Consensus Molecules Associated with Parkinson’s Disease
Abstract
1. Introduction
2. Results
2.1. Drugs in the Treatment of PD
2.2. Adjunctive Therapy in PD
2.3. Contraindicated Drugs in PD Therapy
2.4. Diagnostic Agents
2.5. Biomarkers
2.6. Inducers of PD in Animal Models
2.7. Endogenous Cofactors
3. Discussion
3.1. Conditionally Essential Nutrients
3.2. Limitations and Potential Pitfalls
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Prasad, E.M.; Hung, S.-Y. Current Therapies in Clinical Trials of Parkinson’s Disease: A 2021 Update. Pharmaceuticals 2021, 14, 717. [Google Scholar] [CrossRef]
- Li, X.; Luo, X.; Cao, X.; Thomas, E.R.; Wang, W.; Zhou, X.; Zhou, S.; Wu, A.; Gao, R.; Liu, K.; et al. Sirtuins in Parkinson’s disease: Molecular mechanisms and pathophysiological roles. Ageing Res. Rev. 2025, 112, 102902. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, X.; Yin, Y.; Thomas, E.R.; Liu, K.; Wang, W.; Li, X. The interplay of iron, oxidative stress, and α-synuclein in Parkinson’s disease progression. Mol. Med. 2025, 31, 154. [Google Scholar] [CrossRef]
- Wang, W.; Thomas, E.R.; Xiao, R.; Chen, T.; Guo, Q.; Liu, K.; Yang, Y.; Li, X. Targeting mitochondria-regulated ferroptosis: A new frontier in Parkinson’s disease therapy. Neuropharmacology 2025, 274, 110439. [Google Scholar] [CrossRef] [PubMed]
- Kitada, T.; Ardah, M.T.; Haque, M.E. History of Parkinson’s Disease-Associated Gene, Parkin: Research over a Quarter Century in Quest of Finding the Physiological Substrate. Int. J. Mol. Sci. 2023, 24, 16734. [Google Scholar] [CrossRef] [PubMed]
- Schapira, A.H.V.; Cooper, J.M.; Dexter, D.; Clark, J.B.; Jenner, P.; Marsden, C.D. Mitochondrial Complex I Deficiency in Parkinson’s Disease. J. Neurochem. 1990, 54, 823–827. [Google Scholar]
- Choong, C.-J.; Mochizuki, H. Involvement of Mitochondria in Parkinson’s Disease. Int. J. Mol. Sci. 2023, 24, 17027. [Google Scholar] [CrossRef]
- Yaow, C.Y.L.; Hong, A.S.Y.; Chong, N.Z.-Y.; Chong, R.I.H.; Mai, A.S.; Tan, E.-K. Risk of Parkinson’s disease in hepatitis B and C populations: A systematic review and meta-analysis. J. Neural Transm. 2023, 131, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Woulfe, J.M.; Gray, M.T.; Gray, D.A.; Munoz, D.G.; Middeldorp, J.M. Hypothesis: A role for EBV-induced molecular mimicry in Parkinson’s disease. Park. Relat. Disord. 2014, 20, 685–694. [Google Scholar]
- Faizan, M.; Sarkar, A.; Singh, M.P. Type 2 diabetes mellitus augments Parkinson’s disease risk or the other way around: Facts, challenges and future possibilities. Ageing Res. Rev. 2022, 81, 101727. [Google Scholar] [CrossRef]
- VanItallie, T.B. Traumatic brain injury (TBI) in collision sports: Possible mechanisms of transformation into chronic traumatic encephalopathy (CTE). Metabolism 2019, 100, 153943. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Du, C.; Wang, J. Body mass index in patients with Parkinson’s disease: A meta-analysis. J. Neurophysiol. 2024, 131, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Moreno, T.; García-Morales, V.; Suleiman-Martos, S.; Rivas-Domínguez, A.; Mohamed-Mohamed, H.; Ramos-Rodríguez, J.J.; Melguizo-Rodríguez, L.; González-Acedo, A. Current Treatments and New, Tentative Therapies for Parkinson’s Disease. Pharmaceutics 2023, 15, 770. [Google Scholar] [CrossRef]
