Proprioceptive Neuromuscular Facilitation and/or Electrical Stimulation in Patients with Peripheral Facial Paralysis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registry
2.2. Source of Information
2.3. Study Selection
2.4. Data Selection Process
2.5. Methodological Quality Assessment
3. Results
3.1. Identified Studies
3.2. Participant Characteristics
3.3. PNF Interventions
3.4. Electrical Stimulation Interventions
3.5. Combined Interventions of Electrotherapy and PNF
3.6. Control Interventions
3.7. Results on the Quantity and/or Degree of Fascial Synkinesis
3.8. Results for Movement Quality and Facial Synkinesis
3.9. Results on Quality of Life
3.10. Other Analysed Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lassaletta, L.; Morales-Puebla, J.M.; Altuna, X.; Arbizu, Á.; Arístegui, M.; Batuecas, Á.; Cenjor, C.; Espinosa-Sánchez, J.M.; García-Iza, L.; García-Raya, P. Parálisis Facial: Guía de Práctica Clínica de La Sociedad Española de ORL. Acta Otorrinolaringol. Esp. 2020, 71, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Pons, Y.; Ukkola-Pons, E.; Ballivet de Régloix, S.; Champagne, C.; Raynal, M.; Lepage, P.; Kossowski, M. Peripheral Facial Nerve Palsy. J. Fr. Ophtalmol. 2013, 36, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Tang, L.; Wang, C.; Li, M.; Wu, H.; Li, J.; Ma, Q.; Yang, W. A Network Meta-Analysis to Compare the Efficacy of Steroid and Antiviral Medications for Facial Paralysis from Bell s Palsy. Pain Physician 2018, 21, 559. [Google Scholar] [PubMed]
- Cervantes, I.E.S.; Bonilla, D.V.; Parajeles, C.B. Approach to Bell’s Paralysis: Diagnosis and Treatment. Rev. Méd. Sinerg. 2019, 4, 81–89. [Google Scholar]
- Sudhakaran, S.; Madayambath, S. Facial Nerve Paralysis: A Clinical Study. Int. J. Otorhinolaryngol. Head Neck Surg. 2019, 5, 1309. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, L.; Luo, T.; Wu, F.; Zhao, B.; Li, X. The Etiology of Bell’s Palsy: A Review. J. Neurol. 2020, 267, 1896–1905. [Google Scholar] [CrossRef]
- Redondo, S.P.H.; Lizano, G.S.L. Parálisis de Bell: Diagnóstico y Tratamiento. Rev. Cienc. Salud Integr. Conoc. 2021, 5, ág-88. [Google Scholar]
- Chweya, C.M.; Anzalone, C.L.; Driscoll, C.L.; Lane, J.I.; Carlson, M.L. For Whom the Bell’s Toll: Recurrent Facial Nerve Paralysis, a Retrospective Study and Systematic Review of the Literature. Otol. Neurotol. 2019, 40, 517–528. [Google Scholar] [CrossRef]
- Bader, B.A. Effect of Physiotherapy on the Motor Recovery and Improvement in Patients with Facial Palsy. Iraqi Natl. J. Nurs. Spec. 2010, 23. [Google Scholar] [CrossRef]
- Marchioni, D.; Laura, E.; Rubini, A. Decompression of the Geniculate Ganglion and Labyrinthine Segments of the Facial Nerve through a Middle Cranial Fossa Approach Using an Ultrasonic Surgical System: An Anatomic Study. Eur. Arch. Otorhinolaryngol. 2022, 279, 2777–2782. [Google Scholar] [CrossRef]
- Michael, R. Parálisis Del Nervio Facial. Diagn. Clín. Trat. 2023, 2023. [Google Scholar]
- Targan, R.S.; Alon, G.; Kay, S.L. Effect of Long-Term Electrical Stimulation on Motor Recovery and Improvement of Clinical Residuals in Patients with Unresolved Facial Nerve Palsy. Otolaryngol. Neck Surg. 2000, 122, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tian, Y.; Tan, Y.; Tao, D.; Li, W.; Ding, J.; Ai, S. Effectiveness of Kinesio Taping on Peripheral Facial Paralysis: A Protocol for Systematic Review and Meta-Analysis. Medicine 2020, 99, e23090. [Google Scholar] [CrossRef]
