Abstract
Background/Objectives: Enterovirus-D68 (EV-D68) and rhinoviruses are major contributors to respiratory illnesses in children, presenting a spectrum of clinical manifestations ranging from asymptomatic cases to severe lower respiratory tract infections. No specific antiviral treatments are currently approved for these viruses. Method: We conducted a comprehensive literature review of antiviral agents investigated for EV-D68 and rhinovirus infections. Results: Several antiviral candidates are under investigation, each targeting distinct stages of the viral replicative cycle. Capsid-binding agents and monoclonal antibodies prevent viral attachment by blocking receptor-virus interactions. Inhibitors of viral replication proteins disrupt polyprotein processing and replication organelle biogenesis by targeting non-structural viral proteins. Host factor inhibitors impair viral attachment, replication organelle formation, or RNA replication by interfering with critical host pathways. Conclusions: While no specific antivirals are yet approved for EV-D68 and rhinovirus infections, emerging therapeutic candidates offer potential avenues for treatment. Continued preclinical and clinical investigation will be essential to validate these approaches and expand the available options for affected patients.
1. Background
Enterovirus (EV) and rhinovirus (RV) species commonly infect humans. They cause a wide range of clinical manifestations across all age groups: asymptomatic, upper and lower respiratory infections, aseptic meningitis, viral encephalitis, myopericarditis, acute flaccid myelitis (AFM), hand, foot and mouth disease, herpangina, viral conjunctivitis, to name a few [,]. They impose an important socioeconomic burden, resulting in significant healthcare expenses and productivity losses [].
The name enterovirus comes from the Greek word “enteron”, meaning intestine, and the latin word “virus” meaning poison [,]. While traditionally linked to enteric transmission, certain EVs, such as EV-D68, primarily spread through respiratory routes []. In 2014, EV-D68 triggered an outbreak of severe lower respiratory tract infections across North America, predominantly affecting children. This outbreak was also associated with AFM, a serious neurological complication [,]. The increasing number of outbreaks since 2014 suggests a high potential for this virus to emerge as a significant human pathogen [,].
Rhinovirus, whose prefix comes from the Greek word “rhis”, meaning nose, is a group of viruses linked to respiratory illnesses []. While widely recognized as the primary cause of the common cold, their role in severe illnesses has often been overlooked []. In adults, growing evidence over the past few decades has linked RVs to asthma and chronic obstructive pulmonary disease exacerbations [,,,,,,]. In children with underlying conditions such as prematurity, heart disease, or metabolic disorders, RV infections may result in severe outcomes leading to higher hospitalization rates and requiring intensive care [,].
A deeper understanding of these viruses is essential for developing effective preventive and therapeutic strategies, particularly for vulnerable populations, and to improve outbreak preparedness. This review provides a comprehensive overview of developing antiviral agents for EV-D68 and RVs, examining both historically studied antiviral approaches and those currently under investigation.
2. Enterovirus Classification
EVs and RVs are classified within the singular genus Enterovirus, under the Picornaviridae family, as confirmed by genomic and antigenic analyses []. Historically, EVs were classified into polioviruses, coxsackieviruses (A/B), and echoviruses serotypes defined by antigenic properties observed through antibody neutralization tests. However, overlapping biological properties led to a revised system using consecutive numbering supported by genotyping (e.g., EV-A71, EV-D68) []. Genotype classification relies on the genetic sequence analysis of the protein VP1, a key component of the viral capsid region []. Classification now prioritizes genetic lineage over serogroups and genotyping of VP1 has become the gold standard for EV classification, providing a more robust framework for understanding viral diversity and evolution.
At present, the Enterovirus genus comprises 15 species: 12 EV species (A–L) and 3 RV species (A–C). Of these, 7 species are human pathogens, including EV A–D and RV A–C (Figure 1) []. EV-D68 is now part of the EV-D species, which includes five genotypes (EV-D68, EV-D70, EV-D94, EV-D111, and EV-D120), each linked to distinct symptoms [].

Figure 1.
Classification of the EV and RV species linked to illnesses in humans.
3. Virological Characteristics
EVs are positive-sense single-stranded RNA viruses with a genome of approximately 7500 nucleotides []. The genome is packaged in small icosahedral capsids measuring approximately 30 nanometers in diameter, composed of 60 copies of four proteins: VP1, VP2, VP3, and VP4 []. These proteins are organized into subunits, with VP1-VP3 positioned on the outside and VP4 on the inside, joining at the apexes to create a pattern of alternating trimer in a pentamer symmetry (Figure 2).

Figure 2.
Schematic of Enterovirus capsid organization. VP1–VP3 subunits, represented as a triangular unit with VP4 underneath, are assembled into pentameric structures to form a complete icosahedral capsid composed of 60 copies of the VP1–VP4 subunits.
Next to the pentavalent apex, a canyon, a circular depression encircling the fivefold axis of symmetry on the virion surface, is thought to contribute significantly to receptor binding []. At the base of the canyon, the hydrophobic pocket of each VP1 subunit houses a host-derived lipid “pocket factor”, target of some antiviral molecules [].
The viral genome consists of three segments (Figure 3): a 700–825 nucleotide long 5′ untranslated region (UTR), a single open reading frame (ORF) that encodes a viral polyprotein, and a 75–100 nucleotide long 3′ UTR. This polyprotein is cleaved by autocatalysis to produce four structural proteins (VP1–VP4) and seven non-structural proteins (2A, 2B, 2C, 3A, 3B, 3C, and 3D) []. The 5′ UTR contains the internal ribosome entry site (IRES), which is essential to recruit ribosomes for the initiation of translation []. EVs and RVs exhibit high mutation rates and frequent recombination, particularly in the 5′UTR-capsid junction and at the beginning of the P2 region, contributing to their genetic diversity and evolution [].

Figure 3.
Schematic of Enterovirus translation and proteolysis. The genome is translated into a single polyprotein (P1 to P3) then proteolyzed into four structural proteins and seven non-structural proteins. IRES: internal ribosome entry site. UTR: untranslated region.
4. Replicative Cycle
The replication of the Enterovirus genus occurs in the cytoplasm and involves several key steps (Figure 4). The cycle begins with viral entry, during which the virus binds to specific cellular receptors and is internalized []. Viral uncoating is triggered by the acidic environment of the endosome, where a lower pH causes the release of the viral genome into the cytoplasm []. The viral RNA genome is covalently linked to VPg (3B), a viral protein that acts as both a primer for replication and a facilitator of translation. The viral RNA is subsequently translated into a single polyprotein [,]. This process occurs as the virus hijacks the host cell’s ribosomes, which bind to the viral IRES in the 5′-UTR to initiate protein translation. The polyprotein is cleaved by the viral proteases 2A, 3C, and its precursor form 3CD into four structural proteins (VP1–VP4) and seven non-structural replication proteins (2A, 2B, 2C, 3A, 3B, 3C, and 3D) [,,].

Figure 4.
Enterovirus replicative cycle. The virus attaches to a host receptor (1) and is subsequently internalized (2). A change in pH triggers the uncoating of the virus (3), resulting in the release of its genome. This RNA genome is translated (4) into a single polyprotein, which undergoes proteolysis (5) to produce four structural proteins and seven non-structural proteins. Replication organelles are generated (6), providing a site for RNA replication (7). Newly replicated genomes are assembled with translated structural proteins (8) to form a viral particle. Upon maturation (9), the newly formed viral particle is released (10) from the host cell. RO = replication organelle.
A crucial aspect of Enterovirus replication is the formation of specialized membrane structures called replication organelles (ROs), which are derived from the endoplasmic reticulum and Golgi apparatus, with viral proteins 2B, 2C, and 3A playing key roles in their biogenesis [,]. Replication of viral RNA occurs within these ROs, where a favorable lipid environment is created by the viral proteins 2B, 2C, and 3A, assisted by host proteins such as acyl-CoA-binding domain-containing protein (ACBD3), phosphatidylinositol 4-kinase-IIIβ (PI4KIIIβ), oxysterol-binding protein (OSBP), and OSBP-related protein 4 (ORP4) []. Replication begins with the transcription of the genomic (+) RNA into (−) RNA by the RNA-dependent RNA polymerase (3Dpol), and the (−) RNA then serves as a template for the synthesis of new (+) RNA []. Throughout this process, the virus exploits various host cell pathways and factors. The secretory pathway and autophagy are hijacked to support RO formation []. Lipid metabolism is altered, with lipid droplets potentially serving as lipid sources for RO proliferation [,]. Host factors such as heat shock proteins (e.g., HSPA9) are recruited to assist in viral protein folding and stabilization [].