- Finberg, J.P.M.; Gillman, K. Selective inhibitors of monoamine oxidase type B and the “cheese effect”. Int. Rev. Neurobiol. 2011, 100, 169–190. [Google Scholar]
- Simon, N.; Gantcheva, R.; Bruguerolle, B.; Viallet, F. The effects of a normal protein diet on LevoDOPA plasma kinetics in advanced Parkinson’s disease. Park. Relat. Disord. 2004, 10, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Chen, X.; Xu, M.-M.; Sun, Q. Relationship between high dietary fat intake and Parkinson’s disease risk: A meta-analysis. Neural Regen. Res. 2019, 14, 2156. [Google Scholar] [CrossRef]
- Miyake, Y.; Sasaki, S.; Tanaka, K.; Fukushima, W.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; Kawamura, N.; et al. Dietary fat intake and risk of Parkinson’s disease: A case-control study in Japan. J. Neurol Sci. 2010, 288, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Dere Yelken, H.; Elci, M.P.; Turker, P.F.; Demirkaya, S. Omega fatty acid ratios and neurodegeneration in a healthy environment. Prostaglandins Other Lipid Mediat. 2024, 170, 106799. [Google Scholar] [CrossRef]
- Bettiol, S.S.; Rose, T.C.; Hughes, C.J.; Smith, L.A. Alcohol Consumption and Parkinson’s Disease Risk: A Review of Recent Findings. J. Park. Dis. 2015, 5, 425–442. [Google Scholar] [CrossRef]
- Mochizuki, H.; Choong, C.-J.; Baba, K. Parkinson’s disease and iron. J. Neural Transm. 2020, 127, 181–187. [Google Scholar] [CrossRef]
- Zhao, Y.; Ray, A.; Portengen, L.; Vermeulen, R.; Peters, S. Metal Exposure and Risk of Parkinson Disease: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2023, 192, 1207–1223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Molsberry, S.A.; Yeh, T.-S.; Cassidy, A.; Schwarzschild, M.A.; Ascherio, A.; Gao, X. Intake of Flavonoids and Flavonoid-Rich Foods and Mortality Risk Among Individuals with Parkinson Disease. Neurology 2022, 98, e1064–e1076. [Google Scholar] [CrossRef] [PubMed]
- González-May, C.A.; Barradas-Castillo Mdel, R.; Perera-Rios, J.H.; Gallegos-Tintoré, S.; Pérez-Izquierdo, O.; Aranda-González, I.I. Dietary flavonoids may have a protective and therapeutic effect in Parkinson disease: A systematic review. Nutr. Res. 2024, 121, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Etminan, M.; Gill, S.S.; Samii, A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: A meta-analysis. Lancet Neurol. 2005, 4, 362–365. [Google Scholar] [CrossRef]
- Pignolo, A.; Mastrilli, S.; Davì, C.; Arnao, V.; Aridon, P.; dos Santos Mendes, F.A.; Gagliardo, C.; D’Amelio, M. Vitamin D and Parkinson’s Disease. Nutrients 2022, 14, 1220. [Google Scholar] [CrossRef]
- Liu, Y.; Gou, M.; Guo, X. Features of Plasma Homocysteine, Vitamin B12, and Folate in Parkinson’s Disease: An Updated Meta-Analysis. J. Integr. Neurosci. 2023, 22, 115. [Google Scholar] [CrossRef]
