditions treatment (0.629) |
48 | Antineoplastic (0,854); Apoptosis agonist (0.799); Preneoplastic conditions treatment (0.706) |
49 | Antineoplastic (0.881); Antifungal (0.798); Preneoplastic conditions treatment (0.641) |
50 | Lipid metabolism regulator (0.913); Hypolipemic (0.855); Anti-hypercholesterolemic (0.786) Apoptosis agonist (0.717); Preneoplastic conditions treatment (0.687) |
51 | Antibacterial (0.842); Antiviral (Arbovirus) (0.790); Antiviral (Picornavirus) (0.659) |
52 | Antiviral (Arbovirus) (0.902); Antimutagenic (0.782); Antiviral (Picornavirus) (0.726) |
53 | Anti-eczematic (0.956); Antiviral (Arbovirus) (0.893); Antimutagenic (0.838) Anti-psoriatic (0.753); Antifungal (0.739); Antiparasitic (0.744) |
54 | Anti-eczematic (0.920); Antiviral (Arbovirus) (0.903); Antimutagenic (0.818) Anti-psoriatic (0.730); Antiviral (Picornavirus) (0.680); Antifungal (0.657) |
55 | Hypolipemic (0.915); Lipid metabolism regulator (0.795); Apoptosis agonist (0.795) |
56 | Lipid metabolism regulator (0.949); Apoptosis agonist (0.861); Hypolipemic (0.791) Anti-hypercholesterolemic (0.629); Atherosclerosis treatment (0.627) |
57 | Antineoplastic (0.939); Apoptosis agonist (0.910); Antimitotic (0.826) Lipid metabolism regulator (0.783); Antifungal (0.763); Antiparasitic (0.675) |
58 | Antineoplastic (0.906); Antifungal (0.812); Apoptosis agonist (0.720); Antiparasitic (0.646) |
59 | Antineoplastic (0.883); Antifungal (0.807); Antiparasitic (0.681); Apoptosis agonist (0.665) |
60 | Lipid metabolism regulator (0.921); Antifungal (0.818); Antibacterial (0.761) |
No. | Predicted Biological Activity, Pa * |
---|---|
61 | Acute neurologic disorders treatment (0.892); Antineoplastic (0.758) Preneoplastic conditions treatment (0.612); Antiviral (Picornavirus) (0.547) |
62 | Anti-asthmatic (0.908); Acute neurologic disorders treatment (0.731); Antifungal (0.700) Anti-inflammatory (0.697); Antibacterial (0.617); Spasmolytic (0.537) |
63 | Antineoplastic (0.806); Anti-inflammatory (0.801); Apoptosis agonist (0.764) Acute neurologic disorders treatment (0.763); Antibacterial (0.657) |
64 | Hypolipemic (0.908); Antineoplastic (0.901); Apoptosis agonist (0.852); Antifungal (0.820) |
65 | Antineoplastic (0.916); Hypolipemic (0.905); Apoptosis agonist (0.864); Antifungal (0.797) |
66 | Antineoplastic (0.854); Antifungal (0.826); Hypolipemic (0.793); Apoptosis agonist (0.709) |
67 | Lipid metabolism regulator (0.962); Antiviral (Arbovirus) (0.917); Antineoplastic (0.867) |
68 | Antineoplastic (0.865); Apoptosis agonist (0.763); Preneoplastic conditions treatment (0.629) |
69 | Lipid metabolism regulator (0.931); Hypolipemic (0.853); Anti-hypercholesterolemic (0.748) Atherosclerosis treatment (0.659); Antibacterial (0.595) |
70 | Antineoplastic (0.813); Antiviral (Arbovirus) (0.748); Antiviral (Picornavirus) (0.585) |
71 | Lipid metabolism regulator (0.961); Hypolipemic (0.915); Lipoprotein disorders treatment (0.707) Anti-hypercholesterolemic (0.669); Antihypertriglyceridemic (0.532) |
72 | Antiviral (Arbovirus) (0.870); Anti-inflammatory (0.859); Antiviral (Picornavirus) (0.691) |
73 | Antineoplastic (0.912); Apoptosis agonist (0.833); Antiviral (Arbovirus) (0.686) |
74 | Antineoplastic (0.909); Apoptosis agonist (0.873); Lipid metabolism regulator (0.863) |
