Linking Memory Impairment to Structural Connectivity in Extrahippocampal Temporal Lobe Epilepsy Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. MRI Data Acquisition and Preprocessing
2.3. Lesion–Symptom Mapping
2.4. Structural Connectome Parameterization
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blümcke, I.; Thom, M.; Aronica, E.; Armstrong, D.D.; Bartolomei, F.; Bernasconi, A.; Bernasconi, N.; Bien, C.G.; Cendes, F.; Coras, R.; et al. International Consensus Classification of Hippocampal Sclerosis in Temporal Lobe Epilepsy: A Task Force Report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013, 54, 1315–1329. [Google Scholar] [CrossRef] [PubMed]
- Thom, M.; Blümcke, I.; Aronica, E. Long-Term Epilepsy-Associated Tumors. Brain Pathol. 2012, 22, 350–379. [Google Scholar] [CrossRef] [PubMed]
- Rosenow, F.; Alonso-Vanegas, M.A.; Baumgartner, C.; Blümcke, I.; Carreño, M.; Gizewski, E.R.; Hamer, H.M.; Knake, S.; Kahane, P.; Lüders, H.O.; et al. Cavernoma-Related Epilepsy: Review and Recommendations for Management—Report of the Surgical Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2013, 54, 2025–2035. [Google Scholar] [CrossRef] [PubMed]
- Blumcke, I.; Spreafico, R.; Haaker, G.; Coras, R.; Kobow, K.; Bien, C.G.; Pfäfflin, M.; Elger, C.; Widman, G.; Schramm, J.; et al. Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery. N. Engl. J. Med. 2017, 377, 1648–1656. [Google Scholar] [CrossRef]
- Jones, A.L.; Cascino, G.D. Evidence on Use of Neuroimaging for Surgical Treatment of Temporal Lobe Epilepsy: A Systematic Review. JAMA Neurol. 2016, 73, 464–470. [Google Scholar] [CrossRef]
- West, S.; Nevitt, S.J.; Cotton, J.; Gandhi, S.; Weston, J.; Sudan, A.; Ramirez, R.; Newton, R. Surgery for Epilepsy. Cochrane Database Syst. Rev. 2019, 6, CD010541. [Google Scholar] [CrossRef]
- Wagner, K.; Uherek, M.; Horstmann, S.; Kadish, N.E.; Wisniewski, I.; Mayer, H.; Buschmann, F.; Metternich, B.; Zentner, J.; Schulze-Bonhage, A. Memory Outcome after Hippocampus Sparing Resections in the Temporal Lobe. J. Neurol. Neurosurg. Psychiatry 2013, 84, 630–636. [Google Scholar] [CrossRef]
- Longo, A.; Houot, M.; Herlin, B.; Méré, M.; Denos, M.; Samson, S.; Dupont, S. Distinctive Neuropsychological Profiles of Lateral Temporal Lobe Epilepsy. Epilepsy Behav. 2021, 125, 108411. [Google Scholar] [CrossRef]
- Law, N.; Benifla, M.; Rutka, J.; Smith, M.L. Verbal Memory after Temporal Lobe Epilepsy Surgery in Children: Do Only Mesial Structures Matter? Epilepsia 2016, 58, 291–299. [Google Scholar] [CrossRef]
- Suresh, S.; Sweet, J.; Fastenau, P.S.; Lüders, H.; Landazuri, P.; Miller, J. Temporal Lobe Epilepsy in Patients with Nonlesional MRI and Normal Memory: An SEEG Study. J. Neurosurg. 2015, 123, 1368–1374. [Google Scholar] [CrossRef]
- Herlin, B.; Adam, C.; Habert, M.O.; Mathon, B.; Clemenceau, S.; Navarro, V.; Dupont, S. Temporal Pole Epilepsy Surgery-Sparing the Hippocampus. Epilepsia 2020, 61, E146–E152. [Google Scholar] [CrossRef]