- Ikenaka, K.; Kajiyama, Y.; Aguirre, C.; Choong, C.; Taniguchi, S.; Doi, J.; Wang, N.; Ajiki, T.; Ogawa, K.; Kakuda, K.; et al. Decreased hepatic enzymes reflect the decreased vitamin B6 levels in Parkinson’s disease patients. Pharmacol. Res. Perspect. 2024, 12, e1174. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, B. The research on gene-disease association based on text-mining of PubMed. BMC Bioinform. 2018, 19, 37. [Google Scholar] [CrossRef]
- Dabour, R.; Meirson, T.; Samson, A.O. Global antibiotic resistance is mostly periodic. J. Glob. Antimicrob. Resist. 2016, 7, 132–134. [Google Scholar] [CrossRef]
- Samuels, H.; Malov, M.; Saha Detroja, T.; Ben Zaken, K.; Bloch, N.; Gal-Tanamy, M.; Avni, O.; Polis, B.; Samson, A.O. Autoimmune Disease Classification Based on PubMed Text Mining. J. Clin. Med. 2022, 11, 4345. [Google Scholar] [CrossRef]
- Weitzman, R.; Calfon, O.; Saha, T.; Bloch, N.; Ben Zaken, K.; Rosenfeld, A.; Samson, A.O.; Amitay, M. Resistance to Antimalarial Monotherapy Is Cyclic. J. Clin. Med. 2022, 11, 781. [Google Scholar] [CrossRef]
- Sawaid, I.O.; Samson, A.O. Proton Pump Inhibitors and Cancer Risk: A Comprehensive Review of Epidemiological and Mechanistic Evidence. J. Clin. Med. 2024, 13, 1970. [Google Scholar] [CrossRef]
- Avitan, I.; Halperin, Y.; Saha, T.; Bloch, N.; Atrahimovich, D.; Polis, B.; Samson, A.O.; Braitbard, O. Towards a Consensus on Alzheimer’s Disease Comorbidity? J. Clin. Med. 2021, 10, 4360. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Golan, D.E.; Tashjian, A.H.; Armstrong, E.J. (Eds.) Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy; Lippincott Williams & Wilkins: Ambler, PA, USA, 2011. [Google Scholar]
- Jost, W.H. A critical appraisal of MAO-B inhibitors in the treatment of Parkinson’s disease. J. Neural Transm. 2022, 129, 723–736. [Google Scholar] [CrossRef]
- Alborghetti, M.; Nicoletti, F. Different Generations of Type-B Monoamine Oxidase Inhibitors in Parkinson’s Disease: From Bench to Bedside. Curr. Neuropharmacol. 2019, 17, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Shill, H.A.; Stacy, M. Update on ropinirole in the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2009, 5, 33–36. [Google Scholar] [PubMed]
- Frampton, J.E. Rotigotine Transdermal Patch: A Review in Parkinson’s Disease. CNS Drugs 2019, 33, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Antonini, A.; Barone, P.; Ceravolo, R.; Fabbrini, G.; Tinazzi, M.; Abbruzzese, G. Role of Pramipexole in the Management of Parkinson’s Disease. CNS Drugs 2010, 24, 829–841. [Google Scholar] [CrossRef]
- Bonuccelli, U.; Colzi, A.; Del Dotto, P. Pergolide in the Treatment of Patients with Early and Advanced Parkinson’s Disease. Clin. Neuropharmacol. 2002, 25, 1–10. [Google Scholar] [CrossRef]
- Clarke, C.E.; Speller, J. Lisuride for levodopa-induced complications in Parkinson’s disease. Cochrane Database Syst. Rev. 2000, 1999, CD001515. [Google Scholar] [CrossRef] [PubMed]
- Carbone, F.; Djamshidian, A.; Seppi, K.; Poewe, W. Apomorphine for Parkinson’s Disease: Efficacy and Safety of Current and New Formulations. CNS Drugs 2019, 33, 905–918. [Google Scholar] [CrossRef]
- Tsuboi, T.; Watanabe, H.; Katsuno, M.; Sobue, G. Cabergoline in the Treatment of Parkinson’s Disease. In NeuroPsychopharmacotherapy; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–10. [Google Scholar]