75 | Antineoplastic (0,907); Lipid metabolism regulator (0.898); Apoptosis agonist (0.871) |
76 | Antineoplastic (0.916); Lipid metabolism regulator (0.890); Apoptosis agonist (0.883) |
No. | Predicted Biological Activity, Pa * |
---|---|
77 | Antineoplastic (0.917); Apoptosis agonist (0.870); Lipid metabolism regulator (0.858) Hypolipemic (0.855); Antifungal (0.808); Anti-inflammatory (0.768); Antibacterial (0.665) |
78 | Antineoplastic (0.929); Apoptosis agonist (0.883); Hypolipemic (0.835); Antifungal (0.788) |
79 | Antineoplastic (0.929); Apoptosis agonist (0.883); Hypolipemic (0.835); Antifungal (0.788) |
80 | Antineoplastic (0.929); Apoptosis agonist (0.883); Hypolipemic (0.835); Antifungal (0.788) |
81 | Antineoplastic (0.914); Hypolipemic (0.829); Apoptosis agonist (0.809); Antifungal (0.791) |
82 | Apoptosis agonist (0.970); Antineoplastic (0.788); Mucositis treatment (0.705) |
83 | Lipid metabolism regulator (0.907); Antineoplastic (0.869); Apoptosis agonist (0.843) |
84 | Lipid metabolism regulator (0.964); Hypolipemic (0.873); Atherosclerosis treatment (0.689) |
85 | Lipid metabolism regulator (0.937); Hypolipemic (0.866); Atherosclerosis treatment (0.653) |
86 | Lipid metabolism regulator (0.937); Hypolipemic (0.866); Atherosclerosis treatment (0.653) |
87 | Lipoprotein disorders treatment (0.912); Atherosclerosis treatment (0.910); Hypolipemic (0.903) Lipid metabolism regulator (0.776); Anti-hypercholesterolemic (0.673) |
88 | Antifungal (0.728); Antibacterial (0.680); Antiviral (Arbovirus) (0.675) |
89 | Antiviral (Arbovirus) (0.952); Anti-inflammatory (0.808); Antiviral (Picornavirus) (0.790) |
90 | Sclerosant (0.906); Anesthetic general (0.881); Anticonvulsant (0.854) Neuroprotector (0.835); Acute neurologic disorders treatment (0.746); Mucositis treatment (0.717) |
91 | Lipid metabolism regulator (0.868); Hypolipemic (0.680); Anti-hypercholesterolemic (0.641) |
92 | Antiviral (Arbovirus) (0.814); Antifungal (0.769); Antibacterial (0.626) |
93 | Anti-eczematic (0.939); Antimutagenic (0.832); Mucositis treatment (0.781) |
94 | Anti-eczematic (0.912); Lipid metabolism regulator (0.911); Anti-infective (0.876) |
95 | Anti-eczematic (0.957); Antiviral (Arbovirus) (0.952); Antiviral (Picornavirus) (0.790) |
96 | Sclerosant (0.834); Antifungal (0.698); Antiviral (Arbovirus) (0.693) |
97 | Antifungal (0.771); Apoptosis agonist (0.719); Antibacterial (0.632) |
98 | Antineoplastic (0.857); Apoptosis agonist (0.746); Lipid metabolism regulator (0.629) |
99 | Anti-ischemic, cerebral (0.835); Acute neurologic disorders treatment (0.783) |
No. | Predicted Biological Activity, Pa * |
---|---|
100 | Antineoplastic (0.945); Apoptosis agonist (0.884); Antifungal (0.809) |
101 | Antineoplastic (0.892); Antifungal (0.755); Antibacterial (0.640) |
102 | Antiviral (Arbovirus) (0.930); Antiviral (Picornavirus) (0.917); Anti-inflammatory (0.815) |
103 | Apoptosis agonist (0.949); Angiogenesis inhibitor (0.892); Antineoplastic (0.881) |
104 | Lipid metabolism regulator (0.947); Antiviral (Arbovirus) (0.903); Anti-inflammatory (0.715) |
105 | Antineoplastic (0.987); Apoptosis agonist (0.858) |
106 | Lipid metabolism regulator (0.800); Antineoplastic (0.789); Hypolipemic (0.705) |