- Prentice, W.E. Proprioceptive Neuromuscular Facilitation Techniques in Rehabilitation. In Rehabilitation Techniques for Sports Medicine and Athletic Training; Routledge: London, UK, 2024; pp. 355–378. [Google Scholar]
- Ardern, C.L.; Büttner, F.; Andrade, R.; Weir, A.; Ashe, M.C.; Holden, S.; Impellizzeri, F.M.; Delahunt, E.; Dijkstra, H.P.; Mathieson, S. Implementing the 27 PRISMA 2020 Statement Items for Systematic Reviews in the Sport and Exercise Medicine, Musculoskeletal Rehabilitation and Sports Science Fields: The PERSiST (Implementing Prisma in Exercise, Rehabilitation, Sport Medicine and SporTs Science) Guidance. Br. J. Sports Med. 2021, 56, 175–195. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Bmj 2021, 372, n71. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. Bmj 2011, 343, d5928. [Google Scholar] [CrossRef]
- Cai, Z.G.; Shi, X.J.; Lu, X.G.; Yang, Z.H.; Yu, G.Y. Efficacy of Functional Training of the Facial Muscles for Treatment of Incomplete Peripheral Facial Nerve Injury. Chin. J. Dent. Res. 2010, 13, 37–43. [Google Scholar]
- Barbara, M.; Antonini, G.; Vestri, A.; Volpini, L.; Monini, S. Role of Kabat Physical Rehabilitation in Bell’s Palsy: A Randomized Trial. Acta Otolaryngol. 2010, 130, 167–172. [Google Scholar] [CrossRef]
- Tuncay, F.; Borman, P.; Taser, B.; Ünlü, I.; Samim, E. Role of Electrical Stimulation Added to Conventional Therapy in Patients with Idiopathic Facial (Bell) Palsy. Am. J. Phys. Med. Rehabil. 2015, 94, 222–228. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.Y. The Effect of Subthreshold Continuous Electrical Stimulation on the Facial Function of Patients with Bell’s Palsy. Acta Otolaryngol. 2016, 136, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Monini, S.; Iacolucci, C.; Di Traglia, M.; Lazzarino, A.I.; Barbara, M. Role of Kabat Rehabilitation in Facial Nerve Palsy: A Randomised Study on Severe Cases of Bell’s Palsy. Acta Otorhinolaryngol. Ital. 2016, 36, 282. [Google Scholar] [CrossRef] [PubMed]
- Monini, S.; Buffoni, A.; Romeo, M.; Di Traglia, M.; Filippi, C.; Atturo, F.; Barbara, M. Kabat Rehabilitation for Bell’s Palsy in the Elderly. Acta Otolaryngol. 2017, 137, 646–650. [Google Scholar] [CrossRef]
- Ghous, M.; Yaqoob, I.; Kanwal, M.; Malik, A.N. Effects of Kabat Rehabilitation Verses Taping to Reduce Facial Disability and Synkinesis in Bell’s Palsy. Rawal Med. J. 2018, 43, 543–546. [Google Scholar]
- Khanzada, K.; Gondal, M.J.I.; Qamar, M.M.; Basharat, A.; Ahmad, W.; Ali, S. Comparison of Efficacy of Kabat Rehabilitation and Facial Exercises along with Nerve Stimulation in Patients with Bell’s Palsy. BLDE Univ. J. Health Sci. 2018, 3, 31–35. [Google Scholar]
- Marotta, N.; Demeco, A.; Inzitari, M.T.; Caruso, M.G.; Ammendolia, A. Neuromuscular Electrical Stimulation and Shortwave Diathermy in Unrecovered Bell Palsy: A Randomized Controlled Study. Medicine 2020, 99, e19152. [Google Scholar] [CrossRef]
- Micarelli, A.; Viziano, A.; Granito, I.; Antonuccio, G.; Felicioni, A.; Loberti, M.; Carlino, P.; Micarelli, R.X.; Alessandrini, M. Combination of In-Situ Collagen Injection and Rehabilitative Treatment in Longlasting Facial Nerve Palsy: A Pilot Randomized Controlled Trial. Eur. J. Phys. Rehabil. Med. 2021, 57, 366–375. [Google Scholar] [CrossRef]
- Javath, J.M.; D’Souza, A.F.; Rebello, S.R. Low-Level Laser Therapy Versus Electrical Stimulation for the Management of Acute Bell’s Palsy: A Randomized Clinical Trial. Phys. Treat.-Specif. Phys. Ther. J. 2021, 11, 261–268. [Google Scholar] [CrossRef]