- Lieberman, A.; Kupersmith, M.; Estey, E.; Goldstein, M. Treatment of Parkinson’s Disease with Bromocriptine. N. Engl. J. Med. 1976, 295, 1400–1404. [Google Scholar] [CrossRef]
- Choi, J.; Horner, K.A. Dopamine Agonists. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Li, C.; Xue, L.; Liu, Y.; Yang, Z.; Chi, S.; Xie, A. Zonisamide for the Treatment of Parkinson Disease: A Current Update. Front. Neurosci. 2020, 14, 574652. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.A.; Hewitt, L.A.; Isaacson, S. Droxidopa in Patients with Neurogenic Orthostatic Hypotension Associated with Parkinson’s Disease (NOH306A). J. Park. Dis. 2014, 4, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Giachetti, A.; Giraldo, E.; Ladinsky, H.; Montagna, E. Binding and functional profiles of the selective M1 muscarinic receptor antagonists trihexyphenidyl and dicyclomine. Br. J. Pharmacol. 1986, 89, 83–90. [Google Scholar] [CrossRef]
- Kostelnik, A.; Cegan, A.; Pohanka, M. Anti-Parkinson Drug Biperiden Inhibits Enzyme Acetylcholinesterase. Biomed. Res. Int. 2017, 2017, 2532764. [Google Scholar] [CrossRef]
- Rascol, O.; Fabbri, M.; Poewe, W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet Neurol. 2021, 20, 1048–1056. [Google Scholar] [CrossRef]
- Merello, M.; Nouzeilles, M.I.; Cammarota, A.; Leiguarda, R. Effect of memantine (NMDA antagonist) on Parkinson’s disease: A double-blind crossover randomized study. Clin. Neuropharmacol. 1999, 22, 273–276. [Google Scholar]
- Morgan, J.C. Rivastigmine for the treatment of dementia associated with Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2008, 3, 775–783. [Google Scholar] [CrossRef]
- Baik, K.; Kim, S.M.; Jung, J.H.; Lee, Y.H.; Chung, S.J.; Yoo, H.S.; Ye, B.S.; Lee, P.H.; Sohn, Y.H.; Kang, S.W.; et al. Donepezil for mild cognitive impairment in Parkinson’s disease. Sci. Rep. 2021, 11, 4734. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Armstrong, M.J. Treatment of Parkinson’s Disease with Cognitive Impairment: Current Approaches and Future Directions. Behav. Sci. 2021, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Lertxundi, U.; Echaburu, S.D.; Soraluce, A.; Garcia, M.; Osante, B.R.; Aguirre, C. Domperidone in Parkinson’s Disease: A Perilous Arrhythmogenic or the Gold Standard? Curr. Drug Saf. 2013, 8, 63–68. [Google Scholar] [CrossRef]
- Shin, C.; Park, H.; Lee, W.-W.; Kim, H.-J.; Kim, H.-J.; Jeon, B. Clonazepam for probable REM sleep behavior disorder in Parkinson’s disease: A randomized placebo-controlled trial. J. Neurol. Sci. 2019, 401, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Biary, N.; Pimental, P.A.; Langenberg, P.W. A double-blind trial of clonazepam in the treatment of parkinsonian dysarthria. Neurology 1988, 38, 255. [Google Scholar] [CrossRef]
- Brusa, L. Tetrabenazine improves levodopa-induced peak-dose dyskinesias in patients with Parkinson’s disease. Funct. Neurol. 2013, 28, 101. [Google Scholar] [CrossRef]
- Delwaide, P.J.; Martinelli, P.; Schoenen, J. Mazindol in the Treatment of Parkinson’s Disease. Arch. Neurol. 1983, 40, 788–790. [Google Scholar] [CrossRef]