107 | Anti-inflammatory (0.844); Antineoplastic (0.802); Apoptosis agonist (0.793) |
108 | Lipid metabolism regulator (0.935); Hypolipemic (0.917); Anti-hypercholesterolemic (0.893) |
109 | Cell adhesion molecule inhibitor (0.889); Antileukemic (0.840); Antihypertensive (0.765) |
110 | Antineoplastic (0.864); Apoptosis agonist (0.800); Preneoplastic conditions treatment (0.676) |
111 | Antineoplastic (0.946); Apoptosis agonist (0.898); Allergic conjunctivitis treatment (0.537) |
112 | Antineoplastic (0.946); Apoptosis agonist (0.898); Allergic conjunctivitis treatment (0.537) |
No. | Predicted Biological Activity, Pa * |
---|---|
113 | Antifungal (0.876); Anti-inflammatory (0.776); Antimutagenic (0.674) |
114 | Antifungal (0.898); Anti-inflammatory (0.823); Antimutagenic (0.672) |
115 | Hepatic disorders treatment (0.793); Cytoprotectant (0.661) |
116 | Anti-inflammatory (0.905); Antiviral (Arbovirus) (0.755); Antiviral (Picornavirus) (0.747) |
117 | Anti-eczematic (0.920); Anti-psoriatic (0.822); Antiviral (Arbovirus) (0.812) |
118 | Anti-eczematic (0.920); Anti-psoriatic (0.822); Antiviral (Arbovirus) (0.812) |
119 | Anti-psoriatic (0.929); Dermatologic (0.923); Anti-eczematic (0.695) |
120 | Lipid metabolism regulator (0.765); Anti-hypercholesterolemic (0.660); Hypolipemic (0.625) |
121 | Apoptosis agonist (0.834); Antineoplastic (0.817); Proliferative diseases treatment (0.737) |
122 | Growth stimulant (0.899); Antibacterial (0.897); Antifungal (0.889) |
123 | Growth stimulant (0.937); Anti-helmintic (0.866); Antiprotozoal (Coccidial) (0.806) |
124 | Myasthenia Gravis treatment (0.962); Anti-osteoporotic (0.866); Antiarthritic (0.831) |
125 | Anti-eczematic (0.933); Myasthenia Gravis treatment (0.794); Anti-osteoporotic (0.578) |
126 | Anti-infective (0.961); Antifungal (0.892); Anti-inflammatory (0.754) |
127 | Anti-infective (0.966); Antineoplastic (0.842); Antifungal (0.819) |
128 | Antiviral (Arbovirus) (0.858); Anti-inflammatory (0.785); Antiviral (Picornavirus) (0.723) |
129 | Antiviral (Arbovirus) (0.858); Anti-inflammatory (0.785); Antiviral (Picornavirus) (0.723) |
130 | Anti-hypercholesterolemic (0.881); Atherosclerosis treatment (0.859) |
No. | Predicted Biological Activity, Pa * |
---|---|
131 | Antineoplastic (0.892); Lipid metabolism regulator (0.862); Antifungal (0.777) |
132 | Anti-inflammatory, intestinal (0.833); Antiviral (Arbovirus) (0.724); Antifungal (0.522) |
133 | Anti-inflammatory (0.741); Antiviral (Arbovirus) (0.683) |
134 | Preneoplastic conditions treatment (0.819); Acute neurologic disorders treatment (0.646) |
135 | Autoimmune disorders treatment (0.977); Antiarthritic (0.968) Systemic lupus erythematosus treatment (0.880); Antiviral (Arbovirus) (0.741) |
136 | Antineoplastic (0.763); Apoptosis agonist (0.740); Antifungal (0.710) |
137 | Antineoplastic (0.763); Apoptosis agonist (0.740); Antifungal (0.710) |
138 | Antineoplastic (0.782); Apoptosis agonist (0.700); Antifungal (0.673) |
139 | Antiviral (Arbovirus) (0.723); Antiviral (Picornavirus) (0.673); Anti-inflammatory (0.570) |
140 | Antiviral (Arbovirus) (0.710); Anti-inflammatory (0.680); Antiviral (Picornavirus) (0.594) |
141 | Antineoplastic (0.813); Antiviral (Arbovirus) (0.748); Antiviral (Picornavirus) (0.585) |