The replication cycle concludes with the assembly of newly synthesized viral RNA into capsids formed by structural proteins (VP1, VP2, VP3, and VP4). This process involves the encapsidation of RNA into capsid proteins, which self-organize into protomers and pentamers, followed by maturation in cellular structures called autophagosomes []. Finally, mature virions are released from the host cell, either through exocytosis, budding, or cell lysis [].
The virus replication cycle generates virions within a few hours of the initial infection, with viral RNA replication beginning 2–3 h post-infection and translation starting shortly after at 3–4 h [,]. Most viral proteins reach high levels between 4 and 7 h post-infection, and new virions are typically released within 8–10 h, completing the efficient replication cycle of enteroviruses [,]. This efficient process, coupled with the virus’s ability to manipulate host cell machinery, contributes to the pathogenicity and rapid dissemination of Enterovirus infections.
7. Conclusions
The recent pandemic has revealed the staggering economic cost of insufficient preparedness for emerging viral threats and the critical importance of proactive research in virology []. EVs and RVs continue to evolve, posing a risk as demonstrated by the EV-D68 outbreak in 2014. While no treatment is currently available, many compounds have shown potential. These compounds target a broad range of viral processes, with a particular focus on viral attachment, RO formation, and RNA replication. However, other stages of the viral life cycle have not been explored as potential therapeutic targets. For instance, inhibitors targeting viral release have been successfully developed against HIV, an approach not widely investigated for Enterovirus [,]. Given these gaps, repurposing existing antivirals developed for other viruses presents an opportunity to explore novel mechanisms of inhibition. Building on the existing cellular, tissue, and animal models that provide a strong foundation for antiviral research, we can anticipate significant advancements in the development of novel therapeutics. By prioritizing investment in these areas today, we can ensure that we are better equipped to address the significant health burden caused by EV-D68, RVs, ultimately improving public health and reducing societal disruption.
Author Contributions
Conceptualization, V.L.R., M.T., S.I., S.T. and M.B.; methodology, writing—original draft preparation, visualization, V.L.R., M.T. and S.T.; validation, writing—review and editing, H.R., Y.G.S., M.C.M., S.I., S.T. and M.B.; supervision, S.I., S.T. and M.B.; project administration, M.B.; funding acquisition, S.I. and M.B. All authors have read and agreed to the published version of the manuscript.
Funding
M.B. was supported by the Sentinel North Research Chair at Université Laval (SN 134482, funded by the Canada First Research Excellence Fund) and the Canada Research Chair (CRC-2022-00103). The FRQS supports the Centre de recherche du CHU de Québec—Université Laval infrastructure. V.L.R. was partially supported by a scholarship from the Infectious Research Center at Universite Laval and the World Citizens Scholarship—Excellence section, Universite Laval. Y.S. was supported by a Lung Health Foundation Emerging Scholar Research Award to S.I. S.I. received the Clinical Research Scholars Junior 1 from FRQS. M.C.M. was supported by a Postdoctoral Mobility Fellowship from the Swiss National Science Foundation (P500PM_221971).
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
No new data were generated or analyzed.
Acknowledgments
This paper is part of the Special Issue entitled “Prevention, Diagnosis, and Treatment of Infectious Diseases”, dedicated to the 50th anniversary of the research center in infectious diseases, founded by Michel G. Bergeron, at the CHU de Québec-Université Laval’s Research Center. We would like to extend our sincere gratitude to Michel G. Bergeron for his invaluable contributions and for creating such an exceptional research environment.
Conflicts of Interest
The authors declare no conflicts of interest.
References
- Xie, Z.; Khamrin, P.; Maneekarn, N.; Kumthip, K. Epidemiology of Enterovirus Genotypes in Association with Human Diseas Es. Viruses 2024, 16, 1165. [Google Scholar] [CrossRef]
- Messacar, K. Overview of Enterovirus Infections. Available online: https://www.merckmanuals.com/en-ca/professional/infectious-diseases/enteroviruses/overview-of-enterovirus-infections (accessed on 25 March 2025).
- Halabi, K.C.; Stockwell, M.S.; Alba, L.; Vargas, C.; Reed, C.; Saiman, L. Mobile Surveillance for Acute Respiratory Infection/Influenza-like Illness in the Community (MoSAIC) Study Team Clinical and Socioeconomic Burden of Rhinoviruses/Enteroviruses in the Community. Influenza Other Respir. Viruses 2022, 16, 891–896. [Google Scholar] [CrossRef] [PubMed]
- ICTV Report Consortium Picornaviridae. Available online: https://ictv.global/report/chapter/picornaviridae/picornaviridae/enterovirus (accessed on 23 February 2025).
- Mammas, I.; Drysdale, S.; Theodoridou, M.; Greenough, A.; Spandidos, D. Viruses, Vaccinations and RSV: Exploring Terminology in Paediatric Virology. Exp. Ther. Med. 2020, 20, 300. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.C.; Wells, A.I.; Ciomperlik-Patton, J.; Myerburg, M.M.; Yang, L.; Konopka-Anstadt, J.; Coyne, C.B. Respiratory and Intestinal Epithelial Cells Exhibit Differential Susceptibility and Innate Immune Responses to Contemporary EV-D68 Isolates. eLife 2021, 10, e66687. [Google Scholar] [CrossRef]
- Ott, C.; Dutilh, G.; Reist, J.; Bingisser, R.; Egli, A.; Heininger, U. Clinical Presentation of Enterovirus D68 in a Swiss Pediatric Universi Ty Center. Pediatr. Infect. Dis. J. 2024, 43, 1135–1140. [Google Scholar] [CrossRef]
- Hodcroft, E.B.; Dyrdak, R.; Andrés, C.; Egli, A.; Reist, J.; García Martínez De Artola, D.; Alcoba Flórez, J.; Niesters, H.G.M.; Antón, A.; Poelman, R.; et al. Evolution, Geographic Spreading, and Demographic Distribution of Enter Ovirus D68. PLoS Pathog. 2020, 18, e1010515. [Google Scholar] [CrossRef]
- Holm-Hansen, C.C.; Midgley, S.E.; Fischer, T.K. Global Emergence of Enterovirus D68: A Systematic Review. Lancet Infect. Dis. 2016, 16, e64–e75. [Google Scholar] [CrossRef]
- Monto, A.S. Epidemiology of Viral Respiratory Infections. Am. J. Med. 2002, 112, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Gern, J.E. The ABCs of Rhinoviruses, Wheezing, and Asthma. J. Virol. 2010, 84, 7418–7426. [Google Scholar] [CrossRef]
- McManus, T.E.; Marley, A.-M.; Baxter, N.; Christie, S.N.; O’Neill, H.J.; Elborn, J.S.; Coyle, P.V.; Kidney, J.C. Respiratory Viral Infection in Exacerbations of COPD. Respir. Med. 2008, 102, 1575–1580. [Google Scholar] [CrossRef]
