Artificial Intelligence in the Diagnosis of Neurological Diseases Using Biomechanical and Gait Analysis Data: A Scopus-Based Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Methods
2.2. Data Analysis
2.3. Performance Analysis
2.4. Scientific Mapping
- (a)
- Co-authorship analysis: Authors, organizations, and countries were analyzed as the unit of analysis, focusing on collaborations based on their co-authored documents. The analysis using authors as the unit of analysis was limited to those with at least two documents.
- (b)
- Bibliographic coupling: Sources were examined as the unit of study to assess the extent to which two or more sources shared common references.
- (c)
- Co-citation analysis: Sources were used as the unit of analysis to determine how frequently two or more sources were cited together in other documents. The analysis was limited to sources with at least ten citations.
- (d)
- Co-occurrence analysis: The unit of analysis was “author keywords”, investigating how often two or more keywords appeared together within the same documents. “Author keywords” were limited to terms explicitly listed by the author as “keywords”. The minimum number of occurrences was set at two.
3. Results
3.1. Performance Analysis
3.2. Science Mapping
4. Discussion
4.1. Thematic Areas
4.1.1. Machine Learning and Gait Analysis
4.1.2. Sensors and Wearable Health Technologies
4.1.3. Cognitive Disorders
4.1.4. Neurological Disorders and Motion Recognition Technologies
4.1.5. Qualitative Critique of AI Methodologies in Neurological Diagnosis
4.1.6. Underlying Causes, Implications, and Solutions for Research Gaps
4.2. Publication Trends and Patterns
4.3. Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chandra, V.; Pandav, R.; Laxminarayan, R.; Tanner, C.; Manyam, B.; Rajkumar, S.; Silberberg, D.; Brayne, C.; Chow, J.; Herman, S. Neurological disorders. In Disease Control Priorities in Developing Countries; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA; Oxford University Press: New York, NY, USA, 2006; Chapter 32. Available online: https://www.ncbi.nlm.nih.gov/books/NBK11793/ (accessed on 21 January 2025).
- Steinmetz, J.D.; Seeher, K.M.; Schiess, N.; Nichols, E.; Cao, B.; Servili, C.; Cavallera, V.; Cousin, E.; Hagins, H.; Moberg, M.E. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 344–381. [Google Scholar] [CrossRef]
- Ding, C.; Wu, Y.; Chen, X.; Chen, Y.; Wu, Z.; Lin, Z.; Kang, D.; Fang, W.; Chen, F. Global, regional, and national burden and attributable risk factors of neurological disorders: The Global Burden of Disease study 1990–2019. Front. Public Health 2022, 10, 952161. [Google Scholar] [CrossRef]
- Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.O.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The global burden of neurological disorders: Translating evidence into policy. Lancet Neurol. 2020, 19, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Mistur, R.; Mosconi, L.; De Santi, S.; Guzman, M.; Li, Y.; Tsui, W.; de Leon, M.J. Current challenges for the early detection of Alzheimer’s disease: Brain imaging and CSF studies. J. Clin. Neurol. 2009, 5, 153–166. [Google Scholar] [CrossRef]
- Koenig, M.; Klotz, E.; Luka, B.; Venderink, D.J.; Spittler, J.F.; Heuser, L. Perfusion CT of the brain: Diagnostic approach for early detection of ischemic stroke. Radiology 1998, 209, 85–93. [Google Scholar] [CrossRef]