- Elsharkawy, A.E.; Pannek, H.; Woermann, F.G.; Gyimesi, C.; Hartmann, S.; Aengenendt, J.; Ogutu, T.; Hoppe, M.; Schulz, R.; Pietilä, T.A.; et al. Apical Temporal Lobe Resection; “Tailored” Hippocampus-Sparing Resection Based on Presurgical Evaluation Data. Acta Neurochir 2011, 153, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Mintzer, S.; Sperling, M.R. When Should a Resection Sparing Mesial Structures Be Considered for Temporal Lobe Epilepsy? Epilepsy Behav. 2008, 13, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Morita-Sherman, M.; Louis, S.; Vegh, D.; Busch, R.M.; Ferguson, L.; Bingaman, J.; Bulacio, J.; Najm, I.; Jones, S.; Zajichek, A.; et al. Outcomes of Resections That Spare vs Remove an MRI-normal Hippocampus. Epilepsia 2020, 61, 2545–2557. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.; Gau, K.; Metternich, B.; Geiger, M.J.; Wendling, A.-S.; Kadish, N.E.; Reuner, G.; Mayer, H.; Mader, I.; Beck, J.; et al. Effects of Hippocampus-Sparing Resections in the Temporal Lobe: Hippocampal Atrophy Is Associated with a Decline in Memory Performance. Epilepsia 2020, 61, 725–734. [Google Scholar] [CrossRef]
- Stoub, T.R.; deToledo-Morrell, L.; Stebbins, G.T.; Leurgans, S.; Bennett, D.A.; Shah, R.C. Hippocampal Disconnection Contributes to Memory Dysfunction in Individuals at Risk for Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2006, 103, 10041–10045. [Google Scholar] [CrossRef]
- Stoub, T.R.; Chicharro, A.V.; Grote, C.L.; Kanner, A.M. Disconnection of Hippocampal Networks Contributes to Memory Dysfunction in Individuals with Temporal Lobe Epilepsy. Hippocampus 2017, 29, 451–457. [Google Scholar] [CrossRef]
- Stasenko, A.; Kaestner, E.; Reyes, A.; Lalani, S.J.; Paul, B.; Hegde, M.; Helm, J.L.; Ben-Haim, S.; McDonald, C.R. Association Between Microstructural Asymmetry of Temporal Lobe White Matter and Memory Decline After Anterior Temporal Lobectomy. Neurology 2022, 98, e1151–e1162. [Google Scholar] [CrossRef]
- Kaestner, E.; Balachandra, A.R.; Bahrami, N.; Reyes, A.; Lalani, S.J.; Macari, A.C.; Voets, N.L.; Drane, D.L.; Paul, B.M.; Bonilha, L.; et al. The White Matter Connectome as an Individualized Biomarker of Language Impairment in Temporal Lobe Epilepsy. NeuroImage Clin. 2019, 25, 102125. [Google Scholar] [CrossRef]
- Kaestner, E.; Stasenko, A.; Schadler, A.; Roth, R.; Hewitt, K.; Reyes, A.; Qiu, D.; Bonilha, L.; Voets, N.; Hu, R.; et al. Impact of White Matter Networks on Risk for Memory Decline Following Resection versus Ablation in Temporal Lobe Epilepsy. J. Neurol. Neurosurg. Psychiatry 2024, 95, 663–670. [Google Scholar] [CrossRef]
- Winston, G.P.; Stretton, J.; Sidhu, M.K.; Symms, M.R.; Duncan, J.S. Progressive White Matter Changes Following Anterior Temporal Lobe Resection for Epilepsy. NeuroImage Clin. 2013, 4, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Duffau, H. Damaging a Few Millimeters of the Deep White Matter Tracts during Glioma Surgery May Result in a Large-Scale Brain Disconnection. J. Neurosurg. 