- Johnston, S.L.; Pattemore, P.K.; Sanderson, G.; Smith, S.; Lampe, F.; Josephs, L.; Symington, P.; O’Toole, S.; Myint, S.H.; Tyrrell, D.A.J.; et al. Community Study of Role of Viral Infections in Exacerbations of Asthma in 9–11 Year Old Children. BMJ 1995, 310, 1225–1229. [Google Scholar] [CrossRef] [PubMed]
- Wark, P.A.B.; Johnston, S.L.; Moric, I.; Simpson, J.L.; Hensley, M.J.; Gibson, P.G. Neutrophil Degranulation and Cell Lysis Is Associated with Clinical Severity in Virus-Induced Asthma. Eur. Respir. J. 2002, 19, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Grissell, T.V.; Powell, H.; Shafren, D.R.; Boyle, M.J.; Hensley, M.J.; Jones, P.D.; Whitehead, B.F.; Gibson, P.G. Interleukin-10 Gene Expression in Acute Virus-Induced Asthma. Am. J. Respir. Crit. Care Med. 2005, 172, 433–439. [Google Scholar] [CrossRef]
- Arden, K.E.; Chang, A.B.; Lambert, S.B.; Nissen, M.D.; Sloots, T.P.; Mackay, I.M. Newly Identified Respiratory Viruses in Children with Asthma Exacerbation Not Requiring Admission to Hospital. J. Med. Virol. 2010, 82, 1458–1461. [Google Scholar] [CrossRef]
- Mallia, P.; Message, S.D.; Kebadze, T.; Parker, H.L.; Kon, O.M.; Johnston, S.L. An Experimental Model of Rhinovirus Induced Chronic Obstructive Pulmonary Disease Exacerbations: A Pilot Study. Respir. Res. 2006, 7, 116. [Google Scholar] [CrossRef]
- Mallia, P.; Message, S.D.; Gielen, V.; Contoli, M.; Gray, K.; Kebadze, T.; Aniscenko, J.; Laza-Stanca, V.; Edwards, M.R.; Slater, L.; et al. Experimental Rhinovirus Infection as a Human Model of Chronic Obstructive Pulmonary Disease Exacerbation. Am. J. Respir. Crit. Care Med. 2011, 183, 734–742. [Google Scholar] [CrossRef]
- Asner, S.A.; Petrich, A.; Hamid, J.S.; Mertz, D.; Richardson, S.E.; Smieja, M. Clinical Severity of Rhinovirus/Enterovirus Compared to Other Respiratory Viruses in Children. Influenza Other Respir. Viruses 2014, 8, 436–442. [Google Scholar] [CrossRef]
- Fernandez-Sarmiento, J.; Corrales, S.C.; Obando, E.; Amin, J.; Bastidas Goyes, A.; Barrera Lopez, P.A.; Bernal Ortiz, N. Factors Associated with Severe Acute Respiratory Infections Due to Rhinovirus/Enterovirus Complex in Children and Their Comparison with Those of Respiratory Syncytial Virus. Arch. Pediatr. Infect. Dis. 2021, 10, e115548. [Google Scholar] [CrossRef]
- Baggen, J.; Thibaut, H.J.; Strating, J.R.P.M.; Van Kuppeveld, F.J.M. The Life Cycle of Non-Polio Enteroviruses and How to Target It. Nat. Rev. Microbiol. 2018, 16, 368–381. [Google Scholar] [CrossRef]
- Simmonds, P.; Gorbalenya, A.E.; Harvala, H.; Hovi, T.; Knowles, N.J.; Lindberg, A.M.; Oberste, M.S.; Palmenberg, A.C.; Reuter, G.; Skern, T.; et al. Recommendations for the Nomenclature of Enteroviruses and Rhinoviruses. Arch. Virol. 2020, 165, 793–797. [Google Scholar] [CrossRef]
- Thoelen, I.; Moës, E.; Lemey, P.; Mostmans, S.; Wollants, E.; Lindberg, A.M.; Vandamme, A.-M.; Van Ranst, M. Analysis of the Serotype and Genotype Correlation of VP1 and the 5′ Noncoding Region in an Epidemiological Survey of the Human Enterovirus B Species. J. Clin. Microbiol. 2004, 42, 963–971. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Filipe, I.C.; Guedes, M.S.; Zdobnov, E.M.; Tapparel, C. Enterovirus D: A Small but Versatile Species. Microorganisms 2021, 9, 1758. [Google Scholar] [CrossRef]
- Joffret, M.-L.; Polston, P.M.; Razafindratsimandresy, R.; Bessaud, M.; Heraud, J.-M.; Delpeyroux, F. Whole Genome Sequencing of Enteroviruses Species A to D by High-Throughput Sequencing: Application for Viral Mixtures. Front. Microbiol. 2018, 9, 2339. [Google Scholar] [CrossRef] [PubMed]
- Füzik, T.; Moravcová, J.; Kalynych, S.; Plevka, P. Structure of Human Enterovirus 70 and Its Inhibition by Capsid-Binding Compounds. J. Virol. 2022, 96, e0060422. [Google Scholar] [CrossRef]
- Plevka, P.; Perera, R.; Yap, M.L.; Cardosa, J.; Kuhn, R.J.; Rossmann, M.G. Structure of Human Enterovirus 71 in Complex with a Capsid-Binding Inhibitor. Proc. Natl. Acad. Sci. USA 2013, 110, 5463–5467. [Google Scholar] [CrossRef]
- Wang, S.-H.; Wang, K.; Zhao, K.; Hua, S.-C.; Du, J. The Structure, Function, and Mechanisms of Action of Enterovirus Non-Structural Protein 2C. Front. Microbiol. 2020, 11, 615965. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.D.; Semler, B.L. Bridging IRES Elements in mRNAs to the Eukaryotic Translation Apparatus. Biochim. Biophys. Acta BBA—Gene Regul. Mech. 2009, 1789, 518–528. [Google Scholar] [CrossRef]
- Muslin, C.; Mac Kain, A.; Bessaud, M.; Blondel, B.; Delpeyroux, F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019, 11, 859. [Google Scholar] [CrossRef]
- van der Linden, L.; Wolthers, K.C.; van Kuppeveld, F.J.M. Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses 2015, 7, 4529–4562. [Google Scholar] [CrossRef]
- Buchta, D.; Füzik, T.; Hrebík, D.; Levdansky, Y.; Sukeník, L.; Mukhamedova, L.; Moravcová, J.; Vácha, R.; Plevka, P. Enterovirus Particles Expel Capsid Pentamers to Enable Genome Release. Nat. Commun. 2019, 10, 1138. [Google Scholar] [CrossRef]
- Melia, C.E.; Peddie, C.J.; De Jong, A.W.M.; Snijder, E.J.; Collinson, L.M.; Koster, A.J.; Van Der Schaar, H.M.; Van Kuppeveld, F.J.M.; Bárcena, M. Origins of Enterovirus Replication Organelles Established by Whole-Cell Electron Microscopy. mBio 2019, 10, e00951-19. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Musharrafieh, R.; Zheng, M.; Wang, J. Enterovirus D68 Antivirals: Past, Present, and Future. ACS Infect. Dis. 2020, 6, 1572–1586. [Google Scholar] [CrossRef] [PubMed]
- Kalam, N.; Balasubramaniam, V.R.M.T. Emerging Therapeutics in the Fight Against EV-D68: A Review of Current Strategies. Influenza Other Respir. Viruses 2024, 18, e70064. [Google Scholar] [CrossRef]
- Suhy, D.A.; Giddings, T.H.; Kirkegaard, K. Remodeling the Endoplasmic Reticulum by Poliovirus Infection and by Individual Viral Proteins: An Autophagy-Like Origin for Virus-Induced Vesicles. J. Virol. 2000, 74, 8953–8965. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Cheng, A.; Wen, X.; Ou, X.; Mao, S.; Gao, Q.; Sun, D.; Jia, R.; Yang, Q.; et al. Enterovirus Replication Organelles and Inhibitors of Their Formation. Front. Microbiol. 2020, 11, 1817. [Google Scholar] [CrossRef]
- Galitska, G.; Jassey, A.; Wagner, M.A.; Pollack, N.; Miller, K.; Jackson, W.T. Enterovirus D68 Capsid Formation and Stability Requires Acidic Compartments. mBio 2023, 14, e0214123. [Google Scholar] [CrossRef] [PubMed]
- Owusu, I.A.; Quaye, O.; Passalacqua, K.D.; Wobus, C.E. Egress of Non-Enveloped Enteric RNA Viruses. J. Gen. Virol. 2021, 102, 1557. [Google Scholar] [CrossRef]