- Siuly, S.; Zhang, Y. Medical big data: Neurological diseases diagnosis through medical data analysis. Data Sci. Eng. 2016, 1, 54–64. [Google Scholar] [CrossRef]
- Al-Qazzaz, N.K.; Ali, S.H.B.M.; Ahmad, S.A.; Chellappan, K.; Islam, M.S.; Escudero, J. Role of EEG as biomarker in the early detection and classification of dementia. Sci. World J. 2014, 2014, 906038. [Google Scholar] [CrossRef]
- McEvoy, L.K.; Brewer, J.B. Quantitative structural MRI for early detection of Alzheimer’s disease. Expert Rev. Neurother. 2010, 10, 1675–1688. [Google Scholar] [CrossRef]
- Jha, K.; Kumar, A. Role of Artificial Intelligence in Detecting Neurological Disorders. Int. Res. J. Adv. Eng. Hub (IRJAEH) 2024, 2, 73–79. [Google Scholar] [CrossRef]
- Paul, S.; Bhattacharya, P.; Bit, A. Early Detection of Neurological Disorders Using Machine Learning Systems; IGI Global: Hershey, PA, USA, 2019. [Google Scholar]
- Singh, K.R.; Dash, S. Early detection of neurological diseases using machine learning and deep learning techniques: A review. Artif. Intell. Neurol. Disord. 2023, 1–24. [Google Scholar] [CrossRef]
- Vandana, J.; Nirali, N. A review of EEG signal analysis for diagnosis of neurological disorders using machine learning. J. Biomed. Photonics Eng. 2021, 7, 40201. [Google Scholar] [CrossRef]
- Khan, P.; Kader, M.F.; Islam, S.R.; Rahman, A.B.; Kamal, M.S.; Toha, M.U.; Kwak, K.-S. Machine learning and deep learning approaches for brain disease diagnosis: Principles and recent advances. IEEE Access 2021, 9, 37622–37655. [Google Scholar] [CrossRef]
- Kalani, M.; Anjankar, A. Revolutionizing Neurology: The Role of Artificial Intelligence in Advancing Diagnosis and Treatment. Cureus 2024, 16, e61706. [Google Scholar] [CrossRef] [PubMed]
- Celik, Y.; Aslan, M.F.; Sabanci, K.; Stuart, S.; Woo, W.L.; Godfrey, A. Improving inertial sensor-based activity recognition in neurological populations. Sensors 2022, 22, 9891. [Google Scholar] [CrossRef]
- Vilas-Boas, M.D.C.; Rocha, A.P.; Cardoso, M.N.; Fernandes, J.M.; Coelho, T.; Cunha, J.P.S. Supporting the assessment of hereditary transthyretin amyloidosis patients based on 3-D gait analysis and machine learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1350–1362. [Google Scholar] [CrossRef]
- Babu, A.; Ranpariya, S.; Sinha, D.K.; Mandal, D. Deep learning enabled perceptive wearable sensor: An interactive gadget for tracking movement disorder. Adv. Mater. Technol. 2023, 8, 2300046. [Google Scholar] [CrossRef]
- do Carmo Vilas-Boas, M.; Cunha, J.P.S. Movement quantification in neurological diseases: Methods and applications. IEEE Rev. Biomed. Eng. 2016, 9, 15–31. [Google Scholar] [CrossRef]
- Goyal, D.; Jerripothula, K.R.; Mittal, A. Detection of gait abnormalities caused by neurological disorders. In Proceedings of the 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 21–24 September 2020; pp. 1–6. [Google Scholar]
- Chee, R.; Murphy, A.; Danoudis, M.; Georgiou-Karistianis, N.; Iansek, R. Gait freezing in Parkinson’s disease and the stride length sequence effect interaction. Brain 2009, 132, 2151–2160. [Google Scholar] [CrossRef]
- Lewek, M.D.; Poole, R.; Johnson, J.; Halawa, O.; Huang, X. Arm swing magnitude and asymmetry during gait in the early stages of Parkinson’s disease. Gait Posture 2010, 31, 256–260. [Google Scholar] [CrossRef]