2023, 140, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Binding, L.P.; Dasgupta, D.; Taylor, P.N.; Thompson, P.J.; O’Keeffe, A.G.; de Tisi, J.; McEvoy, A.W.; Miserocchi, A.; Winston, G.P.; Duncan, J.S.; et al. Contribution of White Matter Fiber Bundle Damage to Language Change After Surgery for Temporal Lobe Epilepsy. Neurology 2023, 100, e1621–e1633. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, T.A.; Senger, M.; Kunert, P. Anatomical Considerations in Selective Amygdalohippocampectomy Techniques for Refractory Temporal Lobe Epilepsy: A Cadaveric Study with Emphasis on White Matter Tract Anatomy. Surg. Radiol. Anat. 2024, 47, 1. [Google Scholar] [CrossRef]
- Dalton, M.A.; D’Souza, A.; Lv, J.; Calamante, F. New Insights into Anatomical Connectivity along the Anterior–Posterior Axis of the Human Hippocampus Using in Vivo Quantitative Fibre Tracking. eLife 2022, 11, e76143. [Google Scholar] [CrossRef]
- Maller, J.J.; Welton, T.; Middione, M.; Callaghan, F.M.; Rosenfeld, J.V.; Grieve, S.M. Revealing the Hippocampal Connectome through Super-Resolution 1150-Direction Diffusion MRI. Sci. Rep. 2019, 9, 2418. [Google Scholar] [CrossRef]
- Kaestner, E.; Stasenko, A.; Ben-Haim, S.; Shih, J.; Paul, B.M.; McDonald, C.R. The Importance of Basal-Temporal White Matter to Pre- and Post-Surgical Naming Ability in Temporal Lobe Epilepsy. NeuroImage Clin. 2022, 34, 102963. [Google Scholar] [CrossRef]
- Catani, M.; Mesulam, M. What Is a Disconnection Syndrome? Cortex 2008, 44, 911–913. [Google Scholar] [CrossRef]
- Gleichgerrcht, E.; Kellermann, T.S.; Drane, D.L.; Keller, S.S.; McDonald, C.R.; Rorden, C.; Jensen, J.; Weber, B.; Davis, K.A.; Kuzniecky, R.; et al. Cortical Disconnection in Temporal Lobe Epilepsy. Epilepsy Behav. 2021, 123, 108231. [Google Scholar] [CrossRef]
- Caciagli, L.; Bernasconi, A.; Wiebe, S.; Koepp, M.J.; Bernasconi, N.; Bernhardt, B.C. A Meta-Analysis on Progressive Atrophy in Intractable Temporal Lobe Epilepsy: Time Is Brain? Neurology 2017, 89, 506–516. [Google Scholar] [CrossRef]
- Elliott, C.A.; Gross, D.W.; Wheatley, B.M.; Beaulieu, C.; Sankar, T. Progressive Contralateral Hippocampal Atrophy Following Surgery for Medically Refractory Temporal Lobe Epilepsy. Epilepsy Res. 2016, 125, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Griffis, J.C.; Metcalf, N.V.; Corbetta, M.; Shulman, G.L. Structural Disconnections Explain Brain Network Dysfunction after Stroke. Cell Rep. 2019, 28, 2527–2540.e9. [Google Scholar] [CrossRef]
- Karnath, H.-O.; Sperber, C.; Wiesen, D.; de Haan, B. Lesion-Behavior Mapping in Cognitive Neuroscience: A Practical Guide to Univariate and Multivariate Approaches. In Spatial Learning and Attention Guidance; Pollmann, S., Ed.; Springer: New York, NY, USA, 2020; pp. 209–238. ISBN 978-1-4939-9948-4. [Google Scholar]
- Psychologie, D.L. Verbaler Lern—Und Merkfähigkeitstest (VLMT)—Dorsch Lexikon Der Psychologie—Verlag Hans Huber; Testzentrale: Madrid, Spain, 2017. [Google Scholar]
- Lamberti, G. Modifikation und Verbesserung des Diagnostikum für Cerebralschädigung (DCS) für den klinischen Gebrauchm. Arch. Psychiat. Nervenkr. 1978, 225, 143–157. [Google Scholar] [CrossRef]