142 | Anti-infective (0.780); Antiviral (Arbovirus) (0.728); Anti-inflammatory (0.716) Antiviral (Picornavirus) (0.633); Antifungal (0.542); Antibacterial (0.533) |
143 | Anti-Helicobacter pylori (0.744); Antiviral (Arbovirus) (0.715); Antiviral (Picornavirus) (0.547) |
144 | Preneoplastic conditions treatment (0.833); Antimutagenic (0.829); Antineoplastic (0.767) |
145 | Antineoplastic (0.921); Apoptosis agonist (0.798); Chemoprotective (0.590) |
146 | Antineoplastic (0.922); Antifungal (0.860); Antibacterial (0.824); Apoptosis agonist (0.751) |
147 | Lipid metabolism regulator (0.956); Vasodilator (0.928); Hypolipemic (0.814) |
No. | Predicted Biological Activity, Pa * |
---|---|
148 | Antineoplastic (0.875); Apoptosis agonist (0.818); Antifungal (0.727); Antiparasitic (0.584) |
149 | Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621) |
150 | Antineoplastic (0.906); Apoptosis agonist (0.834); Antifungal (0.792); Antibacterial (0.645) |
151 | Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621) |
152 | Antineoplastic (0.887); Apoptosis agonist (0.784); Antifungal (0.775); Antibacterial (0.621) |
153 | Antineoplastic (0.944); Apoptosis agonist (0.823); Antifungal (0.814); Antibacterial (0.652) |
154 | Lipid metabolism regulator (0.937); Hypolipemic (0.866); Radioprotector (0.850) |
155 | Lipoprotein disorders treatment (0.912); Atherosclerosis treatment (0.910); Hypolipemic (0.903) |
156 | Lipid metabolism regulator (0.730); Acute neurologic disorders treatment (0.729) Hypolipemic (0.720); Anti-hypercholesterolemic (0.706); Atherosclerosis treatment (0.566) |
157 | Antiviral (Arbovirus) (0.761); Antiallergic (0.622); Antifungal (0.541); Antibacterial (0.505) |
158 | Immunosuppressant (0.933); Antibacterial (0.904); Antineoplastic (0.874); Antifungal (0.867) |
159 | Immunosuppressant (0.916); Antibacterial (0.893); Antineoplastic (0.880); Antifungal (0.828) |
160 | Antifungal (0.896); Antibacterial (0.803); Anti-inflammatory (0.747) |
161 | Antifungal (0.918); Antineoplastic (0.897); Antibacterial (0.849); Apoptosis agonist (0.773) |
162 | Antifungal (0.906); Antineoplastic (0.871); Antibacterial (0.828); Apoptosis agonist (0.659) |
163 | Antineoplastic (0.879); Antifungal (0.863); Antibacterial (0.757) |
164 | Antifungal (0.896); Antineoplastic (0.895); Antibacterial (0.826); Apoptosis agonist (0.739) |
165 | Antineoplastic (0.905); Antifungal (0.864); Apoptosis agonist (0.837); Antibacterial (0.753) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dembitsky, V.M. Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile. Microbiol. Res. 2022, 13, 377-417. https://doi.org/10.3390/microbiolres13030030
Dembitsky VM. Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile. Microbiology Research. 2022; 13(3):377-417. https://doi.org/10.3390/microbiolres13030030
Chicago/Turabian StyleDembitsky, Valery M. 2022. "Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile" Microbiology Research 13, no. 3: 377-417. https://doi.org/10.3390/microbiolres13030030
APA StyleDembitsky, V. M. (2022). Microbiological Aspects of Unique, Rare, and Unusual Fatty Acids Derived from Natural Amides and Their Pharmacological Profile. Microbiology Research, 13(3), 377-417. https://doi.org/10.3390/microbiolres13030030