- Stevens, V.; Goodman, K.; Rough, K.; Kraft, G.H. Gait impairment and optimizing mobility in multiple sclerosis. Phys. Med. Rehabil. Clin. 2013, 24, 573–592. [Google Scholar] [CrossRef]
- Selgrade, B.P.; Meyer, D.; Sosnoff, J.J.; Franz, J.R. Can optical flow perturbations detect walking balance impairment in people with multiple sclerosis? PLoS ONE 2020, 15, e0230202. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.-L.; Tang, P.-F.; Jan, M.-H. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch. Phys. Med. Rehabil. 2003, 84, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Balaban, B.; Tok, F. Gait disturbances in patients with stroke. PmR 2014, 6, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Mirek, E.; Filip, M.; Chwała, W.; Banaszkiewicz, K.; Rudzinska-Bar, M.; Szymura, J.; Pasiut, S.; Szczudlik, A. Three-Dimensional Trunk and Lower Limbs Characteristics during Gait in Patients with Huntington’s Disease. Front. Neurosci. 2017, 11, 566. [Google Scholar] [CrossRef]
- Cicirelli, G.; Impedovo, D.; Dentamaro, V.; Marani, R.; Pirlo, G.; D’Orazio, T.R. Human gait analysis in neurodegenerative diseases: A review. IEEE J. Biomed. Health Inform. 2021, 26, 229–242. [Google Scholar] [CrossRef]
- Buckley, C.; Alcock, L.; McArdle, R.; Rehman, R.Z.U.; Del Din, S.; Mazzà, C.; Yarnall, A.J.; Rochester, L. The role of movement analysis in diagnosing and monitoring neurodegenerative conditions: Insights from gait and postural control. Brain Sci. 2019, 9, 34. [Google Scholar] [CrossRef]
- Sciarrone, A.; Bisio, I.; Garibotto, C.; Lavagetto, F.; Staude, G.H.; Knopp, A. Leveraging IoT wearable technology towards early diagnosis of neurological diseases. IEEE J. Sel. Areas Commun. 2020, 39, 582–592. [Google Scholar] [CrossRef]
- Hammoud, M.; Kovalenko, E.; Somov, A.; Bril, E.; Baldycheva, A. Deep learning framework for neurological diseases diagnosis through near-infrared eye video and time series imaging algorithms. Internet Things 2023, 24, 100914. [Google Scholar] [CrossRef]
- Billones, C.D.; Demetria, O.J.L.D.; Hostallero, D.E.D.; Naval, P.C. DemNet: A convolutional neural network for the detection of Alzheimer’s disease and mild cognitive impairment. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 3724–3727. [Google Scholar]
- Calderone, A.; Latella, D.; Bonanno, M.; Quartarone, A.; Mojdehdehbaher, S.; Celesti, A.; Calabrò, R.S. Towards Transforming Neurorehabilitation: The Impact of Artificial Intelligence on Diagnosis and Treatment of Neurological Disorders. Biomedicines 2024, 12, 2415. [Google Scholar] [CrossRef]
- Santilli, G.; Mangone, M.; Agostini, F.; Paoloni, M.; Bernetti, A.; Diko, A.; Tognolo, L.; Coraci, D.; Vigevano, F.; Vetrano, M. Evaluation of Rehabilitation Outcomes in Patients with Chronic Neurological Health Conditions Using a Machine Learning Approach. J. Funct. Morphol. Kinesiol. 2024, 9, 176. [Google Scholar] [CrossRef]
- Ashour, A.F.; Fouda, M.M. Advancements and Challenges in AI Applications for Movement Disorders. In Proceedings of the 2023 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), Bali, Indonesia, 28–30 November 2023; pp. 189–195. [Google Scholar]
- Wilson, M.; Sampson, M.; Barrowman, N.; Doja, A. Bibliometric analysis of neurology articles published in general medicine journals. JAMA Netw. Open 2021, 4, e215840. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, S.; Spina, S.; Reebye, R.; Turolla, A.; Calabrò, R.S.; Fiore, P.; Santamato, A. Sensor-based rehabilitation in neurological diseases: A bibliometric analysis of research trends. Brain Sci. 2023, 13, 724. [Google Scholar] [CrossRef] [PubMed]