- Lux, S.; Helmstaedter, C.; Elger, C.E. Normierungsstudie Zum Verbalen Lern- Und Merkfähigkeitstest (VLMT). Diagnostica 1999, 45, 205–211. [Google Scholar] [CrossRef]
- Engel, J., Jr. A Proposed Diagnostic Scheme for People with Epileptic Seizures and with Epilepsy: Report of the ILAE Task Force on Classification and Terminology. Epilepsia 2001, 42, 796–803. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Bates, E.; Wilson, S.M.; Saygin, A.P.; Dick, F.; Sereno, M.I.; Knight, R.T.; Dronkers, N.F. Voxel-Based Lesion–Symptom Mapping. Nat. Neurosci. 2003, 6, 448–450. [Google Scholar] [CrossRef]
- Joliot, M.; Jobard, G.; Naveau, M.; Delcroix, N.; Petit, L.; Zago, L.; Crivello, F.; Mellet, E.; Mazoyer, B.; Tzourio-Mazoyer, N. AICHA: An Atlas of Intrinsic Connectivity of Homotopic Areas. J. Neurosci. Methods 2015, 254, 46–59. [Google Scholar] [CrossRef]
- Sperber, C. Rethinking Causality and Data Complexity in Brain Lesion-Behaviour Inference and Its Implications for Lesion-Behaviour Modelling. Cortex 2020, 126, 49–62. [Google Scholar] [CrossRef]
- Griffis, J.C.; Metcalf, N.V.; Corbetta, M.; Shulman, G.L. Lesion Quantification Toolkit: A MATLAB Software Tool for Estimating Grey Matter Damage and White Matter Disconnections in Patients with Focal Brain Lesions. NeuroImage Clin. 2021, 30, 102639. [Google Scholar] [CrossRef]
- Pustina, D.; Avants, B.; Faseyitan, O.K.; Medaglia, J.D.; Coslett, H.B. Improved Accuracy of Lesion to Symptom Mapping with Multivariate Sparse Canonical Correlations. Neuropsychologia 2018, 115, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Shahid, H.; Sebastian, R.; Schnur, T.T.; Hanayik, T.; Wright, A.; Tippett, D.C.; Fridriksson, J.; Rorden, C.; Hillis, A.E. Important Considerations in Lesion-symptom Mapping: Illustrations from Studies of Word Comprehension. Hum. Brain Mapp. 2017, 38, 2990–3000. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.; Kong, R.; Gordon, E.M.; Laumann, T.O.; Zuo, X.-N.; Holmes, A.J.; Eickhoff, S.B.; Yeo, B.T.T. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb. Cortex 2018, 28, 3095–3114. [Google Scholar] [CrossRef] [PubMed]
- Yeh, F.-C.; Panesar, S.; Fernandes, D.; Meola, A.; Yoshino, M.; Fernandez-Miranda, J.C.; Vettel, J.M.; Verstynen, T. Population-Averaged Atlas of the Macroscale Human Structural Connectome and Its Network Topology. Neuroimage 2018, 178, 57–68. [Google Scholar] [CrossRef]
- Anziano, M.; Mouthon, M.; Thoeny, H.; Sperber, C.; Spierer, L. Mental Flexibility Depends on a Largely Distributed White Matter Network: Causal Evidence from Connectome-Based Lesion-Symptom Mapping. Cortex 2023, 165, 38–56. [Google Scholar] [CrossRef]
- Griffis, J.C.; Metcalf, N.V.; Corbetta, M.; Shulman, G.L. Damage to the Shortest Structural Paths between Brain Regions Is Associated with Disruptions of Resting-State Functional Connectivity after Stroke. NeuroImage 2020, 210, 116589. [Google Scholar] [CrossRef]
- Hope, T.M.H.; Seghier, M.L.; Prejawa, S.; Leff, A.P.; Price, C.J. Distinguishing the Effect of Lesion Load from Tract Disconnection in the Arcuate and Uncinate Fasciculi. NeuroImage 2016, 125, 1169–1173. [Google Scholar] [CrossRef]