- Chen, J.J.; Hua, H.; Massihi, L.; Portillo, I.; Alipour, A.; Ondo, W.; Dashtipour, K. Systematic Literature Review of Quetiapine for the Treatment of Psychosis in Patients with Parkinsonism. J. Neuropsychiatry Clin. Neurosci. 2019, 31, 188–195. [Google Scholar] [CrossRef]
- Friedman, J.H. Clozapine Is Severely Underused in Parkinson’s Disease Patients. Mov. Disord. Clin. Pract. 2022, 9, 1021–1024. [Google Scholar] [CrossRef]
- Wisidagama, S.; Selladurai, A.; Wu, P.; Isetta, M.; Serra-Mestres, J. Recognition and Management of Antipsychotic-Induced Parkinsonism in Older Adults: A Narrative Review. Medicines 2021, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Knol, W.; van Marum, R.J.; Jansen, P.A.F.; Egberts, T.C.G.; Schobben, A.F.A.M. Parkinsonism in Elderly Users of Haloperidol. J. Clin. Psychopharmacol. 2012, 32, 688–693. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, S.; Jaiswal, G.; Kumar, S.; Hourani, W.; Gorain, B.; Kumar, P. Pharmacology of Dopamine and Its Receptors. In Frontiers in Pharmacology of Neurotransmitters; Springer: Singapore, 2020; pp. 143–182. [Google Scholar]
- Rosenblum, A.M. Exacerbation of Parkinsonism by Methyldopa. JAMA J. Am. Med. Assoc. 1980, 244, 2727. [Google Scholar] [CrossRef]
- Wiciński, M.; Malinowski, B.; Puk, O.; Socha, M.; Słupski, M. Methyldopa as an inductor of postpartum depression and maternal blues: A review. Biomed. Pharmacother. 2020, 127, 110196. [Google Scholar] [CrossRef]
- Chung, M.; Park, Y.S.; Kim, J.S.; Kim, Y.J.; Ma, H.I.; Jang, S.J.; Huh, R.; Kim, H.S.; Kim, W.-C. Correlating Parkinson’s disease motor symptoms with three-dimensional [18F]FP-CIT PET. Jpn. J. Radiol. 2015, 33, 609–618. [Google Scholar]
- Bergström, K.A.; Kuikka, J.T.; Ahonen, A.; Vanninen, E. [123I] beta-CIT, a tracer for dopamine and serotonin re-uptake sites: Preparation and preliminary SPECT studies in humans. J. Nucl. Biol. Med. 1994, 38, 128–131. [Google Scholar]
- Lloyd, S.A.; Faherty, C.J.; Smeyne, R.J. Adult and in utero exposure to cocaine alters sensitivity to the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 2006, 137, 905–913. [Google Scholar] [CrossRef]
- Nutt, J.G.; Woodward, W.R.; Gancher, S.T.; Merrick, D. 3-O-Methyldopa and the response to levodopa in Parkinson’s disease. Ann. Neurol. 1987, 21, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Goto, R.; Kurihara, M.; Kameyama, M.; Komatsu, H.; Higashino, M.; Hatano, K.; Ihara, R.; Higashihara, M.; Nishina, Y.; Matsubara, T.; et al. Correlations between cerebrospinal fluid homovanillic acid and dopamine transporter SPECT in degenerative parkinsonian syndromes. J. Neural Transm. 2023, 130, 513–520. [Google Scholar] [CrossRef]
- Simola, N.; Morelli, M.; Carta, A.R. The 6-Hydroxydopamine model of parkinson’s disease. Neurotox. Res. 2007, 11, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Nishio, K.; Ogawa, Y.; Kinumi, T.; Yoshida, Y.; Masuo, Y.; Niki, E. Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: Involvement of hydrogen peroxide-dependent and -independent action. Free Radic. Biol. Med. 2007, 42, 675–685. [Google Scholar] [CrossRef]
