Risk of Cognitive Decline in Women with Parkinson’s Disease Is Reduced by Early Age at Menarche
Abstract
1. Introduction
2. Methods and Materials
2.1. Ethical Statement
2.2. Study Design and Participants
2.3. Clinical Features Evaluated
2.4. Reproductive Lifespan Variables Investigated
2.5. Statistical Analyses
3. Results
Clinical Variables and Factors of Fertile Life Associated with MoCA
4. Discussion
4.1. Menarche, Menopause, and Duration of Fertility
4.2. Estro-Progestinic Therapy
4.3. Pregnancy
4.4. Hormone Replacement Therapy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadav, R.; Shukla, G.; Goyal, V.; Singh, S.; Behari, M.A. Case control study of women with Parkinson’s disease and their fertility characteristics. J. Neurol. Sci. 2012, 319, 135–138. [Google Scholar] [CrossRef]
- Disshon, K.A.; Dluzen, D.E. Estrogen as a neuromodulator of MPTP-induced neurotoxicity: Effects upon striatal dopamine release. Brain Res. 1997, 764, 9–16. [Google Scholar] [CrossRef]
- Küppers, E.; Ivanova, T.; Karolczak, M.; Beyer, C. Estrogen: A multifunctional messenger to nigrostriatal dopaminergic neurons. J. Neurocytol. 2000, 29, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, T.; Falardeau, P. Modulation of brain and pituitary dopamine receptors by estrogens and prolactin. Prog. Neuropsychopharmacol. Biol. Psychiatry 1985, 9, 473–480. [Google Scholar] [CrossRef]
- Ferretti, C.; Blengio, M.; Vigna, I.; Ghi, P.; Genazzani, E. Effects of Estradiol on the Ontogenesis of Striatal Dopamine D1 and D2 Receptor Sites in Male and Female Rats. Brain Res. 1992, 571, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Kishi, Y.; Takahashi, J.; Koyanagi, M.; Morizane, A.; Okamoto, Y.; Horiguchi, S.; Tashiro, K.; Honjo, T.; Fujii, S.; Hashimoto, N. Estrogen Promotes Differentiation and Survival of Dopaminergic Neurons Derived from Human Neural Stem Cells. J. Neurosci. Res. 2005, 79, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Ragonese, P.; D’Amelio, M.; Savettieri, G. Implications for Estrogens in Parkinson’s Disease. Ann. N. Y. Acad. Sci. 2006, 1089, 373–382. [Google Scholar] [CrossRef]
- Kusters, C.D.; Paul, K.C.; Folle, A.D.; Keener, A.M.; Bronstein, J.M.; Bertram, L.; Hansen, J.; Horvath, S.; Sinsheimer, J.S.; Lill, C.M.; et al. Increased Menopausal Age Reduces the Risk of Parkinson’s Disease: A Mendelian Randomization Approach. Mov. Disord. 2021, 36, 2264–2272. [Google Scholar] [CrossRef]
- Nicoletti, A.; Nicoletti, G.; Arabia, G.; Annesi, G.; De Mari, M.; Lamberti, P.; Grasso, L.; Marconi, R.; Epifanio, A.; Morgante, L.; et al. Reproductive factors and Parkinson’s disease: A multicenter case-control study. Mov. Disord. 2011, 26, 2563–2566. [Google Scholar] [CrossRef]