- Foulon, C.; Cerliani, L.; Kinkingnéhun, S.; Levy, R.; Rosso, C.; Urbanski, M.; Volle, E.; Thiebaut de Schotten, M. Advanced Lesion Symptom Mapping Analyses and Implementation as BCBtoolkit. GigaScience 2018, 7, giy004. [Google Scholar] [CrossRef]
- Ivanova, M.V.; Herron, T.J.; Dronkers, N.F.; Baldo, J.V. An Empirical Comparison of Univariate versus Multivariate Methods for the Analysis of Brain-Behavior Mapping. Hum. Brain Mapp. 2021, 42, 1070–1101. [Google Scholar] [CrossRef]
- Keller, C.J.; Truccolo, W.; Gale, J.T.; Eskandar, E.; Thesen, T.; Carlson, C.; Devinsky, O.; Kuzniecky, R.; Doyle, W.K.; Madsen, J.R.; et al. Heterogeneous Neuronal Firing Patterns during Interictal Epileptiform Discharges in the Human Cortex. Brain 2010, 133, 1668–1681. [Google Scholar] [CrossRef]
- Winkler, A.M.; Ridgway, G.R.; Webster, M.A.; Smith, S.M.; Nichols, T.E. Permutation Inference for the General Linear Model. NeuroImage 2014, 92, 381–397. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, M.; Ardekani, B.A.; Pressl, C.; Blackmon, K.; Thesen, T.; Devinsky, O.; Kuzniecky, R.I.; Pardoe, H.R. Hippocampal Volumetric Integrity in Mesial Temporal Lobe Epilepsy: A Fast Novel Method for Analysis of Structural MRI. Epilepsy Res. 2019, 154, 157–162. [Google Scholar] [CrossRef]
- Iida, K.; Kagawa, K.; Katagiri, M.; Seyama, G.; Hashizume, A.; Abiko, M.; Katayama, J.; Suzuki, H.; Kurisu, K.; Otsubo, H. Preservation of Memory Despite Unresected Contralateral Hippocampal Volume Loss After Resection of Hippocampal Sclerosis in Seizure-Free Patients. World Neurosurg. 2019, 132, e759–e765. [Google Scholar] [CrossRef] [PubMed]
- Peter Binding, L.; Neal Taylor, P.; O’Keeffe, A.G.; Giampiccolo, D.; Fleury, M.; Xiao, F.; Caciagli, L.; de Tisi, J.; Winston, G.P.; Miserocchi, A.; et al. The Impact of Temporal Lobe Epilepsy Surgery on Picture Naming and Its Relationship to Network Metric Change. NeuroImage Clin. 2023, 38, 103444. [Google Scholar] [CrossRef]
- Audrain, S.; Barnett, A.J.; McAndrews, M.P. Language Network Measures at Rest Indicate Individual Differences in Naming Decline after Anterior Temporal Lobe Resection. Hum. Brain Mapp. 2018, 39, 4404–4419. [Google Scholar] [CrossRef] [PubMed]
- Arnold, T.C.; Kini, L.G.; Bernabei, J.M.; Revell, A.Y.; Das, S.R.; Stein, J.M.; Lucas, T.H.; Englot, D.J.; Morgan, V.L.; Litt, B.; et al. Remote Effects of Temporal Lobe Epilepsy Surgery: Long-Term Morphological Changes after Surgical Resection. Epilepsia Open 2023, 8, 559–570. [Google Scholar] [CrossRef]
- Witt, J.-A.; Hoppe, C.; Helmstaedter, C. Neuropsychologist’s (Re-)View: Resective versus Ablative Amygdalohippocampectomies. Epilepsy Res. 2018, 142, 161–166. [Google Scholar] [CrossRef]
- Brenner, D.A.; Valdivia, D.J.; Dadario, N.B.; Aiyathurai, J.; Mashiach, E.; Ginalis, E.E.; Quinoa, T.R.; Wong, T.; Sun, H. Functional Outcomes in MRI-Guided Laser Interstitial Therapy for Temporal Lobe Epilepsy: A Systematic Review and Meta-Analysis. J. Neurosurg. 2024, 141, 362–371. [Google Scholar] [CrossRef]