- Javitch, J.A.; D’Amato, R.J.; Strittmatter, S.M.; Snyder, S.H. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. USA 1985, 82, 2173–2177. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.-S.; Trobough, K.L.; Crampton, J.M.; Wilson, J.A. Effects of probenecid on striatal dopamine depletion in acute and long-term 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Gen. Pharmacol. Vasc. Syst. 1990, 21, 181–187. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Georgieva, M.G.; Atanasov, A.G.; Tzvetkov, N.T. Monoamine Oxidases (MAOs) as Privileged Molecular Targets in Neuroscience: Research Literature Analysis. Front. Mol. Neurosci. 2019, 12, 143. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, D.; Iyer, M.; Narayanasamy, A.; Siva, K.; Vellingiri, B. Kynurenine pathway in Parkinson’s disease—An update. eNeurologicalSci 2020, 21, 100270. [Google Scholar] [CrossRef] [PubMed]
- Razavi, B.M.; Hosseinzadeh, H. Antioxidant effects of Curcuma longa and its active constituent, curcumin, for the therapy of neurological disorders. In Oxidative Stress and Dietary Antioxidants in Neurological Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 249–269. [Google Scholar]
- Munakata, H.; Ishikawa, R.; Saitoh, T.; Kambe, T.; Chiba, T.; Taguchi, K.; Abe, K. Preventative effects of 1-methyl-1,2,3,4-tetrahydroisoquinoline derivatives (N-functional group loading) on MPTP-induced parkinsonism in mice. Can. J. Physiol. Pharmacol. 2022, 100, 594–611. [Google Scholar] [CrossRef]
- Yang, T.; Chen, C. On the Alkaloids of Nelumbo nucifera Gaertn. Studies on the Alkaloids of Loti Embryo. J. Chin. Chem. Soc. 1970, 17, 235–242. [Google Scholar] [CrossRef]
- Voon, S.M.; Ng, K.Y.; Chye, S.M.; Ling, A.P.K.; Voon, K.G.L.; Yap, Y.J.; Koh, R.Y. The Mechanism of Action of Salsolinol in Brain: Implications in Parkinson’s Disease. CNS Neurol. Disord. Drug Targets 2021, 19, 725–740. [Google Scholar] [CrossRef]
- Moser, A.; Kömpf, D. Presence of methyl-6, 7-dihydroxy-1,2,3,4-tetrahydroisoquinolines, derivatives of the neurotoxin isoquinoline, in parkinsonian lumbar CSF. Life Sci. 1992, 50, 1885–1891. [Google Scholar] [CrossRef]
- Vázquez-Manjarrez, N.; Ulaszewska, M.; Garcia-Aloy, M.; Mattivi, F.; Praticò, G.; Dragsted, L.O.; Manach, C. Biomarkers of intake for tropical fruits. Genes Nutr. 2020, 15, 11. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Li, Q.; Lang, W.; Li, W.; Jiang, X.; Wan, Z.; Sun, H.; Wang, H. Salsolinol Induces Parkinson’s Disease Through Activating NLRP3-Dependent Pyroptosis and the Neuroprotective Effect of Acteoside. Neurotox. Res. 2022, 40, 1948–1962. [Google Scholar] [CrossRef]
- Johnson, M.E.; Bobrovskaya, L. An update on the rotenone models of Parkinson’s disease: Their ability to reproduce the features of clinical disease and model gene–environment interactions. Neurotoxicology 2015, 46, 101–116. [Google Scholar] [CrossRef]
- Li, M.; Qiu, J.; Yan, G.; Zheng, X.; Li, A. How does the neurotoxin β-N-methylamino-L-alanine exist in biological matrices and cause toxicity? Sci. Total Environ. 2024, 922, 171255. [Google Scholar] [CrossRef] [PubMed]