- Simard, M.-A.; Kozlowski, D.; Segal, J.; Messer, M.; Ocay, D.D.; Saari, T.; Ferland, C.E.; Larivière, V. Trends in brain research: A bibliometric analysis. Can. J. Neurol. Sci. 2023, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Dai, Z.; Ye, Y.; Hu, P.; Cheng, H. Bibliometric and visualized analysis of the application of artificial intelligence in stroke. Front. Neurosci. 2024, 18, 1411538. [Google Scholar] [CrossRef]
- An, X.; He, J.; Bi, B.; Wu, G.; Xu, J.; Yu, W.; Ren, Z. The application of artificial intelligence in diagnosis of Alzheimer’s disease: A bibliometric analysis. Front. Neurol. 2024, 15, 1510729. [Google Scholar] [CrossRef]
- Wu, C.-C.; Su, C.-H.; Islam, M.M.; Liao, M.-H. Artificial Intelligence in dementia: A bibliometric study. Diagnostics 2023, 13, 2109. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Xie, H.; Tao, X.; Wang, F.L.; Xie, N.; Hao, T. A bibliometric and visual analysis of artificial intelligence technologies-enhanced brain MRI research. Multimed. Tools Appl. 2021, 80, 17335–17363. [Google Scholar] [CrossRef]
- Dener, M.; Tekin, U. A Bibliometric Analysis of Studies on Artificial Intelligence in Neuroscience. Front. Neurol. 2025, 16, 1474484. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, Z. Decoding the application of deep learning in neuroscience: A bibliometric analysis. Front. Comput. Neurosci. 2024, 18, 1402689. [Google Scholar] [CrossRef]
- El-Hajj, V.G.; Gharios, M.; Edström, E.; Elmi-Terander, A. Artificial intelligence in neurosurgery: A bibliometric analysis. World Neurosurg. 2023, 171, 152–158. e154. [Google Scholar] [CrossRef]
- Tsiakiri, A.; Plakias, S.; Karakitsiou, G.; Nikova, A.; Christidi, F.; Kokkotis, C.; Giarmatzis, G.; Tsakni, G.; Katsouri, I.-G.; Dimitrios, S. Mapping the Landscape of Biomechanics Research in Stroke Neurorehabilitation: A Bibliometric Perspective. Biomechanics 2024, 4, 664–684. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact: Methods and Practice; Springer: Berlin/Heidelberg, Germany, 2014; pp. 285–320. [Google Scholar]
- Plakias, S.; Tsatalas, T.; Mina, M.A.; Kokkotis, C.; Kellis, E.; Giakas, G. A Bibliometric Analysis of Soccer Biomechanics. Appl. Sci. 2024, 14, 6430. [Google Scholar] [CrossRef]
- Xiao, X.; Prompanyo, M. Influence of Scientific Collaboration Network on Academic Performance. Int. J. Bus. Manag. 2023, 16, 1–68. [Google Scholar] [CrossRef]
- Adelowo, C.M.; Ilevbare, O.E.; Orewole, M.O. Collaboration, networking and research productivity in Nigeria’s research institutes: Empirical evidence. Int. J. Bus. Reflect. 2023, 3, 153–171. [Google Scholar] [CrossRef]
- Negi, P.C.; Pandey, S.; Sharma, S.; Sharma, N. Scalogram-Based Gait Abnormalities Classification Using Deep Convolutional Networks for Neurological and Non-Neurological Disorders. J. Med. Biol. Eng. 2024, 44, 375–389. [Google Scholar] [CrossRef]
- Rangel, E.; Martínez, F. Parkinsonian gait modelling from an anomaly deep representation. Multimed. Tools Appl. 2024, 1–19. [Google Scholar] [CrossRef]
- Setiawan, F.; Lin, C.-W. Implementation of a deep learning algorithm based on vertical ground reaction force time–frequency features for the detection and severity classification of Parkinson’s disease. Sensors 2021, 21, 5207. [Google Scholar] [CrossRef]