- Sharma, M.; Ball, T.; Alhourani, A.; Ugiliweneza, B.; Wang, D.; Boakye, M.; Neimat, J.S. Inverse National Trends of Laser Interstitial Thermal Therapy and Open Surgical Procedures for Refractory Epilepsy: A Nationwide Inpatient Sample–Based Propensity Score Matching Analysis. Neurosurg. Focus 2020, 48, E11. [Google Scholar] [CrossRef]
- Seiam, A.-H.R.; Dhaliwal, H.; Wiebe, S. Determinants of Quality of Life after Epilepsy Surgery: Systematic Review and Evidence Summary. Epilepsy Behav. 2011, 21, 441–445. [Google Scholar] [CrossRef]
- Gleichgerrcht, E.; Munsell, B.; Bhatia, S.; Vandergrift, W.A.; Rorden, C.; McDonald, C.; Edwards, J.; Kuzniecky, R.; Bonilha, L. Deep Learning Applied to Whole-brain Connectome to Determine Seizure Control after Epilepsy Surgery. Epilepsia 2018, 59, 1643–1654. [Google Scholar] [CrossRef] [PubMed]
- Bonilha, L.; Jensen, J.H.; Baker, N.; Breedlove, J.; Nesland, T.; Lin, J.J.; Drane, D.L.; Saindane, A.M.; Binder, J.R.; Kuzniecky, R.I. The Brain Connectome as a Personalized Biomarker of Seizure Outcomes after Temporal Lobectomy. Neurology 2015, 84, 1846–1853. [Google Scholar] [CrossRef] [PubMed]
- Bourdillon, P.; Rheims, S.; Catenoix, H.; Montavont, A.; Ostrowsky-Coste, K.; Isnard, J.; Guénot, M. Malformations of Cortical Development: New Surgical Advances. Rev. Neurol. 2019, 175, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Piper, R.J.; Richardson, R.M.; Worrell, G.; Carmichael, D.W.; Baldeweg, T.; Litt, B.; Denison, T.; Tisdall, M.M. Towards Network-Guided Neuromodulation for Epilepsy. Brain 2022, 145, 3347–3362. [Google Scholar] [CrossRef]
- Tsivilis, D.; Vann, S.D.; Denby, C.; Roberts, N.; Mayes, A.R.; Montaldi, D.; Aggleton, J.P. A Disproportionate Role for the Fornix and Mammillary Bodies in Recall versus Recognition Memory. Nat. Neurosci. 2008, 11, 834–842. [Google Scholar] [CrossRef]
- Elliott, C.A.; Gross, D.W.; Wheatley, B.M.; Beaulieu, C.; Sankar, T. Longitudinal Hippocampal and Extra-Hippocampal Microstructural and Macrostructural Changes Following Temporal Lobe Epilepsy Surgery. Epilepsy Res. 2018, 140, 128–137. [Google Scholar] [CrossRef]
- Yogarajah, M.; Focke, N.K.; Bonelli, S.B.; Thompson, P.; Vollmar, C.; McEvoy, A.W.; Alexander, D.C.; Symms, M.R.; Koepp, M.J.; Duncan, J.S. The Structural Plasticity of White Matter Networks Following Anterior Temporal Lobe Resection. Brain 2010, 133, 2348–2364. [Google Scholar] [CrossRef]
- Liu, A.; Thesen, T.; Barr, W.; Morrison, C.; Dugan, P.; Wang, X.; Meager, M.; Doyle, W.; Kuzniecky, R.; Devinsky, O.; et al. Parahippocampal and Entorhinal Resection Extent Predicts Verbal Memory Decline in an Epilepsy Surgery Cohort. J. Cogn. Neurosci. 2017, 29, 869–880. [Google Scholar] [CrossRef]
- Giacomini, L.; de Souza, J.P.S.A.; Formentin, C.; de Campos, B.M.; Todeschini, A.B.; de Oliveira, E.; Tedeschi, H.; Joaquim, A.F.; Cendes, F.; Ghizoni, E. Temporal Lobe Structural Evaluation after Transsylvian Selective Amygdalohippocampectomy. Neurosurg. Focus 2020, 48, E14. [Google Scholar] [CrossRef]