- Salmikangas, S.; Laiho, J.E.; Kalander, K.; Laajala, M.; Honkimaa, A.; Shanina, I.; Oikarinen, S.; Horwitz, M.S.; Hyöty, H.; Marjomäki, V. Detection of Viral −RNA and +RNA Strands in Enterovirus-Infected Cells and Tissues. Microorganisms 2020, 8, 1928. [Google Scholar] [CrossRef]
- Haller, A.A.; Semler, B.L. Translation and Host Cell Shutoff. In Human Enterovirus Infections; Rotbart, H.A., Ed.; ASM Press: Washington, DC, USA, 2014; pp. 113–133. ISBN 978-1-68367-272-2. [Google Scholar]
- Chen, T.-C.; Weng, K.-F.; Chang, S.-C.; Lin, J.-Y.; Huang, P.-N.; Shih, S.-R. Development of Antiviral Agents for Enteroviruses. J. Antimicrob. Chemother. 2008, 62, 1169–1173. [Google Scholar] [CrossRef]
- Eshaghi, A.; Duvvuri, V.R.; Isabel, S.; Banh, P.; Li, A.; Peci, A.; Patel, S.N.; Gubbay, J.B. Global Distribution and Evolutionary History of Enterovirus D68, with Emphasis on the 2014 Outbreak in Ontario, Canada. Front. Microbiol. 2017, 8, 257. [Google Scholar] [CrossRef]
- Messacar, K.; Abzug, M.J.; Dominguez, S.R. 2014 Outbreak of Enterovirus D68 in North America. J. Med. Virol. 2016, 88, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Benschop, K.S.; Albert, J.; Anton, A.; Andrés, C.; Aranzamendi, M.; Armannsdóttir, B.; Bailly, J.-L.; Baldanti, F.; Baldvinsdóttir, G.E.; Beard, S.; et al. Re-Emergence of Enterovirus D68 in Europe after Easing the COVID-19 Lockdown, September 2021. Eurosurveillance 2021, 26, 2100998. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ren, L.; Luo, M.; Li, A.; Gong, C.; Chen, M.; Yu, X.; Wu, J.; Deng, Y.; Huang, F. Enterovirus D68-Associated Severe Pneumonia, China, 2014. Emerg. Infect. Dis. 2015, 21, 916–918. [Google Scholar] [CrossRef]
- Thongpan, I.; Wanlapakorn, N.; Vongpunsawad, S.; Linsuwanon, P.; Theamboonlers, A.; Payungporn, S.; Poovorawan, Y. Prevalence and Phylogenetic Characterization of Enterovirus D68 in Pediatric Patients with Acute Respiratory Tract Infection in Thailand. Jpn. J. Infect. Dis. 2016, 69, 426–430. [Google Scholar] [CrossRef]
- Jallow, M.M.; Mendy, M.P.; Barry, M.A.; Diagne, M.M.; Sagne, S.N.; Tall, F.; Diouf, J.B.N.; Ndiaye, N.K.; Kiori, D.; Sy, S.; et al. Real-Time Enterovirus D68 Outbreak Detection through Hospital Surveillance of Severe Acute Respiratory Infection, Senegal, 2023. Emerg. Infect. Dis. 2024, 30, 1687–1691. [Google Scholar] [CrossRef]
- Bal, A.; Schuffenecker, I.; Casalegno, J.-S.; Josset, L.; Valette, M.; Armand, N.; Dhondt, P.B.; Escuret, V.; Lina, B. Enterovirus D68 Nosocomial Outbreak in Elderly People, France, 2014. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2015, 21, e61–e62. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Zhang, Y.; Scheuermann, R.H. Epidemiology and Sequence-Based Evolutionary Analysis of Circulating Non-Polio Enteroviruses. Microorganisms 2020, 8, 1856. [Google Scholar] [CrossRef]
- Ma, K.C.; Winn, A.; Moline, H.L.; Scobie, H.M.; Midgley, C.M.; Kirking, H.L.; Adjemian, J.; Hartnett, K.P.; Johns, D.; Jones, J.M.; et al. Increase in Acute Respiratory Illnesses Among Children and Adolescents Associated with Rhinoviruses and Enteroviruses, Including Enterovirus D68—United States, July-September 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1265–1270. [Google Scholar] [CrossRef]
- Grunnill, M.; Eshaghi, A.; Damodaran, L.; Nagra, S.; Gharouni, A.; Braukmann, T.; Clark, S.; Peci, A.; Isabel, S.; Banh, P.; et al. Inferring Enterovirus D68 Transmission Dynamics from the Genomic Data of Two 2022 North American Outbreaks. Npj Viruses 2024, 2, 34. [Google Scholar] [CrossRef]
- Luong, Q.X.T.; Hoang, P.T.; Ho, P.T.; Ayun, R.Q.; Lee, T.K.; Lee, S. Potential Broad-Spectrum Antiviral Agents: A Key Arsenal Against Newly Emerging and Reemerging Respiratory RNA Viruses. Int. J. Mol. Sci. 2025, 26, 1481. [Google Scholar] [CrossRef]
- Devries, M.K.; Bochkov, Y.A.; Evans, M.D.; Gern, J.E.; Jackson, D.J. Recent Clinical Isolates of Enterovirus D68 Have Increased Replication and Induce Enhanced Epithelial Immune Response Compared to the Protot Ype Fermon Strain. Viruses 2023, 15, 1291. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.K.; Simmonds, P.; Harvala, H. The Importance of Enterovirus Surveillance in a Post-Polio World. Lancet Infect. Dis. 2022, 22, e35–e40. [Google Scholar] [CrossRef] [PubMed]
- Drummond, C.G.; Nickerson, C.A.; Coyne, C.B. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells. mSphere 2016, 1, e00030-15. [Google Scholar] [CrossRef]
- Basta, H.A.; Ashraf, S.; Sgro, J.-Y.; Bochkov, Y.A.; Gern, J.E.; Palmenberg, A.C. Modeling of the Human Rhinovirus C Capsid Suggests Possible Causes for Antiviral Drug Resistance. Virology 2014, 448, 82–90. [Google Scholar] [CrossRef]
- Mello, C.; Aguayo, E.; Rodriguez, M.; Lee, G.; Jordan, R.; Cihlar, T.; Birkus, G. Multiple Classes of Antiviral Agents Exhibit In Vitro Activity against Human Rhinovirus Type C. Antimicrob. Agents Chemother. 2014, 58, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- van der Sanden, S.M.G.; Sachs, N.; Koekkoek, S.M.; Koen, G.; Pajkrt, D.; Clevers, H.; Wolthers, K.C. Enterovirus 71 Infection of Human Airway Organoids Reveals VP1-145 as a Viral Infectivity Determinant. Emerg. Microbes Infect. 2018, 7, 84. [Google Scholar] [CrossRef]
- Sridhar, A.; Depla, J.A.; Mulder, L.A.; Karelehto, E.; Brouwer, L.; Kruiswijk, L.; Vieira De Sá, R.; Meijer, A.; Evers, M.M.; Van Kuppeveld, F.J.M.; et al. Enterovirus D68 Infection in Human Primary Airway and Brain Organoids: No Additional Role for Heparan Sulfate Binding for Neurotropism. Microbiol. Spectr. 2022, 10, e01694-22. [Google Scholar] [CrossRef]
- Xatzipsalti, M.; Papadopoulos, N.G. Cellular and Animals Models for Rhinovirus Infection in Asthma. In Contributions to Microbiology; Sjöbring, U., Taylor, J.D., Eds.; KARGER: Basel, Switzerland, 2007; pp. 33–41. ISBN 978-3-8055-8332-9. [Google Scholar]
- Vermillion, M.S.; Dearing, J.; Zhang, Y.; Adney, D.R.; Scheuermann, R.H.; Pekosz, A.; Tarbet, E.B. Animal Models of Enterovirus D68 Infection and Disease. J. Virol. 2022, 96, e00833-22. [Google Scholar] [CrossRef]
- Bartlett, N.W.; Walton, R.P.; Edwards, M.R.; Aniscenko, J.; Caramori, G.; Zhu, J.; Glanville, N.; Choy, K.J.; Jourdan, P.; Burnet, J.; et al. Mouse Models of Rhinovirus-Induced Disease and Exacerbation of Allergic Airway Inflammation. Nat. Med. 2008, 14, 199–204. [Google Scholar] [CrossRef]
- Singanayagam, A.; Glanville, N.; Walton, R.P.; Aniscenko, J.; Pearson, R.M.; Pinkerton, J.W.; Horvat, J.C.; Hansbro, P.M.; Bartlett, N.W.; Johnston, S.L. A Short-Term Mouse Model That Reproduces the Immunopathological Features of Rhinovirus-Induced Exacerbation of COPD. Clin. Sci. Lond. Engl. 1979 2015, 129, 245–258. [Google Scholar] [CrossRef]