- Avaid, A.; Majeed, S.; Naseem, N.; Sheraz, Z.; Tariq, K.; Bukhari, S.N. Comparison Between Proprioceptive Neuromuscular Facilitation and Neuromuscular Re-Education in Patients with Bell’S Palsy: Proprioceptive Neuromuscular Facilitation and Neuromuscular Re-Education in Patients with Bell’S Palsy. Pak. J. Health Sci. 2022, 3, 171–174. [Google Scholar] [CrossRef]
- Tharani, G.; Kamatchi, K.; Sharmila, S.; Yuvarani, G.; Vaishnavi, G.; Pravalika, P. Comparison of Laser Therapy and Galvanic Stimulation on Facial Appearance and Function in Bell’s Palsy among South Indian Population. Biomedicine 2022, 42, 1264–1267. [Google Scholar]
- Hamed, S.A.; Mahmoud, L.S.E.-D.; ElMeligie, M.M.; Zoheiry, I.M. Electrophysiological Responses to Kabat Motor Control Re-Education on Bell’s Palsy: A Randomized Controlled Study. J. Musculoskelet. Neuronal Interact. 2023, 23, 90. [Google Scholar]
- Alharbi, R.; Kashoo, F.Z.; Ahmed, M.; Alqahtani, M.; Aloyuni, S.; Alzhrani, M.; Alanazi, A.D.; Sidiq, M.; Alharbi, B.H.; Nambi, G. Effect of Neural Mobilisation in Bell’s Palsy: A Randomised Controlled Trial. Hong Kong Physiother. J. 2023, 43, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Özden, F.; Golcuk, Y.; Tümtürk, İ.; Özkeskin, M. The Effects of Telerehabilitation-Based Exercise Therapy on Motor and Non-Motor Clinical Outcomes in Adults With Facial Palsy: A Randomized Controlled Trial. Percept. Mot. Ski. 2024, 131, 2182–2198. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Khalifa, A.; Goma Mohamed, F.; Nabil Abd Elsalam, S.; Ahmed Osama, L. Effect of Facial Exercises on Functional Ability for Patients with Bell’s Palsy. Egypt. J. Health Care 2024, 15, 978–992. [Google Scholar] [CrossRef]
- Sparks, D. Exercise and Stress: Get Moving to Manage Stress. Available online: https://newsnetwork.mayoclinic.org/discussion/exercise-and-stress-get-moving-to-manage-stress-2/ (accessed on 15 November 2024).
- Abdelatief, E.E.M. Effect of Transcutaneous Electrical Nerve Stimulation and Faradic Current Stimulation on the Recovery of Bell’s Palsy. Int. J. Hum. Mov. Sports Sci. 2020, 8, 369–379. [Google Scholar] [CrossRef]
- Gremeaux, V.; Renault, J.; Pardon, L.; Deley, G.; Lepers, R.; Casillas, J.-M. Low-Frequency Electric Muscle Stimulation Combined with Physical Therapy after Total Hip Arthroplasty for Hip Osteoarthritis in Elderly Patients: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2008, 89, 2265–2273. [Google Scholar] [CrossRef]
- Grzelak, A.; Hnydka, A.; Higuchi, J.; Michalak, A.; Tarczynska, M.; Gaweda, K.; Klimek, K. Recent Achievements in the Development of Biomaterials Improved with Platelet Concentrates for Soft and Hard Tissue Engineering Applications. Int. J. Mol. Sci. 2024, 25, 1525. [Google Scholar] [CrossRef]
- Serdà, B.-C.; del Valle Gómez, A.; Marcos-Gragera, R.; Monreal i Bosch, P. Beneficios de Un Programa de Ejercicio de Fuerza Para La Mejora de La Calidad de Vida Del Hombre Con Cáncer de Próstata. © Psicooncología 2009, 6, 211–226. [Google Scholar]
- Sánchez-Carpintero, I.; Candelas, D.; Ruiz-Rodríguez, R. Materiales de Relleno: Tipos, Indicaciones y Complicaciones. Actas Dermo-Sifiliográficas 2010, 101, 381–393. [Google Scholar] [CrossRef]
- Arnulfo, R.; Garcia, R.J.; Hernandez, T.R. Effectiveness of Electro-Stimulation as a Treatment for Bell’s Palsy: An Update Review. J. Novel Physiother. 2015, 5. [Google Scholar] [CrossRef]