- Mosconi, L.; Nerattini, M.; Matthews, D.C.; Jett, S.; Andy, C.; Williams, S.; Yepez, C.B.; Zarate, C.; Carlton, C.; Fauci, F.; et al. In vivo brain estrogen receptor density by neuroendocrine aging and relationships with cognition and symptomatology. Sci. Rep. 2024, 14, 12680. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Hara, Y.; Waters, E.M.; McEwen, B.S.; Morrison, J.H. Estrogen Effects on Cognitive and Synaptic Health over the Lifecourse. Physiol. Rev. 2015, 95, 785–807. [Google Scholar] [CrossRef]
- Bernstein, L.; Pike, M.C.; Ross, R.K.; Henderson, B.E. Age at Menarche and Estrogen Concentrations of Adult Women. Cancer Causes Control 1991, 2, 221–225. [Google Scholar] [CrossRef]
- Brann, D.W.; Dhandapani, K.; Wakade, C.; Mahesh, V.B.; Khan, M.M. Neurotrophic and Neuroprotective Actions of Estrogen: Basic Mechanisms and Clinical Implications. Steroids 2007, 72, 381–405. [Google Scholar] [CrossRef]
- Brinton, R.D. Estrogen-Induced Plasticity from Cells to Circuits: Predictions for Cognitive Function. Trends Pharmacol. Sci. 2009, 30, 212–222. [Google Scholar] [CrossRef]
- Gilsanz, P.; Lee, C.; Corrada, M.M.; Kawas, C.H.; Quesenberry, C.P., Jr.; Whitmer, R.A. Reproductive period and risk of dementia in a diverse cohort of health care members. Neurology 2019, 92, e2005–e2014. [Google Scholar] [CrossRef]
- Dehestani, N.; Whittle, S.; Vijayakumar, N.; Silk, T.J. Developmental brain changes during puberty and associations with mental health problems. Dev. Cogn. Neurosci. 2023, 60, 10122. [Google Scholar] [CrossRef]
- Neufang, S.; Specht, K.; Hausmann, M.; Güntürkün, O.; Herpertz-Dahlmann, B.; Fink, G.R.; Konrad, K. Sex Differences and the Impact of Steroid Hormones on the Developing Human Brain. Cereb. Cortex 2009, 19, 464–473. [Google Scholar] [CrossRef]
- Chou, H.T.; Wu, P.-Y.; Huang, J.-C.; Chen, S.-C.; Ho, W.-Y. Late Menarche, Not Reproductive Period, Is Associated with Poor Cognitive Function in Postmenopausal Women in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 2345. [Google Scholar] [CrossRef] [PubMed]
- Uytun, M.C. Development period of prefrontal cortex. In Prefrontal Cortex; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Moza, S.; Scarmeas, N.; Yannakoulia, M.; Dardiotis, E.; Hadjigeorgiou, G.M.; Sakka, P.; Kosmidis, M.H. Critical menarche age for late-life dementia and the role of education and socioeconomic status. Aging Neuropsychol. Cognit. 2025, 32, 307–325. [Google Scholar] [CrossRef] [PubMed]
- Simon, K.C.; Chen, H.; Gao, X.; Schwarzschild, M.A.; Ascherio, A. Reproductive factors, exogenous estrogen use, and risk of Parkinson’s disease. Mov. Disord. 2009, 24, 1359–1365. [Google Scholar] [CrossRef]
- Egan, K.R.; Gleason, C.E. Longer duration of hormonal contraceptive use predicts better cognitive outcomes later in life. J. Womens Health 2012, 21, 1259–1266. [Google Scholar] [CrossRef]
- Parisi, F.; Fenizia, C.; Introini, A.; Zavatta, A.; Scaccabarozzi, C.; Biasin, M.; Savasi, V. The pathophysiological role of estrogens in the initial stages of pregnancy: Molecular mechanisms and clinical implications for pregnancy outcome from the periconceptional period to end of the first trimester. Hum. Reprod. Update 2023, 29, 699–720. [Google Scholar] [CrossRef]
