Delineating the Significance of Several Inflammatory Markers in a Lung Tuberculosis Cohort During the Active and Post-Tuberculosis Stages of the Disease: An Observational Study in Cape Town, South Africa (2019 to 2024)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Phlebotomy
2.3. Measuring Serum Inflammatory Markers with ELISA
2.4. Statistics
3. Results
3.1. Patient Demographic Data
3.2. Clinical Data
3.3. Inflammatory Markers
3.4. Correlation of Cytokines with Clinical Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Global Tuberculosis Report 2023; World Health Organization (WHO): Geneva, Switzerland, 2023; Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023 (accessed on 4 March 2025).
- Glaziou, P.; Floyd, K.; Raviglione, M.C. Global Epidemiology of Tuberculosis. Semin. Respir. Crit. Care Med. 2018, 39, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Migliori, G.B.; Nardell, E.; Yedilbayev, A.; D’Ambrosio, L.; Centis, R.; Tadolini, M.; Van Den Boom, M.; Ehsani, S.; Sotgiu, G.; Dara, M. Reducing tuberculosis transmission: A consensus document from the World Health Organization Regional Office for Europe. Eur. Respir. J. 2019, 53, 1900391. [Google Scholar] [CrossRef]
- Drain, P.K.; Bajema, K.L.; Dowdy, D.; Dheda, K.; Naidoo, K.; Schumacher, S.G.; Ma, S.; Meermeier, E.; Lewinsohn, D.M.; Sherman, D.R. Incipient and Subclinical Tuberculosis: A Clinical Review of Early Stages and Progression of Infection. Clin. Microbiol. Rev. 2018, 31, 10–1128. [Google Scholar] [CrossRef]
- Allwood, B.W.; Van Der Zalm, M.M.; Amaral, A.F.S.; Byrne, A.; Datta, S.; Egere, U.; Evans, C.A.; Evans, D.; Gray, D.M.; Hoddinott, G.; et al. Post-tuberculosis lung health: Perspectives from the First International Symposium. Int. J. Tuberc. Lung Dis. 2020, 24, 820–828. [Google Scholar] [CrossRef]
- Willcox, P.A.; Ferguson, A.D. Chronic obstructive airways disease following treated pulmonary tuberculosis. Respir. Med. 1989, 83, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.S.H.; Roed, C.; Andersen, P.H.; Andersen, Å.B.; Obel, N. Long-term mortality in patients with pulmonary and extrapulmonary tuberculosis: A Danish nationwide cohort study. Clin. Epidemiol. 2014, 6, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Tocque, K.; Convrey, R.P.; Bellis, M.A.; Beeching, N.J.; Davies, P.D. Elevated mortality following diagnosis with a treatable disease: Tuberculosis. Int. J. Tuberc. Lung Dis. 2005, 9, 797–802. [Google Scholar]
- Maarman, G.J. Could melatonin be an adjunct therapy for post-TB lung disease? Melatonin Res. 2021, 4, 431–439. [Google Scholar] [CrossRef]
- Malefane, L.; Maarman, G. Post-tuberculosis lung disease and inflammatory role players: Can we characterise the myriad inflammatory pathways involved to gain a better understanding? Chem. Biol. Interact. 2024, 387, 110817. [Google Scholar] [CrossRef]
- Louw, E.; Baines, N.; Maarman, G.; Osman, M.; Sigwadhi, L.; Irusen, E.; Koegelenberg, C.; Doubell, A.; Nathan, S.; Channick, R.; et al. The prevalence of pulmonary hypertension after successful tuberculosis treatment in a community sample of adult patients. Pulm. Circ. 2023, 13, e12184. [Google Scholar] [CrossRef]
- National Research Council (US) Committee on Hazardous Biological Substances in the Laboratory, Biosafety in Microbiological and Biomedical Laboratories. Biosafety in The Laboratory: Prudent Practices for the Handling and Disposal of Infectious Materials; National Academies Press (US): Washington, DC, USA, 1989; pp. 83–141. Available online: https://www.ncbi.nlm.nih.gov/books/NBK218631/ (accessed on 4 March 2025).