- Catani, M.; Jones, D.K.; Ffytche, D.H. Perisylvian Language Networks of the Human Brain. Ann. Neurol. 2005, 57, 8–16. [Google Scholar] [CrossRef]
- Huang, C.-C.; Rolls, E.T.; Hsu, C.-C.H.; Feng, J.; Lin, C.-P. Extensive Cortical Connectivity of the Human Hippocampal Memory System: Beyond the “What” and “Where” Dual Stream Model. Cereb. Cortex 2021, 31, 4652–4669. [Google Scholar] [CrossRef] [PubMed]
- Mandonnet, E.; Nouet, A.; Gatignol, P.; Capelle, L.; Duffau, H. Does the Left Inferior Longitudinal Fasciculus Play a Role in Language? A Brain Stimulation Study. Brain 2007, 130, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Saling, M.M. Verbal Memory in Mesial Temporal Lobe Epilepsy: Beyond Material Specificity. Brain 2009, 132, 570–582. [Google Scholar] [CrossRef] [PubMed]
Participant | Sex | Side of Surgery | Age at Surgery | Seizure Onset | Duration | Tailoring | Histopathology |
---|---|---|---|---|---|---|---|
[Years] | [Years] | [Years] | [Modality] | ||||
1 | male | right | 20 | 16 | 4 | MRI | Nonspecific alterations, gliosis |
2 | female | left | 22 | 16 | 6 | ECOG | Ganglioglioma II° |
3 | female | right | 6 | 3 | 3 | ECOG | Malformation of cortical development |
4 | female | right | 28 | 17 | 11 | sEEG / ECOG | Malformation of cortical development |
5 | male | left | 25 | 18 | 7 | sEEG | Cortical gliosis, nonspecific alterations |
6 | female | right | 45 | 27 | 18 | ECOG | Malformation of cortical development |
7 | male | left | 18 | 17 | 1 | MRI | DNT I° |
8 | female | right | 42 | 35 | 7 | MRI | Ganglioglioma I° |
9 | male | left | 16 | 16 | 0 | MRI | Ganglioglioma I° |
10 | male | left | 35 | 25 | 10 | MRI | Nonspecific alterations |
11 | female | left | 6 | 5 | 1 | MRI | Ganglioglioma I° |
12 | male | left | 55 | 54 | 1 | MRI | Cavernoma |
13 | female | left | 13 | 13 | 0 | MRI | Piloytic astrocytoma |
14 | male | left | 31 | 13 | 18 | sEEG / ECOG | Malformation of cortical development |
15 | male | left | 26 | 24 | 2 | MRI | Ganglioglioma I° |
16 | female | left | 43 | 39 | 4 | MRI | Cavernoma |
17 | male | right | 8 | 7 | 1 | MRI | Piloytic astrocytoma |
18 | female | right | 26 | 21 | 5 | ECOG | Nonspecific alterations |
19 | male | right | 20 | 19 | 1 | MRI | Ganglioglioma I° |
20 | male | left | 17 | 14 | 3 | MRI | Pilocytic astrocytoma I° |
21 | female | left | 21 | 20 | 1 | MRI | Cavernoma |
22 | female | left | 42 | 31 | 11 | MRI | Cavernoma |
23 | male | left | 45 | 39 | 6 | MRI | Xanthoastrocytoma II° |
24 | male | right | 42 | 24 | 18 | ECOG | Malformation of cortical development |
25 | female | left | 56 | 27 | 29 | MRI | Vascular lesion |
26 | male | right | 15 | 6 | 9 | ECOG | Malformation of cortical development |
27 | male | right | 33 | 23 | 10 | sEEG | Malformation of cortical development |
28 | male | left | 24 | 14 | 10 | MRI | Malformation of cortical development |
29 | female | left | 60 | 48 | 12 | sEEG | No definitive histopathology |
30 | female | right | 19 | 18 | 1 | MRI | Xanthoastrocytoma II° |