- Amiri, P.; Fekrazad, R. Efficacy of Photobiomodulation Therapy on Bell’s Palsy Symptoms: A Systematic Review. Lasers Med. Sci. 2024, 39, 1–11. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, J.R.; Guyatt, G.H.; Sud, S.; Dorion, J.; Hill, M.D.; Kolber, M.R.; Lea, J.; Reg, S.L.; Somogyi, B.K.; Westerberg, B.D. Management of Bell Palsy: Clinical Practice Guideline. Cmaj 2014, 186, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Hohman, M.H.; Hadlock, T.A. Etiology, Diagnosis, and Management of Facial Palsy: 2000 Patients at a Facial Nerve Center. Laryngoscope 2014, 124, E283–E293. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.L.; Gilbert, K.K.; Brismee, J.; Sizer, P.S.; Roger James, C.; Smith, M.P. The Effects of Neurodynamic Mobilization on Fluid Dispersion within the Tibial Nerve at the Ankle: An Unembalmed Cadaveric Study. J. Man. Manip. Ther. 2011, 19, 26–34. [Google Scholar] [CrossRef]
- Cantero, M.J.P.; Medinilla, E.E.M.; Martínez, A.C.; Gutiérrez, S.G. Comprehensive Approach to Children with Cerebral Palsy. An. Pediatría Engl. Ed. 2021, 95, 276-e1. [Google Scholar] [CrossRef]
- Cuenca-Martínez, F.; La Touche, R.; Varangot-Reille, C.; Sardinoux, M.; Bahier, J.; Suso-Martí, L.; Fernández-Carnero, J. Effects of Neural Mobilization on Pain Intensity, Disability, and Mechanosensitivity: An Umbrella Review with Meta–Meta-Analysis. Phys. Ther. 2022, 102, pzac040. [Google Scholar] [CrossRef]
- Jeanbart, K.; Tanner-Bräm, C. Mobilization of the Neurodynamic System Using Proprioceptive Neuromuscular Facilitation Decreases Pain and Increases Mobility in Lower Extremities and Spine-A Case Report. J. Bodyw. Mov. Ther. 2021, 27, 682–691. [Google Scholar] [CrossRef]
- Karasel, S.; Oncel, S.; Akpınar, B.; Söylev, G.; Dilek, B. The Effect of Shortwave Diathermy Treatment on Muscle Power in Patients with Chronic Low Back Pain. Int. J. Phys. Med. Rehabil. 2020, 8. [Google Scholar]
- Offenhauser, N.; Thomsen, K.; Caesar, K.; Lauritzen, M. Activity-induced Tissue Oxygenation Changes in Rat Cerebellar Cortex: Interplay of Postsynaptic Activation and Blood Flow. J. Physiol. 2005, 565, 279–294. [Google Scholar] [CrossRef]
- Hato, N.; Matsumoto, S.; Kisaki, H.; Takahashi, H.; Wakisaka, H.; Honda, N.; Gyo, K.; Murakami, S.; Yanagihara, N. Efficacy of Early Treatment of Bell’s Palsy with Oral Acyclovir and Prednisolone. Otol. Neurotol. 2003, 24, 948–951. [Google Scholar] [CrossRef]
- Mishra, S.S.; Sayed, M. Effects of Mime Therapy With Sensory Exercises on Facial Symmetry, Strength, Functional Abilities, and the Recovery Rate in Bell’s Palsy Patients. Funct. Disabil. J. 2021, 4, 1–10. [Google Scholar] [CrossRef]
- Cappeli, A.J.; Nunes HR, D.C.; Gameiro MD, O.O.; Bazan, R.; Luvizutto, G.J. Main Prognostic Factors and Physical Therapy Modalities Associated with Functional Recovery in Patients with Peripheral Facial Paralysis. Fisioter. E Pesqui. 2020, 27, 180–187. [Google Scholar] [CrossRef]
- Maneski, L.Z.P.; Malešević, N.M.; Savić, A.M.; Keller, T.; Popović, D.B. Surface-distributed Low-frequency Asynchronous Stimulation Delays Fatigue of Stimulated Muscles. Muscle Nerve 2013, 48, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Shenkman, B.S.; Kozlovskaya, I.B. Cellular Responses of Human Postural Muscle to Dry Immersion. Front. Physiol. 2019, 10, 187. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, Q.; Jin, P.; Tan, L. Point Injection Combined with Electro-Acupuncture in Treatment of 300 Cases of Facial Paralysis Peripherica. J. Tradit. Chin. Med. Chung Tsa Chih Ying Wen Pan 1983, 3, 41–44. [Google Scholar]
- Silva, M.C.; Oliveira, M.T.; Azevedo-Santos, I.F.; DeSantana, J.M. Effect of Proprioceptive Neuromuscular Facilitation in the Treatment of Dysfunctions in Facial Paralysis: A Systematic Literature Review. Braz. J. Phys. Ther. 2022, 26, 100454. [Google Scholar] [CrossRef]