- Ren, W.; Li, H.; Guo, C.; Shang, Y.; Wang, W.; Zhang, X.; Li, S.; Pang, Y. Serum Cytokine Biomarkers for Use in Diagnosing Pulmonary Tuberculosis versus Chronic Pulmonary Aspergillosis. Infect. Drug Resist. 2023, 2023, 2217–2226. [Google Scholar] [CrossRef]
- Nehring, S.M.; Goyal, A.; Bansal, P.; Patel, B.C. C Reactive Protein. StatPearls 2023, 65, 237–244. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441843/ (accessed on 4 March 2025).
- Fischer, E.; Van Zee, K.; Marano, M.; Rock, C.; Kenney, J.; Poutsiaka, D.; Dinarello, C.; Lowry, S.; Moldawer, L. Interleukin-1 Receptor Antagonist Circulates in Experimental Inflammation and in Human Disease. Blood 1992, 79, 2196–2200. [Google Scholar] [CrossRef]
- Ogawa, T.; Uchida, H.; Kusumoto, Y.; Mori, Y.; Yamamura, Y.; Hamada, S. Increase in tumor necrosis factor alpha- and interleukin-6-secreting cells in peripheral blood mononuclear cells from subjects infected with Mycobacterium tuberculosis. Infect. Immun. 1991, 59, 3021. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 2009, 136, 37–49. [Google Scholar] [CrossRef]
- Divangahi, M.; Behar, S.M.; Remold, H. Dying to live: How the death modality of the infected macrophage affects immunity to tuberculosis. Adv. Exp. Med. Biol. 2013, 783, 103. [Google Scholar] [CrossRef]
- Rambaran, S.; Naidoo, K.; Lewis, L.; Hassan-Moosa, R.; Govender, D.; Samsunder, N.; Scriba, T.J.; Padayatchi, N.; Sivro, A. Effect of Inflammatory Cytokines/Chemokines on Pulmonary Tuberculosis Culture Conversion and Disease Severity in HIV-Infected and -Uninfected Individuals From South Africa. Front. Immunol. 2021, 12, 641065. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.M.; Frank, A.A.; Orme, I.M.; Cooper, A.M. Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect. Immun. 2000, 68, 3322–3326. [Google Scholar] [CrossRef]
- Rincon, M. Interleukin-6: From an inflammatory marker to a target for inflammatory diseases. Trends Immunol. 2012, 33, 571–577. [Google Scholar] [CrossRef]
- Fielding, C.A.; Jones, G.W.; McLoughlin, R.M.; McLeod, L.; Hammond, V.J.; Uceda, J.; Williams, A.S.; Lambie, M.; Foster, T.L.; Liao, C.T.; et al. Interleukin-6 Signaling Drives Fibrosis in Unresolved Inflammation. Immunity 2014, 40, 40. [Google Scholar] [CrossRef]
- Zhang, Y.; Broser, M.; Cohen, H.; Bodkin, M.; Law, K.; Reibman, J.; Rom, W.N. Enhanced interleukin-8 release and gene expression in macrophages after exposure to Mycobacterium tuberculosis and its components. J. Clin. Investig. 1995, 95, 586–592. [Google Scholar] [CrossRef]
- Mukaida, N.; Harada, A.; Matsushima, K. Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine Growth Factor Rev. 1998, 9, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.S.; Breiman, A.; Allain, S.; Deknuydt, F.; Altare, F. The tuberculous granuloma: An unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin. Dev. Immunol. 2012, 2012, 139127. [Google Scholar] [CrossRef] [PubMed]
- Astuti, T.; Chozin, I.; Damayanti, N.; Nugrahenny, D. The levels of pro-fibrotic cytokines in pulmonary tuberculosis with minimal and extensive lesions. Lung India 2018, 35, 204. [Google Scholar] [CrossRef]