- Toussaint, M.; Jackson, D.J.; Swieboda, D.; Guedán, A.; Tsourouktsoglou, T.-D.; Ching, Y.M.; Radermecker, C.; Makrinioti, H.; Aniscenko, J.; Bartlett, N.W.; et al. Host DNA Released by NETosis Promotes Rhinovirus-Induced Type-2 Allergic Asthma Exacerbation. Nat. Med. 2017, 23, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Traub, S.; Nikonova, A.; Carruthers, A.; Dunmore, R.; Vousden, K.A.; Gogsadze, L.; Hao, W.; Zhu, Q.; Bernard, K.; Zhu, J.; et al. An Anti-Human ICAM-1 Antibody Inhibits Rhinovirus-Induced Exacerbations of Lung Inflammation. PLoS Pathog. 2013, 9, e1003520. [Google Scholar] [CrossRef]
- Glanville, N.; McLean, G.R.; Guy, B.; Lecouturier, V.; Berry, C.; Girerd, Y.; Gregoire, C.; Walton, R.P.; Pearson, R.M.; Kebadze, T.; et al. Cross-Serotype Immunity Induced by Immunization with a Conserved Rhinovirus Capsid Protein. PLoS Pathog. 2013, 9, e1003669. [Google Scholar] [CrossRef]
- Mombo, I.M.; Lukashev, A.N.; Bleicker, T.; Brünink, S.; Berthet, N.; Maganga, G.D.; Durand, P.; Arnathau, C.; Boundenga, L.; Ngoubangoye, B.; et al. African Non-Human Primates Host Diverse Enteroviruses. PLoS ONE 2017, 12, e0169067. [Google Scholar] [CrossRef] [PubMed]
- Sestak, K. Non-Human Primate Models of Enteric Viral Infections. Viruses 2018, 10, 544. [Google Scholar] [CrossRef]
- Zheng, H.-W.; Sun, M.; Guo, L.; Wang, J.-J.; Song, J.; Li, J.-Q.; Li, H.-Z.; Ning, R.-T.; Yang, Z.-N.; Fan, H.-T.; et al. Nasal Infection of Enterovirus D68 Leading to Lower Respiratory Tract Pathogenesis in Ferrets (Mustela Putorius Furo). Viruses 2017, 9, 104. [Google Scholar] [CrossRef]
- Lü, Z.; Dai, X.; Xu, J.; Liu, Z.; Guo, Y.; Gao, Z.; Meng, F. Medicinal Chemistry Strategies toward Broad-Spectrum Antiviral Agents to Prevent next Pandemics. Eur. J. Med. Chem. 2024, 271, 116442. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.; Lo, C.-W.; Einav, S. Preparing for the next Viral Threat with Broad-Spectrum Antivirals. J. Clin. Invest. 2023, 133, e170236. [Google Scholar] [CrossRef]
- Vanderlinden, E.; Vrancken, B.; Van Houdt, J.; Rajwanshi, V.K.; Gillemot, S.; Andrei, G.; Lemey, P.; Naesens, L. Distinct Effects of T-705 (Favipiravir) and Ribavirin on Influenza Virus Replication and Viral RNA Synthesis. Antimicrob. Agents Chemother. 2016, 60, 6679–6691. [Google Scholar] [CrossRef]
- Geraghty, R.J.; Aliota, M.T.; Bonnac, L.F. Broad-Spectrum Antiviral Strategies and Nucleoside Analogues. Viruses 2021, 13, 667. [Google Scholar] [CrossRef]
- Lazear, H.M.; Schoggins, J.W.; Diamond, M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019, 50, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Kejriwal, R.; Evans, T.; Calabrese, J.; Swistak, L.; Alexandrescu, L.; Cohen, M.; Rahman, N.; Henriksen, N.; Charan Dash, R.; Hadden, M.K.; et al. Development of Enterovirus Antiviral Agents That Target the Viral 2C Protein. ChemMedChem 2023, 18, e202200541. [Google Scholar] [CrossRef]
- Lobinska, G.; Pilpel, Y.; Nowak, M.A. Evolutionary Safety of Lethal Mutagenesis Driven by Antiviral Treatment. PLoS Biol. 2023, 21, e3002214. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Kim, C.; Kim, D.; Song, J.-H.; Choi, M.; Choi, K.; Kang, M.; Lee, K.; Kim, H.S.; Shin, J.S.; et al. Synergistic Antiviral Activity of Gemcitabine and Ribavirin against Enteroviruses. Antiviral Res. 2015, 124, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sheng, J.; Fokine, A.; Meng, G.; Shin, W.-H.; Long, F.; Kuhn, R.J.; Kihara, D.; Rossmann, M.G. Structure and Inhibition of EV-D68, a Virus That Causes Respiratory Illness in Children. Science 2015, 347, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Hayden, F.G.; Herrington, D.T.; Coats, T.L.; Kim, K.; Cooper, E.C.; Villano, S.A.; Liu, S.; Hudson, S.; Pevear, D.C.; Collett, M.; et al. Efficacy and Safety of Oral Pleconaril for Treatment of Colds Due to Picornaviruses in Adults: Results of 2 Double-Blind, Randomized, Placebo-Controlled Trials. Clin. Infect. Dis. 2003, 36, 1523–1532. [Google Scholar] [CrossRef]
- Senior, K. FDA Panel Rejects Common Cold Treatment. Lancet Infect. Dis. 2002, 2, 264. [Google Scholar] [CrossRef]
- Hayden, F.G.; Andries, K.; Janssen, P.A. Safety and Efficacy of Intranasal Pirodavir (R77975) in Experimental Rhinovirus Infection. Antimicrob. Agents Chemother. 1992, 36, 727–732. [Google Scholar] [CrossRef]
- Hayden, F.G.; Hipskind, G.J.; Woerner, D.H.; Eisen, G.F.; Janssens, M.; Janssen, P.A.; Andries, K. Intranasal Pirodavir (R77,975) Treatment of Rhinovirus Colds. Antimicrob. Agents Chemother. 1995, 39, 290–294. [Google Scholar] [CrossRef]
- Stoyanova, A.; Galabov, S.; Galabov, A.S. Antiviral Activity in Vitro of Double Combinations of Enteroviral Inhibitors. Acta Virol. 2024, 68, 12361. [Google Scholar] [CrossRef]
- Amdani, S.M.; Kim, H.S.; Orvedahl, A.; John, A.O.; Said, A.; Simpson, K. Successful Treatment of Fulminant Neonatal Enteroviral Myocarditis in Monochorionic Diamniotic Twins with Cardiopulmonary Support, Intravenous Immunoglobulin and Pocapavir. BMJ Case Rep. 2018, 2018, bcr-2017-224133. [Google Scholar] [CrossRef] [PubMed]
- Real-Hohn, A.; Blaas, D. Rhinovirus Inhibitors: Including a New Target, the Viral RNA. Viruses 2021, 13, 1784. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Fan, S.; Cao, R.; Li, X.; He, X.; Li, W.; Xu, L.; Cheng, T.; Li, H.; et al. Discovery and Optimization of Quinoline Analogues as Novel Potent Antivirals against Enterovirus D68. J. Med. Chem. 2022, 65, 14792–14808. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Hu, Y.; Zhang, J.; Musharrafieh, R.; Wang, J. A Novel Capsid Binding Inhibitor Displays Potent Antiviral Activity against Enterovirus D68. ACS Infect. Dis. 2019, 5, 1952–1962. [Google Scholar] [CrossRef] [PubMed]
- Biota Pharmaceuticals, Inc. A Phase 2, Multicenter, Randomized, Double-Blind, Placebo-Controlled Dose-Ranging Study of Vapendavir in Moderate to Severe Asthmatic Adults with Symptomatic Human Rhinovirus Infection. Clinical Trials for Eudract_number:2014-001785-95. Available online: https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2014-001785-95 (accessed on 18 March 2025).
- NCT06149494; RCT of Vapendavir in Patients with COPD and Human Rhinovirus/Enterovirus Upper Respiratory Infection. Altesa Biosciences, Inc.: Atlanta, GA, USA, 2025. Available online: https://clinicaltrials.gov/study/NCT06149494 (accessed on 7 May 2025).
- China Daily Domestically Developed Drug Joins Virus Battle. Available online: https://english.nmpa.gov.cn/2022-08/15/c_797867.htm (accessed on 18 March 2025).
- Li, Y.; Liu, M.; Yan, Y.; Wang, Z.; Dai, Q.; Yang, X.; Guo, X.; Li, W.; Chen, X.; Cao, R.; et al. Molnupiravir and Its Active Form, EIDD-1931, Show Potent Antiviral Activity against Enterovirus Infections In Vitro and In Vivo. Viruses 2022, 14, 1142. [Google Scholar] [CrossRef]
- Medicines and Healthcare Products Regulatory Agency (MHRA) First Oral Antiviral for COVID-19, Lagevrio (Molnupiravir); MHRA: London, UK, 2021.