- Erdaş, Ç.B.; Sümer, E. CNN-Based Neurodegenerative Disease Classification Using QR-Represented Gait Data. Brain Behav. 2024, 14, e70100. [Google Scholar] [CrossRef]
- Guarín, D.L.; Wong, J.K.; McFarland, N.R.; Ramirez-Zamora, A.; Vaillancourt, D.E. What the trained eye cannot see: Quantitative kinematics and machine learning detect movement deficits in early-stage Parkinson’s disease from videos. Park. Relat. Disord. 2024, 127, 107104. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Mata, B.G.; Dorantes-Méndez, G.; Piña-Ramírez, O. Classification of Parkinson’s disease severity using gait stance signals in a spatiotemporal deep learning classifier. Med. Biol. Eng. Comput. 2024, 62, 3493–3506. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-W.; Wen, T.-C.; Setiawan, F. Evaluation of vertical ground reaction forces pattern visualization in neurodegenerative diseases identification using deep learning and recurrence plot image feature extraction. Sensors 2020, 20, 3857. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zeng, W.; Dai, X. Gait classification for early detection and severity rating of Parkinson’s disease based on hybrid signal processing and machine learning methods. Cogn. Neurodynamics 2024, 18, 109–132. [Google Scholar] [CrossRef]
- Begum, S.V.; Rani, M.P. Classification of gait dynamics in neurodegenerative disease patients using machine learning techniques. Int. J. Sci. Technol. Res. 2020, 9, 6250–6254. [Google Scholar]
- Yin, W.; Zhu, W.; Gao, H.; Niu, X.; Shen, C.; Fan, X.; Wang, C. Gait analysis in the early stage of Parkinson’s disease with a machine learning approach. Front. Neurol. 2024, 15, 1472956. [Google Scholar] [CrossRef]
- Apostolidis, K.; Kokkotis, C.; Karakasis, E.; Karampina, E.; Moustakidis, S.; Menychtas, D.; Giarmatzis, G.; Tsiptsios, D.; Vadikolias, K.; Aggelousis, N. Innovative visualization approach for biomechanical time series in stroke diagnosis using explainable machine learning methods: A proof-of-concept study. Information 2023, 14, 559. [Google Scholar] [CrossRef]
- Meng, L.; Pang, J.; Yang, Y.; Chen, L.; Xu, R.; Ming, D. Inertial-based gait metrics during turning improve the detection of early-stage parkinson’s disease patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1472–1482. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Lu, W.; Li, J.; Shan, P.; Lian, C.; Wang, X.; Fu, C.; Ma, C.; Wang, Y. Intelligent IoT Anklets for Monitoring the Assessment of Parkinson’s Diseases. IEEE Sens. J. 2023, 23, 31523–31536. [Google Scholar] [CrossRef]
- Rehman, R.Z.U.; Klocke, P.; Hryniv, S.; Galna, B.; Rochester, L.; Del Din, S.; Alcock, L. Turning detection during gait: Algorithm validation and influence of sensor location and turning characteristics in the classification of parkinson’s disease. Sensors 2020, 20, 5377. [Google Scholar] [CrossRef]
- Lin, S.; Gao, C.; Li, H.; Huang, P.; Ling, Y.; Chen, Z.; Ren, K.; Chen, S. Wearable sensor-based gait analysis to discriminate early Parkinson’s disease from essential tremor. J. Neurol. 2023, 270, 2283–2301. [Google Scholar] [CrossRef] [PubMed]