- Lobner, D.; Piana, P.M.T.; Salous, A.K.; Peoples, R.W. β-N-methylamino-l-alanine enhances neurotoxicity through multiple mechanisms. Neurobiol. Dis. 2007, 25, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, R.A.; Cox, P.A.; Banack, S.A.; Rodgers, K.J. The Non-Protein Amino Acid BMAA Is Misincorporated into Human Proteins in Place of l-Serine Causing Protein Misfolding and Aggregation. PLoS ONE 2013, 8, e75376. [Google Scholar] [CrossRef]
- Murch, S.J.; Cox, P.A.; Banack, S.A. A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proc. Natl. Acad. Sci. USA 2004, 101, 12228–12231. [Google Scholar] [CrossRef]
- Beal, M.F.; Oakes, D.; Shoulson, I.; Henchcliffe, C.; Galpern, W.R.; Haas, R.; Juncos, J.L.; Nutt, J.G.; Voss, T.S.; Ravina, B.; et al. A Randomized Clinical Trial of High-Dosage Coenzyme Q10 in Early Parkinson Disease. JAMA Neurol. 2014, 71, 543. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Jiménez, F.J.; Alonso-Navarro, H.; García-Martín, E.; Agúndez, J.A.G. Coenzyme Q10 and Parkinsonian Syndromes: A Systematic Review. J. Pers. Med. 2022, 12, 975. [Google Scholar] [CrossRef]
- Dissing, I.C.; Güttler, F.; Pakkenberg, H.; Gerdes, A.-M.; Lykkelund, C.; Rasmussen, V. Tetrahydrobiopterin and Parkinson’s disease. Acta Neurol. Scand. 1989, 79, 493–499. [Google Scholar] [CrossRef]
- Kurosaki, H.; Yamaguchi, K.; Man-yoshi, K.; Muramatsu, S.; Hara, S.; Ichinose, H. Administration of tetrahydrobiopterin restored the decline of dopamine in the striatum induced by an acute action of MPTP. Neurochem. Int. 2019, 125, 16–24. [Google Scholar] [CrossRef]
- Reich, S.G.; Savitt, J.M. Parkinson’s Disease. Med. Clin. N. Am. 2019, 103, 337–350. [Google Scholar] [CrossRef]
- Cherian, A.; Divya, K.P. Genetics of Parkinson’s disease. Acta Neurol. Belg. 2020, 120, 1297–1305. [Google Scholar] [CrossRef]
- Leta, V.; Urso, D.; Batzu, L.; Lau, Y.H.; Mathew, D.; Boura, I.; Raeder, V.; Falup-Pecurariu, C.; van Wamelen, D.; Ray Chaudhuri, K. Viruses, parkinsonism and Parkinson’s disease: The past, present and future. J. Neural Transm. 2022, 129, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Murros, K.E.; Huynh, V.A.; Takala, T.M.; Saris, P.E.J. Desulfovibrio Bacteria Are Associated with Parkinson’s Disease. Front. Cell. Infect. Microbiol. 2021, 11, 652617. [Google Scholar] [CrossRef]
- Salama, M.; Arias-Carrión, O. Natural toxins implicated in the development of Parkinson’s disease. Ther. Adv. Neurol. Disord. 2011, 4, 361–373. [Google Scholar] [CrossRef]
- Sechi, G.P.; Sechi, M.M. Small Molecules, α-Synuclein Pathology, and the Search for Effective Treatments in Parkinson’s Disease. Int. J. Mol. Sci. 2024, 25, 11198. [Google Scholar] [CrossRef]
- Foxton, R.H.; Land, J.M.; Heales, S.J.R. Tetrahydrobiopterin Availability in Parkinson’s and Alzheimer’s Disease; Potential Pathogenic Mechanisms. Neurochem. Res. 2007, 32, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.W.; Srisook, E.; Son, H.J.; Hwang, O.; Cha, Y.-N.; Chi, D.Y. Syntheses of tetrahydroisoquinoline derivatives that inhibit NO production in activated BV-2 microglial cells. Eur. J. Med. Chem. 2008, 43, 1160–1170. [Google Scholar] [CrossRef]