- Brunton, P.J.; Russell, J.A. Endocrine induced changes in brain function during pregnancy. Brain Res. 2010, 1364, 198–215. [Google Scholar] [CrossRef]
- Anderson, M.V.; Rutherford, M.D. Cognitive reorganization during pregnancy and the postpartum period: An evolutionary perspective. Evol. Psychol. 2012, 10, 659–687. [Google Scholar] [CrossRef]
- Gatewood, J.D.; Morgan, M.D.; Eaton, M.; McNamara, I.M.; Stevens, L.F.; Macbeth, A.H.; Meyer, E.A.; Lomas, L.M.; Kozub, F.J.; Lambert, K.G.; et al. Motherhood Mitigates Aging-Related Decrements in Learning and Memory and Positively Affects Brain Aging in the Rat. Brain Res. Bull. 2005, 66, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Tsang, K.L.; Ho, S.L.; Lo, S.K. Estrogen Improves Motor Disability in Parkinsonian Postmenopausal Women with Motor Fluctuations. Neurology 2000, 54, 2292–2298. [Google Scholar] [CrossRef] [PubMed]
- Saunders-Pullman, R.; Gordon-Elliott, J.; Parides, M.; Fahn, S.; Saunders, H.R.; Bressman, S. The Effect of Estrogen Replacement on Early Parkinson’s Disease. Neurology 1999, 52, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Popat, R.A.; Van Den Eeden, S.K.; Tanner, C.M.; McGuire, V.; Bernstein, A.L.; Bloch, D.A.; Leimpeter, A.; Nelson, L.M. Effect of reproductive factors and postmenopausal hormone use on the risk of Parkinson disease. Neurology 2005, 65, 383–390. [Google Scholar] [CrossRef]
- Maki, P.M.; Henderson, V.W. Hormone therapy, dementia, and cognition: The Women’s Health Initiative 10 years on. Climacteric 2012, 15, 256–262. [Google Scholar] [CrossRef]
- Currie, L.J.; Harrison, M.B.; Trugman, J.M.; Bennett, J.P.; Wooten, G.F. Postmenopausal estrogen use affects risk for Parkinson disease. Arch. Neurol. 2004, 61, 886–888. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Qiu, S.; Wen, H.; Du, J. Hormone replacement therapy and Parkinson’s disease risk in women: A meta-analysis of 14 observational studies. Neuropsychiatr. Dis. Treat. 2014, 11, 59–66. [Google Scholar] [CrossRef]
- Marder, K.; Tang, M.X.; Alfaro, B.; Mejia, H.; Cote, L.; Jacobs, D.; Stern, Y.; Sano, M.; Mayeux, R. Postmenopausal estrogen use and Parkinson’s disease with and without dementia. Neurology 1998, 50, 1141–1143. [Google Scholar] [CrossRef]
- Bortz, J.; Klatt, K.C.; Wallace, T.C. Perspective: Estrogen and the Risk of Cognitive Decline: A Missing Choline(rgic) Link? Adv. Nutr. 2022, 13, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Barrett-Connor, E.; Laughlin, G.A. Endogenous and exogenous estrogen, cognitive function, and dementia in postmenopausal women: Evidence from epidemiologic studies and clinical trials. Semin. Reprod. Med. 2009, 27, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Frick, K.M.; Kim, J.; Tuscher, J.J.; Fortress, A.M. Sex steroid hormones matter for learning and memory: Estrogenic regulation of hippocampal function in male and female rodents. Learn Mem. 2015, 22, 472–493. [Google Scholar] [CrossRef] [PubMed]