- Park, D.J.; Lee, J.W.; Lee, M.J.; Ahn, S.J.; Kim, J.; Kim, G.L.; Ra, Y.J.; Cho, Y.N.; Jeong, W.B. Evaluation for Parkinsonian Bradykinesia by deep learning modeling of kinematic parameters. J. Neural Transm. 2021, 128, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Guarín, D.L.; Wong, J.K.; McFarland, N.R.; Ramirez-Zamora, A. Characterizing disease progression in Parkinson’s disease from videos of the finger tapping test. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2293–2301. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Kantartjis, M.; Severson, J.; Dorsey, R.; Adams, J.L.; Kangarloo, T.; Kostrzebski, M.A.; Best, A.; Merickel, M.; Amato, D. Wearable Sensor-Based Assessments for Remotely Screening Early-Stage Parkinson’s Disease. Sensors 2024, 24, 5637. [Google Scholar] [CrossRef]
- Shahzad, A.; Dadlani, A.; Lee, H.; Kim, K. Automated prescreening of mild cognitive impairment using shank-mounted inertial sensors based gait biomarkers. IEEE Access 2022, 10, 15835–15844. [Google Scholar] [CrossRef]
- Ileșan, R.R.; Cordoș, C.-G.; Mihăilă, L.-I.; Fleșar, R.; Popescu, A.-S.; Perju-Dumbravă, L.; Faragó, P. Proof of concept in artificial-intelligence-based wearable gait monitoring for Parkinson’s disease management optimization. Biosensors 2022, 12, 189. [Google Scholar] [CrossRef]
- Obuchi, S.P.; Kojima, M.; Suzuki, H.; Garbalosa, J.C.; Imamura, K.; Ihara, K.; Hirano, H.; Sasai, H.; Fujiwara, Y.; Kawai, H. Artificial intelligence detection of cognitive impairment in older adults during walking. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2024, 16, e70012. [Google Scholar] [CrossRef]
- Trabassi, D.; Serrao, M.; Varrecchia, T.; Ranavolo, A.; Coppola, G.; De Icco, R.; Tassorelli, C.; Castiglia, S.F. Machine learning approach to support the detection of Parkinson’s disease in IMU-based Gait analysis. Sensors 2022, 22, 3700. [Google Scholar] [CrossRef]
- Yamada, Y.; Shinkawa, K.; Kobayashi, M.; Caggiano, V.; Nemoto, M.; Nemoto, K.; Arai, T. Combining multimodal behavioral data of gait, speech, and drawing for classification of Alzheimer’s disease and mild cognitive impairment. J. Alzheimer’s Dis. 2021, 84, 315–327. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, X.; An, J.; Bao, W.; Yang, F.; Chen, J.; Hou, S.; Wang, Z.; Du, S.; Zhao, Y. An effective screening model for subjective cognitive decline in community-dwelling older adults based on gait analysis and eye tracking. Front. Aging Neurosci. 2024, 16, 1444375. [Google Scholar] [CrossRef]
- Chen, P.-H.; Lien, C.-W.; Wu, W.-C.; Lee, L.-S.; Shaw, J.-S. Artificial Intelligence of Neuropsychological Tests for the Prediction and Verification of Decline in Gait Parameters in Patients with Mild Cognitive Impairment. Int. J. Gerontol. 2020, 14, 277–283. [Google Scholar] [CrossRef]
- Noh, B.; Yoon, H.; Youm, C.; Kim, S.; Lee, M.; Park, H.; Kim, B.; Choi, H.; Noh, Y. Prediction of decline in global cognitive function using machine learning with feature ranking of gait and physical fitness outcomes in older adults. Int. J. Environ. Res. Public Health 2021, 18, 11347. [Google Scholar] [CrossRef] [PubMed]
- Seifallahi, M.; Galvin, J.E.; Ghoraani, B. Detection of mild cognitive impairment using various types of gait tests and machine learning. Front. Neurol. 2024, 15, 1354092. [Google Scholar] [CrossRef] [PubMed]
- Ghoraani, B.; Boettcher, L.N.; Hssayeni, M.D.; Rosenfeld, A.; Tolea, M.I.; Galvin, J.E. Detection of mild cognitive impairment and Alzheimer’s disease using dual-task gait assessments and machine learning. Biomed. Signal Process. Control 2021, 64, 102249. [Google Scholar] [CrossRef]