- Hantraye, P.; Brouillet, E.; Ferrante, R.; Palfi, S.; Dolan, R.; Matthews, R.T.; Beal, M.F. Inhibition of neuronal nitric oxide synthase prevents MPTP–induced parkinsonism in baboons. Nat. Med. 1996, 2, 1017–1021. [Google Scholar] [CrossRef]
- Hu, Q.; Wei, W.; Wu, D.; Huang, F.; Li, M.; Li, W.; Yin, J.; Peng, Y.; Lu, Y.; Zhao, Q.; et al. Blockade of GCH1/BH4 Axis Activates Ferritinophagy to Mitigate the Resistance of Colorectal Cancer to Erastin-Induced Ferroptosis. Front. Cell. Dev. Biol. 2022, 10, 810327. [Google Scholar] [CrossRef] [PubMed]
- Martinefski, M.R.; Yamasato, M.F.; Di Carlo, M.B.; Daruich, J.R.; Tripodi, V.P. Coenzyme Q10 deficiency in patients with hereditary hemochromatosis. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101624. [Google Scholar] [CrossRef]


| Role in Parkinson’s Disease | Molecule |
|---|---|
| Drug | L-Dopa (49%), Carbidopa (63%), Benserazide (50%), Entacapone (74%), Tolcapone (56%), Rasagiline (76%), Selegiline (46%), Pargyline (4%), Ropinirole (61%), Rotigotine (61%), Pramipexole (56%), Pergolide (47%), Lisuride (27%), Apomorphine (19%), Cabergoline (16%), Bromocriptine (12%), Zonisamide (9%) |
| Adjunctive therapy | Droxidopa (33%), Trihexyphenidyl (28%), Biperiden (17%), Amantadine (24%), Memantine (7%), Rivastigmine (13%) Donepezil (6%), Galantamine (4%), Domperidone (6%), Clonazepam (4%), Tetrabenazine (16%), Mazindol (13%), Quetiapine (6%), Clozapine (4%) |
| Contraindicated drug | Haloperidol (4%), Sulpiride (3%), Methyldopa (6%) |
| Diagnostic agent | FP-CIT (60%), Beta-CIT (43%), |
| Biomarker | 3-Methoxytyrosine (48%), Homovanillic Acid (12%) |
| Endogenous cofactors | Coenzyme Q10 (4%), * Tetrahydrobiopterin (4%), |
| Inducer | 6-Hydroxydopamine (40%), MPTP + Probenecid (78% + 4%), Tetrahydropyridine (77%), * TIQ (16%), * Salsolinol (32%), * Quinolinic Acid (4%), Rotenone (25%), BMAA (29%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Eyal, S.; Alfasi, S.; Ben Zaken, K.; Sawaid, I.O.; Segev, L.; Mesfin, S.; Frankel, P.; Ezzy, R.; Saha-Detroja, T.; Madhavan, S.; et al. Consensus Molecules Associated with Parkinson’s Disease. Neurol. Int. 2026, 18, 23. https://doi.org/10.3390/neurolint18020023
Eyal S, Alfasi S, Ben Zaken K, Sawaid IO, Segev L, Mesfin S, Frankel P, Ezzy R, Saha-Detroja T, Madhavan S, et al. Consensus Molecules Associated with Parkinson’s Disease. Neurology International. 2026; 18(2):23. https://doi.org/10.3390/neurolint18020023
Chicago/Turabian StyleEyal, Sara, Shira Alfasi, Karin Ben Zaken, Ibrahim O. Sawaid, Lior Segev, Samuel Mesfin, Pnina Frankel, Rahaf Ezzy, Trishna Saha-Detroja, Shilpa Madhavan, and et al. 2026. "Consensus Molecules Associated with Parkinson’s Disease" Neurology International 18, no. 2: 23. https://doi.org/10.3390/neurolint18020023
APA StyleEyal, S., Alfasi, S., Ben Zaken, K., Sawaid, I. O., Segev, L., Mesfin, S., Frankel, P., Ezzy, R., Saha-Detroja, T., Madhavan, S., Bloch, N., Polis, B., & Samson, A. O. (2026). Consensus Molecules Associated with Parkinson’s Disease. Neurology International, 18(2), 23. https://doi.org/10.3390/neurolint18020023