- Bauer, L.; Manganaro, R.; Zonsics, B.; Strating, J.R.P.M.; El Kazzi, P.; Lorenzo Lopez, M.; Ulferts, R.; van Hoey, C.; Maté, M.J.; Langer, T.; et al. Fluoxetine Inhibits Enterovirus Replication by Targeting the Viral 2C Protein in a Stereospecific Manner. ACS Infect. Dis. 2019, 5, 1609–1623. [Google Scholar] [CrossRef]
- Messacar, K.; Sillau, S.; Hopkins, S.; Otten, C.; Wilson-Murphy, M.; Wong, B.; Santoro, J.; Treister, A.; Tokhie, H.; Torres, A.; et al. 1901. Safety, Tolerability, and Efficacy of Fluoxetine as an Antiviral for Enterovirus D68 Associated Acute Flaccid Myelitis: A Retrospective Multicenter Cohort Study. Open Forum Infect. Dis. 2018, 5, S546–S547. [Google Scholar] [CrossRef]
- Hurst, B.L.; Evans, W.J.; Smee, D.F.; Van Wettere, A.J.; Tarbet, E.B. Evaluation of Antiviral Therapies in Respiratory and Neurological Disease Models of Enterovirus D68 Infection in Mice. Virology 2019, 526, 146–154. [Google Scholar] [CrossRef]
- Hall, C.B.; Walsh, E.E.; Hruska, J.F.; Betts, R.F.; Hall, W.J. Ribavirin Treatment of Experimental Respiratory Syncytial Viral Infection. A Controlled Double-Blind Study in Young Adults. JAMA 1983, 249, 2666–2670. [Google Scholar] [CrossRef]
- Casanova, V.; Sousa, F.H.; Stevens, C.; Barlow, P.G. Antiviral Therapeutic Approaches for Human Rhinovirus Infections. Future Virol. 2018, 13, 505–518. [Google Scholar] [CrossRef]
- Nyström, K.; Waldenström, J.; Tang, K.-W.; Lagging, M. Ribavirin: Pharmacology, Multiple Modes of Action and Possible Future Perspectives. Future Virol. 2019, 14, 153–160. [Google Scholar] [CrossRef]
- Rhoden, E.; Zhang, M.; Nix, W.A.; Oberste, M.S. In Vitro Efficacy of Antiviral Compounds against Enterovirus D68. Antimicrob. Agents Chemother. 2015, 59, 7779–7781. [Google Scholar] [CrossRef] [PubMed]
- Hayden, F.G.; Turner, R.B.; Gwaltney, J.M.; Chi-Burris, K.; Gersten, M.; Hsyu, P.; Patick, A.K.; Smith, G.J.; Zalman, L.S. Phase II, Randomized, Double-Blind, Placebo-Controlled Studies of Ruprintrivir Nasal Spray 2-Percent Suspension for Prevention and Treatment of Experimentally Induced Rhinovirus Colds in Healthy Volunteers. Antimicrob. Agents Chemother. 2003, 47, 3907–3916. [Google Scholar] [CrossRef] [PubMed]
- Musharrafieh, R.; Ma, C.; Zhang, J.; Hu, Y.; Diesing, J.M.; Marty, M.T.; Wang, J. Validating Enterovirus D68-2Apro as an Antiviral Drug Target and the Discovery of Telaprevir as a Potent D68-2Apro Inhibitor. J. Virol. 2019, 93, e02221-18. [Google Scholar] [CrossRef]
- Frost, J.; Rudy, M.J.; Leser, J.S.; Tan, H.; Hu, Y.; Wang, J.; Clarke, P.; Tyler, K.L. Telaprevir Treatment Reduces Paralysis in a Mouse Model of Enterovirus D68 Acute Flaccid Myelitis. J. Virol. 2023, 97, e0015623. [Google Scholar] [CrossRef]
- Kankam, M.K.; Burns, J.M.; Collett, M.S.; Corrado, M.L.; Hincks, J.R. A Phase 1 Study of the Safety, Tolerability, and Pharmacokinetics of Single and Multiple Oral Doses of V-7404 in Healthy Adult Volunteers. Antimicrob. Agents Chemother. 2021, 65, e01029-21. [Google Scholar] [CrossRef]
- Guedán, A.; Swieboda, D.; Charles, M.; Toussaint, M.; Johnston, S.L.; Asfor, A.; Panjwani, A.; Tuthill, T.J.; Danahay, H.; Raynham, T.; et al. Investigation of the Role of Protein Kinase D in Human Rhinovirus Replication. J. Virol. 2017, 91, e00217-17. [Google Scholar] [CrossRef] [PubMed]
- NCT05016687; First-in-Human Clinical Trial Evaluating CUR-N399 in Healthy Volunteers. Curovir AB: Kalmar, Sweden, 2022. Available online: https://clinicaltrials.gov/study/NCT05016687 (accessed on 7 May 2025).
- Salvatore, M.; Satlin, M.J.; Jacobs, S.E.; Jenkins, S.G.; Schuetz, A.N.; Moss, R.B.; Van Besien, K.; Shore, T.; Soave, R. DAS181 for Treatment of Parainfluenza Virus Infections in Hematopoietic Stem Cell Transplant Recipients at a Single Center. Biol. Blood Marrow Transplant. 2016, 22, 965–970. [Google Scholar] [CrossRef]
- Marjuki, H.; Mishin, V.P.; Chesnokov, A.P.; De La Cruz, J.A.; Fry, A.M.; Villanueva, J.; Gubareva, L.V. An Investigational Antiviral Drug, DAS181, Effectively Inhibits Replication of Zoonotic Influenza A Virus Subtype H7N9 and Protects Mice from Lethality. J. Infect. Dis. 2014, 210, 435–440. [Google Scholar] [CrossRef]
- Sun, L.; Meijer, A.; Froeyen, M.; Zhang, L.; Thibaut, H.J.; Baggen, J.; George, S.; Vernachio, J.; van Kuppeveld, F.J.M.; Leyssen, P.; et al. Antiviral Activity of Broad-Spectrum and Enterovirus-Specific Inhibitors against Clinical Isolates of Enterovirus D68. Antimicrob. Agents Chemother. 2015, 59, 7782–7785. [Google Scholar] [CrossRef]
- Miller, F.D.; Monto, A.S.; DeLong, D.C.; Exelby, A.; Bryan, E.R.; Srivastava, S. Controlled Trial of Enviroxime against Natural Rhinovirus Infections in a Community. Antimicrob. Agents Chemother. 1985, 27, 102–106. [Google Scholar] [CrossRef]
- Smee, D.F.; Evans, W.J.; Nicolaou, K.C.; Tarbet, E.B.; Day, C.W. Susceptibilities of Enterovirus D68, Enterovirus 71, and Rhinovirus 87 Strains to Various Antiviral Compounds. Antiviral Res. 2016, 131, 61–65. [Google Scholar] [CrossRef] [PubMed]
- NCT05677347; Phase 1, Single and Repeat Dose Study to Assess Safety, Tolerability, and Pharmacokinetics (PK) of GSK3923868 in Participants with Chronic Obstructive Pulmonary Disease (COPD). GlaxoSmithKline: London, UK, 2024. Available online: https://clinicaltrials.gov/study/NCT05677347?rank=1 (accessed on 14 May 2025).
- NCT04585009; Safety, Tolerability and Pharmacokinetics of GSK3923868 Inhalation Powder in Healthy Participants and Stable Asthmatics. GlaxoSmithKline: London, UK, 2024. Available online: https://clinicaltrials.gov/study/NCT04585009?rank=1 (accessed on 14 May 2025).
- NCT05398198; Efficacy and Safety of GSK3923868 Inhalation Powder, During Experimental Human Rhinovirus Infection in Participants With Mild Asthma. GlaxoSmithKline: London, UK, 2024. Available online: https://clinicaltrials.gov/study/NCT05398198 (accessed on 7 May 2025).
- Shim, A.; Song, J.-H.; Kwon, B.-E.; Lee, J.-J.; Ahn, J.-H.; Kim, Y.-J.; Rhee, K.-J.; Chang, S.-Y.; Cha, Y.; Lee, Y.-S.; et al. Therapeutic and Prophylactic Activity of Itraconazole against Human Rhinovirus Infection in a Murine Model. Sci. Rep. 2016, 6, 23110. [Google Scholar] [CrossRef]
- Strating, J.R.P.M.; van der Linden, L.; Albulescu, L.; Bigay, J.; Arita, M.; Delang, L.; Leyssen, P.; van der Schaar, H.M.; Lanke, K.H.W.; Thibaut, H.J.; et al. Itraconazole Inhibits Enterovirus Replication by Targeting the Oxysterol-Binding Protein. Cell Rep. 2015, 10, 600–615. [Google Scholar] [CrossRef]
- NCT04908800; A Study to Evaluate the Safety, Tolerability, and Pharmacokinetics of KRP-A218 in Healthy Subjects. Kyorin Pharmaceutical Co.,Ltd.: Tokyo, Japan, 2024. Available online: https://clinicaltrials.gov/study/NCT04908800 (accessed on 7 May 2025).