- Al Attiyah, R.; Moreno, C.; Rook, G.A.W. TNF alpha-mediated tissue damage in mouse footpads primed with mycobacterial preparations. Res. Immunol. 1992, 143, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Todd, N.W.; Luzina, I.G.; Atamas, S.P. Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenes. Tissue Repair 2012, 5, 11. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, X.X.; Li, J.C. Biomarker discovery for tuberculosis using metabolomics. Front. Mol. Biosci. 2023, 10, 1099654. [Google Scholar] [CrossRef]
- Singh, S.; Allwood, B.W.; Chiyaka, T.L.; Kleyhans, L.; Naidoo, C.C.; Moodley, S.; Theron, G.; Segal, L.N. Immunologic and imaging signatures in post tuberculosis lung disease. Tuberculosis 2022, 136, 102244. [Google Scholar] [CrossRef]
- Ulrichs, T.; Kaufmann, S.H.E. New insights into the function of granulomas in human tuberculosis. J. Pathol. 2006, 208, 261–269. [Google Scholar] [CrossRef]
- Guzmán-Beltrán, S.; Carreto-Binaghi, L.E.; Carranza, C.; Torres, M.; Gonzalez, Y.; Muñoz-Torrico, M.; Juárez, E. Oxidative Stress and Inflammatory Mediators in Exhaled Breath Condensate of Patients with Pulmonary Tuberculosis. A Pilot Study with a Biomarker Perspective. Antioxidants 2021, 10, 1572. [Google Scholar] [CrossRef]
- Ravimohan, S.; Kornfeld, H.; Weissman, D.; Bisson, G.P. Tuberculosis and lung damage: From epidemiology to pathophysiology. Eur. Respir. Rev. 2018, 27, 170077. [Google Scholar] [CrossRef]
- Bekker, L.G.; Maartens, G.; Steyn, L.; Kaplan, G. Selective increase in plasma tumor necrosis factor-alpha and concomitant clinical deterioration after initiating therapy in patients with severe tuberculosis. J. Infect. Dis. 1998, 178, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Sigal, G.B.; Segal, M.R.; Mathew, A.; Jarlsberg, L.; Wang, M.; Barbero, S.; Small, N.; Haynesworth, K.; Davis, J.L.; Weiner, M.; et al. Biomarkers of Tuberculosis Severity and Treatment Effect: A Directed Screen of 70 Host Markers in a Randomized Clinical Trial. eBioMedicine 2017, 25, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, E.; Irikura, V.M.; Paul, S.M.; Hirsh, D. Functions of interleukin 1 receptor antagonist in gene knockout and overproducing mice. Proc. Natl. Acad. Sci. USA 1996, 93, 11008. [Google Scholar] [CrossRef] [PubMed]
- Silvério, D.; Gonçalves, R.; Appelberg, R.; Saraiva, M. Advances on the Role and Applications of Interleukin-1 in Tuberculosis. mBio 2021, 12, e03134-21. [Google Scholar] [CrossRef]
- Mantovani, A.; Dinarello, C.A.; Molgora, M.; Garlanda, C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity 2019, 50, 778–795. [Google Scholar] [CrossRef]
- Arend, W.P.; Malyak, M.; Guthridge, C.J.; Gabay, C. Interleukin-1 receptor antagonist: Role in biology. Annu. Rev. Immunol. 1998, 16, 27–55. [Google Scholar] [CrossRef]
- Su, W.L.; Perng, W.C.; Huang, C.H.; Yang, C.Y.; Wu, C.P.; Chen, J.H. Association of reduced tumor necrosis factor alpha, gamma interferon, and interleukin-1beta (IL-1beta) but increased IL-10 expression with improved chest radiography in patients with pulmonary tuberculosis. Clin. Vaccine Immunol. 2010, 17, 223–231. [Google Scholar] [CrossRef]
Population 1 (n = 22) | Population 2 (n = 21) | |
---|---|---|
Age (years) n (%) | 41.09 ± 14.6 | 35.33 ± 9.9 |
18–29 | 6 (27.3) | 7 (33.3) |
30–39 | 5 (22.7) | 7 (33.3) |
40–49 | 5 (22.7) | 6 (28.6) |
50–59 | 4 (18.2) | 1 (4.8) |
≥60 | 2 (9.1) | 0 (0.0) |
Sex, n (%) | ||
Female | 9 (40.9) | 9 (42.9) |
Male | 13 (59.1) | 12 (57.1) |
Smoking status, n (%) | ||
Current | 15 (68.2) | 9 (43.0) |
Ex-smoker | 1 (4.5) | 4 (19.0) |