- Gage, F.H. Adult Neurogenesis in the Human Dentate Gyrus. Hippocampus 2025, 35, e23655. [Google Scholar] [CrossRef]
- Delevich, K.; Klinger, M.; Okada, N.J.; Wilbrecht, L. Coming of age in the frontal cortex: The role of puberty in cortical maturation. Semin. Cell Dev. Biol. 2021, 118, 64–72. [Google Scholar] [CrossRef]
Total (n = 90) | |
---|---|
Duration of disease (years), median (IQR) | 9 (6–13) |
Age at onset (years), median (IQR) | 63 (56–68) |
H&Y (scores), median (IQR) | 2 (1–3) |
LEDD (dosage in mg), median (IQR) | 600 (339–877) |
UPDRS (scores), median (IQR) | 43.5 (27–63) |
MoCA, median (IQR) | 23 (17–26) |
Age at menarche (years), median (IQR) | 12 (12–14) |
Age at menopause (years), median (IQR) | 50 (48–52) |
Natural menopause (%) | 85.6 (n = 77) |
Surgical menopause (%) | 14.4 (n = 13) |
Abortion (%) | 45.6 (n = 41) |
Numbers of abortion, median (IQR) | 1 (1–2) |
Fertility time (years), median (IQR) | 38 (35–40) |
Delivery (%) | 91.1 (n = 82) |
No. of delivery (n) | 2 (1–3) |
Breast feeding (%) | 45.6 (n = 41) |
Total time of breastfeeding (months), median (IQR) | 5 (3–9) |
CLP (months), median (IQR) | 18 (10–27) |
EP therapy (%) | 27.8 (n = 25) |
EP duration (months), median (IQR) | 60 (12–96) |
Age at EP starting (years), median (IQR) | 25 (22–31) |
HRT (%) | 16.7 (n = 15) |
HRP duration (months), median (IQR) | 24 (10–28) |
Age at HRP starting (years), median (IQR) | 48 (45–52) |
MoCA < 26 (n = 63) | MoCA ≥ 26 (n = 27) | p Value | |
---|---|---|---|
Duration of disease (years), median (IQR) | 9.4 (6–12.7) | 8.3 (6.1–12.7) | 0.9 |
Age at onset (years), median (IQR) | 65 (59.5–68) | 58 (50–63.5) | 0.001 |
H&Y (scores), median (IQR) | 2 (1–3) | 1 (1–2) | 0.02 |
LEDD (dosage in mg), median (IQR) | 650 (327.5–1010) | 460 (356–723) | 0.2 |
UPDRS (scores), median (IQR) | 46 (33.5–64.5) | 36 (21.5–46.5) | 0.002 |
Age at menarche (years), median (IQR) | 13 (12–14) | 12 (11–12) | <0.0001 |
Age at menopause (years), median (IQR) | 50 (48–52) | 50 (47.5–54) | 0.5 |
Natural menopause (%) | 85.7 (n = 54) | 87.5 (n = 23) | 0.6 |
Surgical menopause (%) | 14.3 (n = 9) | 14.8 (n = 4) | |
Abortion (%) | 42.9 (n = 27) | 51.9 (n = 14) | 0.3 |
Numbers of abortion, median (IQR) | 1 (1–2) | 1 (1–1) | 0.2 |
Fertility time (years), median (IQR) | 37 (35–39) | 39 (36.5–42) | 0.01 |
Delivery (%) | 90.5 (n = 57) | 92.6 (n = 25) | 0.5 |
No. of delivery (n) | 2 (1–3) | 2 (1.5–3) | 0.5 |
Breast feeding (%) | 42.9 (n = 27) | 51.9 (n = 14) | 0.3 |
Total time of breastfeeding (months), median (IQR) | 6 (4–9) | 4 (3–5) | 0.1 |
CLP (months), median (IQR) | 18 (10–26.5) | 18 (12.5–27) | 0.8 |
EP therapy (%) | 13.3 (n = 12) | 14.4 (n = 13) | 0.004 |
EP duration (months), median (IQR) | 60 (5.5–150) | 60 (24–60) | 0.8 |