- Topolski, T.D.; Edwards, T.C.; Patrick, D.L. Quality of Life: How Do Adolescents with Facial Differences Compare with Other Adolescents? Cleft Palate Craniofac. J. 2005, 42, 25–32. [Google Scholar] [CrossRef]
- Lazim, N.M.; Ismail, H.; Halim, S.A.; Othman, N.A.N.; Haron, A. Comparison of 3 Grading Systems (House-Brackmann, Sunnybrook, Sydney) for the Assessment of Facial Nerve Paralysis and Prediction of Neural Recovery. Medeni. Med. J. 2023, 38, 111. [Google Scholar] [CrossRef]
- Tan, J.R.; Coulson, S.; Keep, M. Face-to-Face versus Video Assessment of Facial Paralysis: Implications for Telemedicine. J. Med. Internet Res. 2019, 21, e11109. [Google Scholar] [CrossRef]
- Yeniçeri, A.; Eravcı, F.C.; Yalçın, M.; Tutar, H. Validation of the Turkish Translation of the Facial Clinimetric Evaluation Scale in Patients with Peripheral Facial Paralysis. Turk. J. Ear Nose Throat 2021, 31, 45–50. [Google Scholar] [CrossRef]
Author | 1 * | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cai et al. (2010) [19] | 4 | |||||||||||
Barbara et al. (2010) [20] | 6 | |||||||||||
Tuncay et al. (2015) [21] | 7 | |||||||||||
Kim & Choi (2015) [22] | 6 | |||||||||||
Monini et al. (2016) [23] | 6 | |||||||||||
Monini et al. (2017) [24] | 5 | |||||||||||
Ghous et al. (2018) [25] | 6 | |||||||||||
Khanzada et al. (2018) [26] | 7 | |||||||||||
Marotta et al. (2020) [27] | 7 | |||||||||||
Micarelli et al. (2021) [28] | 10 | |||||||||||
Javath et al. (2021) [29] | 7 | |||||||||||
Avaid et al. (2022) [30] | 7 | |||||||||||
Tharani et al. (2022) [31] | 7 | |||||||||||
Hamed et al. (2023) [32] | 9 | |||||||||||
Alharbi et al. (2023) [33] | 10 | |||||||||||
Özden et al. (2024) [34] | 7 |
Author | Random Sequence | Deviations from Intended Interventions | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Results | Overall |
---|---|---|---|---|---|---|
Cai et al. (2010) [19] | High | High | High | High | High | High |
Barbara et al. (2010) [20] | High | High | High | Low | Low | High |
Tuncay et al. (2015) [21] | Low | High | High | High | High | High |
Kim & Choi (2015) [22] | High | High | High | High | Low | High |
Monini et al. (2016) [23] | High | High | Low | Low | Low | High |
Monini et al. (2017) [24] | High | High | Low | Low | Low | High |
Ghous et al. (2018) [25] | Low | High | High | High | High | High |
Khanzada et al. (2018) [26] | High | High | High | High | High | High |
Marotta et al. (2020) [27] | High | High | High | High | Low | High |
Micarelli et al. (2021) [28] | Low | Low | Low | Low | High | Low |
Javath et al. (2021) [29] | High | Low | Low | High | High | High |
Avaid et al. (2022) [30] | High | High | High | High | High | High |
Tharani et al. (2022) [31] | Hight | Low | Low | Low | High | High |
Hamed et al. (2023) [32] | Low | Low | Low | High | High | High |
Alharbi et al. (2023) [33] | Low | Low | Low | Low | Low | Low |
Özden et al. (2024) [34] | Low | High | Low | Low | Low | Low |
Authors | Final Sample (% Women) | Intervention | Nº Sessions | Duration (Weeks) | Variables | Results |
---|---|---|---|---|---|---|
Cai et al. (2010) [19] | 92 (47.8%) | EG: FT + ES + EX CG: FT + ES | ND | ND | RT, synkinesis, spasm | Functional training cannot shorten the RT, but it can reduce synkinesis and spasm. |
Barbara et al. (2010) [20] | 20 (50%) | EG: FT + PNF CG: FT | 6 | 2 | CMAP, HB | There were no significant differences in CMAP values. Regarding HB, the EG obtained better scores than CG. |
Tuncay et al. (2015) [21] | 60 (51.7%) | EG: ECR + FT + ES CG: ECR + FT | 5 | 3 | HB, FDI | HB improved in the intervention group. FDI improved significantly in both groups. |