Never | 6 (27.3) | 4 (19.0) |
Undisclosed | 0 (0.0) | 4 (19.0) |
HIV status, n (%) | ||
Positive | 1 (4.5) | 9 (42.9) |
Negative | 19 (86.4) | 12 (57.1) |
Unknown | 2 (9.1) | 0 (0.0) |
Known Heart Disease, n (%) | ||
Yes | 0 (0.0) | 3 (14.3) |
No | 22 (100.0) | 18 (85.7) |
TB Episodes | Population 1 (n = 22) n (%) | Population 2 (n = 21) n (%) |
---|---|---|
0 | 0 (0.0) | 8 (38.1) |
1 | 11 (50.0) | 3 (14.3) |
2 | 11 (50.0) | 3 (14.3) |
3 | 0 (0.0) | 5 (23.8) |
>3 | 0 (0.0) | 2 (9.5) |
Spirometry | ||
FVC (L) | 3.7 (0.95) | 3.7 (0.54) |
FVC % (predicted) | 76.4 (14.69) | 59.4 (21.80) |
FEV1 (L) | 2.1 (0.78) | 1.5 (0.67) |
FEV 1% (predicted) | 67.8 (18.64) | 48.6 (23.05) |
FEV1/FVC | 60% (0.82) | 41% (1.24) |
FEF 25–75 | 3.1 (0.78) | 3.3 (0.53) |
Inflammatory Biomarker | Population 1 | Population 2 | Normal Range |
---|---|---|---|
IL-6 (ng/mL) | |||
Mean | 9.518 | 13.98 | 5.36 [13] |
SD | 6.206 | 22.42 | |
SEM | 1.388 | 5.013 | |
Samples > LOD | 20 | 20 | |
IL-8 (ng/mL) | |||
Mean | 9.959 | 31.75 | 12.86 [13] |
SD | 44.54 | 63.35 | |
SEM | 9.959 | 14.17 | |
Samples > LOD | 1 | 8 | |
TNF-alpha (ng/mL) | |||
Mean | 92.68 | 86.93 | 4.36 [13] |
SD | 46.43 | 50.81 | |
SEM | 10.38 | 11.36 | |
Samples > LOD | 20 | 20 | |
CRP (mg/dL) | |||
Mean | 14.98 | 13.73 | <0.3 [14] |
SD | 2.126 | 2.808 | |
SEM | 0.4753 | 0.6279 | |
Samples > LOD | 20 | 20 | |
IL-1Ra (ng/mL) | |||
Mean | <LOD | 247.5 | 190 [15] |
SD | <LOD | 327.1 | |
SEM | <LOD | 73.14 | |
Samples > LOD | 0 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jumaar, C.; Malefane, L.; Jacobs, S.; Sanni, O.; Louw, E.; Baines, N.; Payne, C.; Schulz, S.; Lombard, C.; Feyasa, M.; et al. Delineating the Significance of Several Inflammatory Markers in a Lung Tuberculosis Cohort During the Active and Post-Tuberculosis Stages of the Disease: An Observational Study in Cape Town, South Africa (2019 to 2024). Infect. Dis. Rep. 2025, 17, 52. https://doi.org/10.3390/idr17030052
Jumaar C, Malefane L, Jacobs S, Sanni O, Louw E, Baines N, Payne C, Schulz S, Lombard C, Feyasa M, et al. Delineating the Significance of Several Inflammatory Markers in a Lung Tuberculosis Cohort During the Active and Post-Tuberculosis Stages of the Disease: An Observational Study in Cape Town, South Africa (2019 to 2024). Infectious Disease Reports. 2025; 17(3):52. https://doi.org/10.3390/idr17030052
Chicago/Turabian StyleJumaar, Chrisstoffel, Lindiwe Malefane, Steve Jacobs, Olakunle Sanni, Elize Louw, Nicola Baines, Carmen Payne, Sigrid Schulz, Carl Lombard, Merga Feyasa, and et al. 2025. "Delineating the Significance of Several Inflammatory Markers in a Lung Tuberculosis Cohort During the Active and Post-Tuberculosis Stages of the Disease: An Observational Study in Cape Town, South Africa (2019 to 2024)" Infectious Disease Reports 17, no. 3: 52. https://doi.org/10.3390/idr17030052
APA StyleJumaar, C., Malefane, L., Jacobs, S., Sanni, O., Louw, E., Baines, N., Payne, C., Schulz, S., Lombard, C., Feyasa, M., Maree, D., Windvogel, S., Strijdom, H., Botha, B., Allwood, B., & Maarman, G. J. (2025). Delineating the Significance of Several Inflammatory Markers in a Lung Tuberculosis Cohort During the Active and Post-Tuberculosis Stages of the Disease: An Observational Study in Cape Town, South Africa (2019 to 2024). Infectious Disease Reports, 17(3), 52. https://doi.org/10.3390/idr17030052