- Zhao, Z.; Li, Z.; Huan, C.; Liu, X.; Zhang, W. SAMHD1 Inhibits Multiple Enteroviruses by Interfering with the Interaction between VP1 and VP2 Proteins. J. Virol. 2021, 95, e0062021. [Google Scholar] [CrossRef] [PubMed]
- Laajala, M.; Zwaagstra, M.; Martikainen, M.; Nekoua, M.P.; Benkahla, M.; Sane, F.; Gervais, E.; Campagnola, G.; Honkimaa, A.; Sioofy-Khojine, A.-B.; et al. Vemurafenib Inhibits Acute and Chronic Enterovirus Infection by Affecting Cellular Kinase Phosphatidylinositol 4-Kinase Type IIIβ. Microbiol. Spectr. 2023, 11, e00552-23. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wang, J.; Li, B.; Guo, L.; Li, H.; Song, J.; Yang, Z.; Li, H.; Fan, H.; Huang, X.; et al. A Novel Neutralizing Antibody Specific to the DE Loop of VP1 Can Inhibit EV-D68 Infection in Mice. J. Immunol. Baltim. Md 1950 2018, 201, 2557–2569. [Google Scholar] [CrossRef]
- Vogt, M.R.; Fu, J.; Kose, N.; Williamson, L.E.; Bombardi, R.; Setliff, I.; Georgiev, I.S.; Klose, T.; Rossmann, M.G.; Hurst, B.L.; et al. Human Antibodies Neutralize Enterovirus D68 and Protect against Infection and Paralytic Disease. Sci. Immunol. 2020, 5, eaba4902. [Google Scholar] [CrossRef]
- NCT06444048; Phase 1, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Safety and Tolerability of an Enterovirus D68-Specific Monoclonal Antibody in Healthy Adults. National Institute of Allergy and Infectious Diseases (NIAID): Hamilton, MO, USA, 2025. Available online: https://clinicaltrials.gov/study/NCT06444048 (accessed on 18 March 2025).
- Pevear, D.C.; Tull, T.M.; Seipel, M.E.; Groarke, J.M. Activity of Pleconaril against Enteroviruses. Antimicrob. Agents Chemother. 1999, 43, 2109–2115. [Google Scholar] [CrossRef]
- Abzug, M.J.; Michaels, M.G.; Wald, E.; Jacobs, R.F.; Romero, J.R.; Sánchez, P.J.; Wilson, G.; Krogstad, P.; Storch, G.A.; Lawrence, R.; et al. A Randomized, Double-Blind, Placebo-Controlled Trial of Pleconaril for the Treatment of Neonates With Enterovirus Sepsis. J. Pediatr. Infect. Dis. Soc. 2016, 5, 53–62. [Google Scholar] [CrossRef]
- Feil, S.C.; Hamilton, S.; Krippner, G.Y.; Lin, B.; Luttick, A.; McConnell, D.B.; Nearn, R.; Parker, M.W.; Ryan, J.; Stanislawski, P.C.; et al. An Orally Available 3-Ethoxybenzisoxazole Capsid Binder with Clinical Activity against Human Rhinovirus. ACS Med. Chem. Lett. 2012, 3, 303–307. [Google Scholar] [CrossRef]
- Torres-Torres, S.; Myers, A.L.; Klatte, J.M.; Rhoden, E.E.; Oberste, M.S.; Collett, M.S.; McCulloh, R.J. First Use of Investigational Antiviral Drug Pocapavir (V-073) for Treating Neonatal Enteroviral Sepsis. Pediatr. Infect. Dis. J. 2015, 34, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, C. P58 An Antiviral Dilemma—Reflections on the Pocapavir Predicament. In Proceedings of the Abstracts form the Neonatal and Paediatric Pharmacy Conference 2023; BMJ Publishing Group Ltd.: Cheshire, UK, 2024; pp. A38–A39. [Google Scholar]
- Magden, J.; Kääriäinen, L.; Ahola, T. Inhibitors of Virus Replication: Recent Developments and Prospects. Appl. Microbiol. Biotechnol. 2005, 66, 612–621. [Google Scholar] [CrossRef]
- FDA. INCIVEK® (Telaprevir) Tablets, for Oral Use; Food and Drug Administration: Silver Spring, MD, USA, 2013. [Google Scholar]
- Li, Z.; Yao, F.; Xue, G.; Xu, Y.; Niu, J.; Cui, M.; Wang, H.; Wu, S.; Lu, A.; Zhong, J.; et al. Antiviral Effects of Simeprevir on Multiple Viruses. Antiviral Res. 2019, 172, 104607. [Google Scholar] [CrossRef]
- Xia, H.; Wang, P.; Wang, G.-C.; Yang, J.; Sun, X.; Wu, W.; Qiu, Y.; Shu, T.; Zhao, X.; Yin, L.; et al. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone. PLoS Pathog. 2015, 11, e1005067. [Google Scholar] [CrossRef] [PubMed]
- Tyler, K.L. Rationale for the Evaluation of Fluoxetine in the Treatment of Enterovirus D68-Associated Acute Flaccid Myelitis. JAMA Neurol. 2015, 72, 493–494. [Google Scholar] [CrossRef] [PubMed]
- Ulferts, R.; Van Der Linden, L.; Thibaut, H.J.; Lanke, K.H.W.; Leyssen, P.; Coutard, B.; De Palma, A.M.; Canard, B.; Neyts, J.; Van Kuppeveld, F.J.M. Selective Serotonin Reuptake Inhibitor Fluoxetine Inhibits Replication of Human Enteroviruses B and D by Targeting Viral Protein 2C. Antimicrob. Agents Chemother. 2013, 57, 1952–1956. [Google Scholar] [CrossRef]
- Hixon, A.M.; Clarke, P.; Tyler, K.L. Evaluating Treatment Efficacy in a Mouse Model of Enterovirus D68–Associated Paralytic Myelitis. J. Infect. Dis. 2017, 216, 1245–1253. [Google Scholar] [CrossRef]
- Gofshteyn, J.; Cárdenas, A.M.; Bearden, D. Treatment of Chronic Enterovirus Encephalitis With Fluoxetine in a Patient With X-Linked Agammaglobulinemia. Pediatr. Neurol. 2016, 64, 94–98. [Google Scholar] [CrossRef]
- Patick, A.K.; Binford, S.L.; Brothers, M.A.; Jackson, R.L.; Ford, C.E.; Diem, M.D.; Maldonado, F.; Dragovich, P.S.; Zhou, R.; Prins, T.J.; et al. In Vitro Antiviral Activity of AG7088, a Potent Inhibitor of Human Rhinovirus 3C Protease. Antimicrob. Agents Chemother. 1999, 43, 2444–2450. [Google Scholar] [CrossRef]
- Xu, N.; Yang, J.; Zheng, B.; Zhang, Y.; Cao, Y.; Huan, C.; Wang, S.; Chang, J.; Zhang, W. The Pyrimidine Analog FNC Potently Inhibits the Replication of Multiple Enteroviruses. J. Virol. 2020, 94, e00204-20. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.L.; Esteban-Mur, R.; Rustgi, V.; Hoefs, J.; Gordon, S.C.; Trepo, C.; Shiffman, M.L.; Zeuzem, S.; Craxi, A.; Ling, M.-H.; et al. Interferon Alfa-2b Alone or in Combination with Ribavirin for the Treatment of Relapse of Chronic Hepatitis C. N. Engl. J. Med. 1998, 339, 1493–1499. [Google Scholar] [CrossRef]
- Te, H.S.; Randall, G.; Jensen, D.M. Mechanism of Action of Ribavirin in the Treatment of Chronic Hepatitis C. Gastroenterol. Hepatol. 2007, 3, 218–225. [Google Scholar]
- Crotty, S.; Cameron, C.E.; Andino, R. RNA Virus Error Catastrophe: Direct Molecular Test by Using Ribavirin. Proc. Natl. Acad. Sci. USA 2001, 98, 6895–6900. [Google Scholar] [CrossRef]
- Leyssen, P.; Balzarini, J.; De Clercq, E.; Neyts, J. The Predominant Mechanism by Which Ribavirin Exerts Its Antiviral Activity In Vitro against Flaviviruses and Paramyxoviruses Is Mediated by Inhibition of IMP Dehydrogenase. J. Virol. 2005, 79, 1943–1947. [Google Scholar] [CrossRef]
- Ruuskanen, O.; Waris, M.; Kainulainen, L. Treatment of Persistent Rhinovirus Infection with Pegylated Interferon A2a and Ribavirin in Patients with Hypogammaglobulinemia. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2014, 58, 1784–1786. [Google Scholar] [CrossRef] [PubMed]