31 | female | left | 16 | 12 | 4 | ECOG | Malformation of cortical development |
32 | male | left | 38 | 37 | 1 | MRI | Ganglioglioma I° |
33 | male | right | 60 | 58 | 2 | MRI | Cavernoma |
34 | female | left | 27 | 26 | 1 | MRI | Ganglioglioma I° |
35 | female | left | 38 | 16 | 22 | MRI | Cavernoma |
36 | female | right | 46 | 45 | 1 | MRI | Cavernoma |
37 | male | right | 9 | 8 | 1 | MRI | Malformation of cortical development |
38 | female | left | 24 | 20 | 4 | MRI | Cavernoma |
39 | male | right | 43 | 40 | 3 | MRI | Malformation of cortical development |
40 | male | right | 40 | 36 | 4 | MRI | Ganglioglioma I |
41 | male | left | 45 | 16 | 29 | ECOG | Nonspecific alterations |
42 | female | right | 11 | 10 | 1 | MRI | DNT I° |
43 | male | right | 37 | 32 | 5 | MRI | Cavernoma |
44 | male | left | 18 | 11 | 7 | sEEG | Malformation of cortical development |
45 | male | right | 58 | 9 | 49 | MRI | Ganglioglioma I° |
46 | male | left | 24 | 18 | 6 | MRI | Nonspecific alterations |
47 | female | left | 38 | 34 | 4 | MRI | Encephalocele |
48 | male | right | 18 | 18 | 0 | MRI | Ganglioglioma |
49 | male | right | 51 | 2 | 49 | MRI | Malformation of cortical development |
50 | female | right | 26 | 24 | 2 | MRI | Malformation of cortical development |
51 | female | right | 29 | 20 | 9 | MRI | DNT I° |
52 | female | left | 17 | 12 | 5 | MRI | No histopathology available |
53 | male | left | 23 | 20 | 3 | MRI | Nonspecific alterations |
54 | female | left | 26 | 14 | 12 | MRI | Cavernoma |
55 | male | left | 19 | 17 | 2 | MRI | Malformation of cortical development |
Tract | Disconnection | Neurocognitive Performance/Hippocampal Volume | |||
---|---|---|---|---|---|
Median % disconnection ± SD | Behavioral test | t (FWE) | r2 | Slope | |
Fornix (L) | 5.8 ± 11.4 | VLMT | 2.88 | 0.26 | 1.90 |
IFOF (L) | 5.0 ± 17.6 | VLMT | 5.57 | 0.31 | 3.10 |
HC volume | 2.7 | 0.14 | 1.04 | ||
ILF | N/A | HC volume | 2.9 | 0.14 | 1.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foit, N.A.; Gau, K.; Rau, A.; Urbach, H.; Beck, J.; Schulze-Bonhage, A. Linking Memory Impairment to Structural Connectivity in Extrahippocampal Temporal Lobe Epilepsy Surgery. Neurol. Int. 2025, 17, 52. https://doi.org/10.3390/neurolint17040052
Foit NA, Gau K, Rau A, Urbach H, Beck J, Schulze-Bonhage A. Linking Memory Impairment to Structural Connectivity in Extrahippocampal Temporal Lobe Epilepsy Surgery. Neurology International. 2025; 17(4):52. https://doi.org/10.3390/neurolint17040052
Chicago/Turabian StyleFoit, Niels Alexander, Karin Gau, Alexander Rau, Horst Urbach, Jürgen Beck, and Andreas Schulze-Bonhage. 2025. "Linking Memory Impairment to Structural Connectivity in Extrahippocampal Temporal Lobe Epilepsy Surgery" Neurology International 17, no. 4: 52. https://doi.org/10.3390/neurolint17040052
APA StyleFoit, N. A., Gau, K., Rau, A., Urbach, H., Beck, J., & Schulze-Bonhage, A. (2025). Linking Memory Impairment to Structural Connectivity in Extrahippocampal Temporal Lobe Epilepsy Surgery. Neurology International, 17(4), 52. https://doi.org/10.3390/neurolint17040052