Age at EP starting (years), median (IQR) | 24.5 (21.5–25) | 27 (24–35) | 0.1 |
HRT (%) | 17.4 (n = 11) | 14.8 (n = 4) | 0.5 |
HRP duration (months), median (IQR) | 24 (10–29) | 21 (12–26) | 0.7 |
Age at HRP starting (years), median (IQR) | 48 (46–51) | 47.5 (45–52.5) | 0.9 |
Predictors | Univariate | Multivariate | ||||||
---|---|---|---|---|---|---|---|---|
B | OR | 95% CI | p | B | aOR | 95% CI | p | |
Duration of disease | 0.01 | 1.01 | 0.9–1.1 | 0.7 | ||||
Age at evaluation | −0.07 | 0.9 | 0.8–0.9 | 0.003 | −003 | 0.9 | 0.9–1.04 | 0.4 |
LEDD | −0.001 | 0.9 | 0.9–1 | 0.1 | ||||
HY | −0.69 | 0.5 | 0.2–0.8 | 0.02 | −0.3 | 0.7 | 0.3–1.5 | 0.4 |
UPDRS | −0.041 | 0.96 | 0.93–0.98 | 0.003 | −0.021 | 0.9 | 0.9–1.01 | 0.2 |
Age at menarche | −0.7 | 0.49 | 0.3–0.7 | <0.0001 | −0.6 | 0.5 | 0.3–0.8 | 0.005 |
Age at menopause | 0.05 | 1.05 | 0.9–1.2 | 0.4 | ||||
Natural menopause | −0.04 | 0.9 | 0.3–3.4 | 0.9 | ||||
LGC | 0.003 | 1 | 0.9–1.04 | 0.8 | ||||
Breast feeding | 0.3 | 1.4 | 0.5–3.5 | 0.4 | ||||
Cumulative BF | −0.08 | 0.9 | 0.8–1.03 | 0.6 | ||||
Delivery | 0.2 | 1.3 | 0.2–6.9 | 0.7 | ||||
Number of deliveries | 0.01 | 1.01 | 0.7–1.5 | 0.9 | ||||
Abortion | 0.3 | 1.4 | 0.5–3.5 | 0.4 | ||||
No. of abortion | −0.79 | 0.45 | 0.1–1.4 | 0.1 | ||||
EP therapy | 1.3 | 3.9 | 1.4–10.5 | 0.006 | 0.7 | 2.1 | 0.6–6.9 | 0.1 |
Duration of EP therapy | −0.009 | 0.9 | 0.9–1 | 0.17 | ||||
Age at EP therapy | 0.17 | 1.2 | 0.9–1.4 | 0.07 | ||||
HRT | ||||||||
Duration of HRT | −0.02 | 0.9 | 0.9–1.06 | 0.6 | ||||
Age at HRT | 0.006 | 1 | 0.7–1.3 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirò, G.; Fazio, C.; Aridon, P.; Gagliardo, C.; Davì, C.; Picciolo, V.; Colletti, T.; Tumminia, C.; Iacono, S.; Ragonese, P.; et al. Risk of Cognitive Decline in Women with Parkinson’s Disease Is Reduced by Early Age at Menarche. Neurol. Int. 2025, 17, 161. https://doi.org/10.3390/neurolint17100161
Schirò G, Fazio C, Aridon P, Gagliardo C, Davì C, Picciolo V, Colletti T, Tumminia C, Iacono S, Ragonese P, et al. Risk of Cognitive Decline in Women with Parkinson’s Disease Is Reduced by Early Age at Menarche. Neurology International. 2025; 17(10):161. https://doi.org/10.3390/neurolint17100161
Chicago/Turabian StyleSchirò, Giuseppe, Carlo Fazio, Paolo Aridon, Cesare Gagliardo, Chiara Davì, Valentina Picciolo, Tiziana Colletti, Chiara Tumminia, Salvatore Iacono, Paolo Ragonese, and et al. 2025. "Risk of Cognitive Decline in Women with Parkinson’s Disease Is Reduced by Early Age at Menarche" Neurology International 17, no. 10: 161. https://doi.org/10.3390/neurolint17100161
APA StyleSchirò, G., Fazio, C., Aridon, P., Gagliardo, C., Davì, C., Picciolo, V., Colletti, T., Tumminia, C., Iacono, S., Ragonese, P., & D’Amelio, M. (2025). Risk of Cognitive Decline in Women with Parkinson’s Disease Is Reduced by Early Age at Menarche. Neurology International, 17(10), 161. https://doi.org/10.3390/neurolint17100161