Kim & Choi (2015) [22] | 60 (ND) | EG: FT + ES CG: FT | ND | ND | HB, SFGS | After 2 weeks, the EG improved significantly more in HB. |
Monini et al. (2016) [23] | 94 (ND) | EG: FT + PNF CG: S | ND | ND | HB, RT | EG significantly improved HB and RT scores. |
Monini et al. (2017) [24] | 52 (ND) | EG: FT + PNF CG: S | ND | ND | HB | EG was more likely than CG to improve in HB. |
Ghous et al. (2018) [25] | 20 (45%) | EG: PNF + ES CG: TP + EX + KN + ES | 5 | 5 | FDI | EG minimized FDI scores more than the CG. |
Marotta et al. (2020) [27] | 20 (ND) | EG: ES + EX + FT CG: EX | 5 | 4 | SB | EG obtained significantly better scores than CG on the SB. |
Khanzada et al. (2018) [26] | 52 (73.1%) | EG: PNF + ES CG: EX + ES | ND | 3 | FDI, SFGS | PNF + ES obtained better results than EX + ES in FDI and SB. |
Micarelli et al. (2021) [28] | 40 (42.5%) | EG: PNF + FT CG: PNF | 2 | 8 | Electrophysiological findings | The combination of PNF + FT presented better results than the use of PNF. |
Javath et al. (2021) [29] | 23 (ND) | EG: LLLT CG: ES | 12 | 2 | FDI, SFGS | Both groups obtained a highly significant difference in pre- and post-intervention scores. There was no difference between LLLT and ES in FDI and SB. |
Avaid et al. (2022) [30] | 30 (30%) | EG: PNF + ECR CG: NMR + ECR | 4 | 4 | Facial dysfunction | The combination of PNF + FT demonstrates a reduction in facial dysfunctions. |
Tharani et al. (2022) [31] | 30 (ND) | EG: LLLT CG: GE | 3 | 6 | FDI, SFGS | The FDI obtained a higher mean value and is more effective in EG. In SB, the EG has a higher mean value and is therefore more effective than EG. |
Hamed et al. (2023) [32] | 30 (53.3%) | EG: PNF + ECR CG: ECR | 3 | 6 | Electrophysiological response | % of change of latency, amplitude, and degeneration for frontalis and orbicularis oris of EG was more than CG. |
Alharbi et al. (2023) [33] | 62 (ND) | EG: FT + ES + NM CG: FT + ES | 5 | 3 | Facial symmetry, SFGS | GC improved facial movement and symmetry more than the CG |
Özden et al. (2024) [34] | 40 (45%) | EG: PNF + ECR CG: ECR | ND | 4 | FDI, HB, FACE, HADS, SF-12 | Both groups presented improvements on all scales. There were no significant differences between groups. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez-Defez, N.; Lopez-Barreiro, J.; Hernandez-Lucas, P.; González-Castro, A. Proprioceptive Neuromuscular Facilitation and/or Electrical Stimulation in Patients with Peripheral Facial Paralysis: A Systematic Review. Neurol. Int. 2025, 17, 17. https://doi.org/10.3390/neurolint17020017
Dominguez-Defez N, Lopez-Barreiro J, Hernandez-Lucas P, González-Castro A. Proprioceptive Neuromuscular Facilitation and/or Electrical Stimulation in Patients with Peripheral Facial Paralysis: A Systematic Review. Neurology International. 2025; 17(2):17. https://doi.org/10.3390/neurolint17020017
Chicago/Turabian StyleDominguez-Defez, Nerea, Juan Lopez-Barreiro, Pablo Hernandez-Lucas, and Ana González-Castro. 2025. "Proprioceptive Neuromuscular Facilitation and/or Electrical Stimulation in Patients with Peripheral Facial Paralysis: A Systematic Review" Neurology International 17, no. 2: 17. https://doi.org/10.3390/neurolint17020017
APA StyleDominguez-Defez, N., Lopez-Barreiro, J., Hernandez-Lucas, P., & González-Castro, A. (2025). Proprioceptive Neuromuscular Facilitation and/or Electrical Stimulation in Patients with Peripheral Facial Paralysis: A Systematic Review. Neurology International, 17(2), 17. https://doi.org/10.3390/neurolint17020017