- Sheahan, T.P.; Sims, A.C.; Zhou, S.; Graham, R.L.; Pruijssers, A.J.; Agostini, M.L.; Leist, S.R.; Schäfer, A.; Dinnon, K.H.; Stevens, L.J.; et al. An Orally Bioavailable Broad-Spectrum Antiviral Inhibits SARS-CoV-2 in Human Airway Epithelial Cell Cultures and Multiple Coronaviruses in Mice. Sci. Transl. Med. 2020, 12, eabb5883. [Google Scholar] [CrossRef]
- Syed, Y.Y. Molnupiravir: First Approval. Drugs 2022, 82, 455–460. [Google Scholar] [CrossRef]
- Coggins, S.A.; Mahboubi, B.; Schinazi, R.F.; Kim, B. SAMHD1 Functions and Human Diseases. Viruses 2020, 12, 382. [Google Scholar] [CrossRef]
- Laguette, N.; Sobhian, B.; Casartelli, N.; Ringeard, M.; Chable-Bessia, C.; Ségéral, E.; Yatim, A.; Emiliani, S.; Schwartz, O.; Benkirane, M. SAMHD1 Is the Dendritic- and Myeloid-Cell-Specific HIV-1 Restriction Factor Counteracted by Vpx. Nature 2011, 474, 654–657. [Google Scholar] [CrossRef]
- van der Schaar, H.M.; van der Linden, L.; Lanke, K.H.W.; Strating, J.R.P.M.; Pürstinger, G.; de Vries, E.; de Haan, C.A.M.; Neyts, J.; van Kuppeveld, F.J.M. Coxsackievirus Mutants That Can Bypass Host Factor PI4KIIIβ and the Need for High Levels of PI4P Lipids for Replication. Cell Res. 2012, 22, 1576–1592. [Google Scholar] [CrossRef] [PubMed]
- Hammond, G.R.V.; Burke, J.E. Novel Roles of Phosphoinositides in Signaling, Lipid Transport, and Disease. Curr. Opin. Cell Biol. 2020, 63, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Phillpotts, R.J.; Jones, R.W.; Delong, D.C.; Reed, S.E.; Wallace, J.; Tyrrell, D.A. The Activity of Enviroxime against Rhinovirus Infection in Man. Lancet Lond. Engl. 1981, 1, 1342–1344. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, J.; Baggen, J.; Meng, G.; Xiao, C.; Thibaut, H.J.; Van Kuppeveld, F.J.M.; Rossmann, M.G. Sialic Acid-Dependent Cell Entry of Human Enterovirus D68. Nat. Commun. 2015, 6, 8865. [Google Scholar] [CrossRef]
- Shukla, S.D.; Shastri, M.D.; Vanka, S.K.; Jha, N.K.; Dureja, H.; Gupta, G.; Chellappan, D.K.; Oliver, B.G.; Dua, K.; Walters, E.H. Targeting Intercellular Adhesion Molecule-1 (ICAM-1) to Reduce Rhinovirus-Induced Acute Exacerbations in Chronic Respiratory Diseases. Inflammopharmacology 2022, 30, 725–735. [Google Scholar] [CrossRef]
- Bianco, A.; Whiteman, S.C.; Sethi, S.K.; Allen, J.T.; Knight, R.A.; Spiteri, M.A. Expression of Intercellular Adhesion Molecule-1 (ICAM-1) in Nasal Epithelial Cells of Atopic Subjects: A Mechanism for Increased Rhinovirus Infection? Clin. Exp. Immunol. 2000, 121, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Krug, P.W.; Wang, L.; Shi, W.; Kong, W.-P.; Moss, D.L.; Yang, E.S.; Fisher, B.E.; Morabito, K.M.; Mascola, J.R.; Kanekiyo, M.; et al. EV-D68 Virus-like Particle Vaccines Elicit Cross-Clade Neutralizing Antibodies That Inhibit Infection and Block Dissemination. Sci. Adv. 2023, 9, eadg6076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, X.; Zhang, W.; Dai, W.; Xie, J.; Ye, L.; Wang, H.; Chen, H.; Liu, Q.; Gong, S.; et al. Enterovirus D68 Virus-like Particles Expressed in Pichia Pastoris Potently Induce Neutralizing Antibody Responses and Confer Protection against Lethal Viral Infection in Mice. Emerg. Microbes Infect. 2018, 7, 1–22. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Dai, W.; Liu, Q.; Xiong, P.; Wang, S.; Geng, L.; Gong, S.; Huang, Z. A Mouse Model of Enterovirus D68 Infection for Assessment of the Efficacy of Inactivated Vaccine. Viruses 2018, 10, 58. [Google Scholar] [CrossRef]
- Dai, W.; Zhang, C.; Zhang, X.; Xiong, P.; Liu, Q.; Gong, S.; Geng, L.; Zhou, D.; Huang, Z. A Virus-like Particle Vaccine Confers Protection against Enterovirus D68 Lethal Challenge in Mice. Vaccine 2018, 36, 653–659. [Google Scholar] [CrossRef]
- Patel, M.C.; Wang, W.; Pletneva, L.M.; Rajagopala, S.V.; Tan, Y.; Hartert, T.V.; Boukhvalova, M.S.; Vogel, S.N.; Das, S.R.; Blanco, J.C.G. Enterovirus D-68 Infection, Prophylaxis, and Vaccination in a Novel Permissive Animal Model, the Cotton Rat (Sigmodon Hispidus). PLoS ONE 2016, 11, e0166336. [Google Scholar] [CrossRef]
- NCBI Datasets Kunming (KM) Strain—Enterovirus D68 Isolate RVL_KM201703 Polyprotein Gene, Partial Cds—MG991260. Available online: https://www.ncbi.nlm.nih.gov/search/all/?term=MG991260 (accessed on 18 March 2025).
- Behzadi, M.A.; Choi, A.; Duehr, J.; Feyznezhad, R.; Upadhyay, C.; Schotsaert, M.; Palese, P.; Nachbagauer, R. A Cross-Reactive Mouse Monoclonal Antibody against Rhinovirus Mediates Phagocytosis In Vitro. Sci. Rep. 2020, 10, 9750. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, M.; Bruner, P.J. Polio Vaccine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Lin, Y.-L.; Cheng, P.-Y.; Chin, C.-L.; Chuang, K.-T.; Lin, J.-Y.; Chang, N.; Pan, C.-K.; Lin, C.-S.; Pan, S.-C.; Chiang, B.-L. A Novel Mucosal Bivalent Vaccine of EV-A71/EV-D68 Adjuvanted with Polysaccharides from Ganoderma Lucidum Protects Mice against EV-A71 and EV-D68 Lethal Challenge. J. Biomed. Sci. 2023, 30, 96. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, A.B.; Shen, E.Q.L.; Melendez, M.; Mishra, N.; Lipkin, W.I.; Racaniello, V.R. Cross-Reactive Antibody Responses against Nonpoliovirus Enteroviruses. mBio 2022, 13, e0366021. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Nguyen, M.T.; Currier, M.G.; Jenkins, J.B.; Strobert, E.A.; Kajon, A.E.; Madan-Lala, R.; Bochkov, Y.A.; Gern, J.E.; Roy, K.; et al. A Polyvalent Inactivated Rhinovirus Vaccine Is Broadly Immunogenic in Rhesus Macaques. Nat. Commun. 2016, 7, 12838. [Google Scholar] [CrossRef]
- Pyle, C.J.; Patel, N.D.; Edwards, M.R.; Shaw, S.; Johnston, S.L.; Shaw, S. Pre-Clinical Development of a Novel Cross-Protective Rhinovirus Vaccine. Eur. Respir. J. 2024, 64, OA5461. [Google Scholar]
- APOLLO Therapeutics Pipeline—Status for All Assets Progressed into Full Development. Available online: https://www.apollotx.com/pipeline/ (accessed on 14 May 2025).
- Vardavas, C.; Zisis, K.; Nikitara, K.; Lagou, I.; Marou, V.; Aslanoglou, K.; Athanasakis, K.; Phalkey, R.; Leonardi-Bee, J.; Fernandez, E.; et al. Cost of the COVID-19 Pandemic versus the Cost-Effectiveness of Mitigation Strategies in EU/UK/OECD: A Systematic Review. BMJ Open 2023, 13, e077602. [Google Scholar] [CrossRef]
- Ireland, J.; Segura, J.; Shi, G.; Buchwald, J.; Roth, G.; Shen, T.J.; Wang, R.; Ji, X.; Fischer, E.R.; Moir, S.; et al. Inhibition of HIV-1 Release by ADAM Metalloproteinase Inhibitors. Front. Microbiol. 2024, 15, 1385775. [Google Scholar] [CrossRef]
- Nyame, P.; Togami, A.; Yoshida, T.; Masunaga, T.; Begum, M.M.; Terasawa, H.; Monde, N.; Tahara, Y.; Tanaka, R.; Tanaka, Y.; et al. A Heterocyclic Compound Inhibits Viral Release by Inducing Cell Surface BST2/Tetherin/CD317/HM1.24. J. Biol. Chem. 2024, 300, 107701. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).