- Amboni, M.; Ricciardi, C.; Adamo, S.; Nicolai, E.; Volzone, A.; Erro, R.; Cuoco, S.; Cesarelli, G.; Basso, L.; D’Addio, G. Machine learning can predict mild cognitive impairment in Parkinson’s disease. Front. Neurol. 2022, 13, 1010147. [Google Scholar] [CrossRef]
- Aoki, K.; Ngo, T.T.; Mitsugami, I.; Okura, F.; Niwa, M.; Makihara, Y.; Yagi, Y.; Kazui, H. Early detection of lower MMSE scores in elderly based on dual-task gait. IEEE Access 2019, 7, 40085–40094. [Google Scholar] [CrossRef]
- Davoudi, A.; Dion, C.; Amini, S.; Tighe, P.J.; Price, C.C.; Libon, D.J.; Rashidi, P. Classifying non-dementia and Alzheimer’s disease/vascular dementia patients using kinematic, time-based, and visuospatial parameters: The digital clock drawing test. J. Alzheimers Dis. 2021, 82, 47–57. [Google Scholar] [CrossRef]
- Sarbaz, Y.; Abedi, B. Presenting a new decision support system for screening parkinson’s disease patients using symlet wavelet. Biomed. Eng. Appl. Basis Commun. 2019, 31, 1950026. [Google Scholar] [CrossRef]
- Recenti, M.; Gargiulo, P.; Chang, M.; Ko, S.B.; Kim, T.J.; Ko, S.U. Predicting stroke, neurological and movement disorders using single and dual-task gait in Korean older population. Gait Posture 2023, 105, 92–98. [Google Scholar] [CrossRef]
- Fraiwan, L.; Hassanin, O. Computer-aided identification of degenerative neuromuscular diseases based on gait dynamics and ensemble decision tree classifiers. PLoS ONE 2021, 16, e0252380. [Google Scholar] [CrossRef]
- Zhang, J.; Lim, J.; Kim, M.-H.; Hur, S.; Chung, T.-M. WM–STGCN: A novel spatiotemporal modeling method for Parkinsonian gait recognition. Sensors 2023, 23, 4980. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhao, Q.; Poston, K.L.; Sullivan, E.V.; Pfefferbaum, A.; Shahid, M.; Katz, M.; Montaser-Kouhsari, L.; Schulman, K.; Milstein, A. Quantifying Parkinson’s disease motor severity under uncertainty using MDS-UPDRS videos. Med. Image Anal. 2021, 73, 102179. [Google Scholar] [CrossRef]
- Eguchi, K.; Takigawa, I.; Shirai, S.; Takahashi-Iwata, I.; Matsushima, M.; Kano, T.; Yaguchi, H.; Yabe, I. Gait video-based prediction of unified Parkinson’s disease rating scale score: A retrospective study. BMC Neurol. 2023, 23, 358. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H.; Mestre, T.A.; Fox, S.H.; Taati, B. Vision-based assessment of parkinsonism and levodopa-induced dyskinesia with pose estimation. J. Neuroeng. Rehabil. 2018, 15, 1–13. [Google Scholar] [CrossRef] [PubMed]
Author | Citations | Documents |
---|---|---|
Nöth, E | 227 | 2 |
Orozco-Arroyave, Jr | 227 | 2 |
Vasquez-Correa, Jc | 227 | 2 |
Abdulhay, E | 203 | 1 |
Arunkumar, N | 203 | 1 |
Narasimhan, K | 203 | 1 |
Vellaiappan, E | 203 | 1 |
Venkatraman, V | 203 | 1 |
Klucken, J | 193 | 2 |
Bilodeau, Ga | 189 | 1 |
Bouachir, W | 189 | 1 |
El Maachi, I | 189 | 1 |
Arias-Vergara, T | 169 | 1 |
Eskofier, B | 169 | 1 |
Fox, Sh | 113 | 2 |
Li, Mh | 113 | 2 |
Mestre, Ta | 113 | 2 |
Taati, B | 113 | 2 |
Source | Documents | Citations |
---|---|---|
Sensors | 16 | 373 |
IEEE Transactions on Neural Systems and Rehabilitation Engineering | 5 | 62 |
IEEE Journal of Biomedical and Health Informatics | 4 | 249 |
Frontiers in Neurology | 4 | 35 |
Expert Systems | 3 | 201 |
Biomedical Signal Processing and Control | 3 | 73 |
Gait & Posture | 3 | 59 |
Journal of Alzheimer’s Disease | 3 | 56 |
IEEE Access | 3 | 43 |
Brain Sciences | 3 | 35 |
Parkinsonism and Related Disorders | 3 | 33 |
IEEE Sensors Journal | 3 | 18 |
Multimedia Tools and Applications | 3 | 13 |
Journal of Neuroengineering and Rehabilitation | 2 | 98 |
Plos One | 2 | 51 |
IEEE Sensors Letters | 2 | 45 |
BMC Neurology | 2 | 27 |
IEEE Transactions on Biomedical Engineering | 2 | 27 |
Medical and Biological Engineering and Computing | 2 | 12 |
International Journal of Advanced Computer Science and Applications | 2 | 8 |
Machine Learning and Gait Analysis (red cluster) | artificial neural network, classification, clinical gait analysis, computer vision, decision tree, deep learning, feature extraction, feature selection, finger tapping, gait analysis, levodopa-induced dyskinesia, mobility, multiple sclerosis, neurodegenerative diseases, pose estimation, random forest, support vector machine, time-frequency spectrum |
Sensors and Wearable Health Technologies (green cluster) | accelerometer, aging, artificial intelligence, convolutional neural network, dementia, digital health, electromyography, handwriting, IMU, sensors, speech, stroke, wearables |
Cognitive Disorders (blue cluster) | Alzheimer’s disease, cognitive decline, depth camera, dual-task, gait, kinematics, machine learning, mild cognitive impairment, signal processing, tremor, turning, vascular dementia |
Neurological Disorders and Motion Recognition Technologies (yellow cluster) | early detection, feature engineering, gait recognition, hand tracking, movement disorders, Parkinson, progressive supranuclear palsy, remote monitoring, UPDRS, vertical ground reaction, wearable sensor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiara, A.A.; Plakias, S.; Kokkotis, C.; Veneri, A.; Mina, M.A.; Tsiakiri, A.; Kitmeridou, S.; Christidi, F.; Gourgoulis, E.; Doskas, T.; et al. Artificial Intelligence in the Diagnosis of Neurological Diseases Using Biomechanical and Gait Analysis Data: A Scopus-Based Bibliometric Analysis. Neurol. Int. 2025, 17, 45. https://doi.org/10.3390/neurolint17030045
Tsiara AA, Plakias S, Kokkotis C, Veneri A, Mina MA, Tsiakiri A, Kitmeridou S, Christidi F, Gourgoulis E, Doskas T, et al. Artificial Intelligence in the Diagnosis of Neurological Diseases Using Biomechanical and Gait Analysis Data: A Scopus-Based Bibliometric Analysis. Neurology International. 2025; 17(3):45. https://doi.org/10.3390/neurolint17030045
Chicago/Turabian StyleTsiara, Aikaterini A., Spyridon Plakias, Christos Kokkotis, Aikaterini Veneri, Minas A. Mina, Anna Tsiakiri, Sofia Kitmeridou, Foteini Christidi, Evangelos Gourgoulis, Triantafylos Doskas, and et al. 2025. "Artificial Intelligence in the Diagnosis of Neurological Diseases Using Biomechanical and Gait Analysis Data: A Scopus-Based Bibliometric Analysis" Neurology International 17, no. 3: 45. https://doi.org/10.3390/neurolint17030045
APA StyleTsiara, A. A., Plakias, S., Kokkotis, C., Veneri, A., Mina, M. A., Tsiakiri, A., Kitmeridou, S., Christidi, F., Gourgoulis, E., Doskas, T., Kaltsatou, A., Tsamakis, K., Kazis, D., & Tsiptsios, D. (2025). Artificial Intelligence in the Diagnosis of Neurological Diseases Using Biomechanical and Gait Analysis Data: A Scopus-Based Bibliometric Analysis. Neurology International, 17(3), 45. https://doi.org/10.3390/neurolint17030045