Combining Transcranial Direct Current Stimulation with Exercise to Improve Mobility, Stability, and Tremor Management in 25 Individuals with Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Size Computation
2.3. Force Control and Acceleration
2.4. Hand Grip Strength
2.5. Force Data Analysis
2.6. Accelerometry
2.7. Force and Acceleration Coherence
2.8. Functional Limit Test
2.9. Timed up and Go (TUG)
2.10. tDCS Protocol
- Sham transcranial stimulation + exercise protocol
- Anodic stimulation in the Supplementary Motor Area + exercise protocol
2.11. Exercise Protocol
2.12. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Motor Control and Acceleration Profile
3.3. Functional Limit Test
3.4. Time up and Go Test
3.5. Acceleration × Force Wavelet Coherence
3.6. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
References
- Wallace, E.R.; Segerstrom, S.C.; van Horne, C.G.; Schmitt, F.A.; Koehl, L.M. Meta-Analysis of Cognition in Parkinson’s Disease Mild Cognitive Impairment and Dementia Progression. Neuropsychol. Rev. 2022, 32, 149–160. [Google Scholar] [CrossRef]
- Danesin, L.; Giustiniani, A.; Arcara, G.; Burgio, F. Financial Decision-Making in Neurological Patients. Brain Sci. 2022, 12, 529. [Google Scholar] [CrossRef] [PubMed]
- Hua, R.; Wang, Y.; Kennedy, D.M.; Hubbard, J.E.; Wang, Y. Toe Tapping Based Falling Risk Evaluation for Patients With Parkinson’s Disease Using Monitoring Insoles. IEEE Sens. Lett. 2022, 6, 5500704. [Google Scholar] [CrossRef]
- Radder, D.L.M.; de Lima, A.L.S.; Domingos, J.; Keus, S.H.J.; van Nimwegen, M.; Bloem, B.R.; de Vries, N.M. Physiotherapy in Parkinson’s Disease: A Meta-Analysis of Present Treatment Modalities. Neurorehabilit. Neural Repair 2020, 34, 871–880. [Google Scholar] [CrossRef]
- Strouwen, C.; Molenaar, E.A.L.M.; Münks, L.; Keus, S.H.J.; Zijlmans, J.C.M.; Vandenberghe, W.; Bloem, B.R.; Nieuwboer, A. Training dual tasks together or apart in Parkinson’s disease: Results from the DUALITY trial. Mov. Disord. 2017, 32, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Kaya Aytutuldu, G.; Ersoz Huseyinsinoglu, B.; Karagoz Sakalli, N.; Sen, A.; Yeldan, I. LSVT® BIG versus progressive structured mobility training through synchronous telerehabilitation in Parkinson’s disease: A randomized controlled trial. Neurol. Sci. 2024, 45, 3163–3172. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Barceló, P.; Climent-Sanz, C.; Martínez-Navarro, O.; Masbernat-Almenara, M.; Pakarinen, A.; Ghosh, P.K.; Fernández-Lago, H. A treadmill training program in a gamified virtual reality environment combined with transcranial direct current stimulation in Parkinson’s Disease: Study protocol for a randomized controlled trial. PLoS ONE 2024, 19, e0307304. [Google Scholar] [CrossRef]
- Mantovani, E.; Bressan, M.M.; Tinazzi, M.; Tamburin, S. Towards multimodal cognition-based treatment for cognitive impairment in Parkinson’s disease: Drugs, exercise, non-invasive brain stimulation and technologies. Curr. Opin. Neurol. 2024. [Google Scholar] [CrossRef]
- da Silva Arêas, F.Z.; Nakamura-Palacios, E.M.; Boening, A.; Arêas, G.P.T.; Nascimento, L.R. Does neuromodulation transcranial direct current stimulation (tDCS) associated with peripheral stimulation through exercise to walk have an impact on falls in people with Parkinson’s disease? Med. Hypotheses 2020, 144, 109916. [Google Scholar] [CrossRef]
- Agnihotri, S.K.; Cai, J. Investigating the Effects of Transcranial Alternating Current Stimulation on Cortical Oscillations and Network Dynamics. Brain Sci. 2024, 14, 767. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef] [PubMed]
- Sale, M.V.; Kuzovina, A. Motor training is improved by concurrent application of slow oscillating transcranial alternating current stimulation to motor cortex. BMC Neurosci. 2022, 23, 45. [Google Scholar] [CrossRef] [PubMed]
- Beretta, V.S.; Orcioli-Silva, D.; Zampier, V.C.; Moraca, G.A.G.; Pereira, M.P.; Gobbi, L.T.B.; Vitório, R. Eight sessions of transcranial electrical stimulation for postural response in people with Parkinson’s disease: A randomized trial. Gait Posture 2024, 114, 1–7. [Google Scholar] [CrossRef] [PubMed]
- MCGinley, J.L.; Nakayama, Y. Exercise for People with Parkinson’s Disease: Updates and Future Considerations. Phys. Ther. Res. 2024, 27, R0030. [Google Scholar] [CrossRef] [PubMed]
- Maidan, I.; Nieuwhof, F.; Bernad-Elazari, H.; Reelick, M.F.; Bloem, B.R.; Giladi, N.; Deutsch, J.E.; Hausdorff, J.M.; Claassen, J.A.H.; Mirelman, A. The Role of the Frontal Lobe in Complex Walking Among Patients With Parkinson’s Disease and Healthy Older Adults. Neurorehabilit. Neural Repair 2016, 30, 963–971. [Google Scholar] [CrossRef]
- Ernst, M.; Folkerts, A.K.; Gollan, R.; Lieker, E.; Caro-Valenzuela, J.; Adams, A.; Cryns, N.; Monsef, I.; Dresen, A.; Roheger, M.; et al. Physical exercise for people with Parkinson’s disease: A systematic review and network meta-analysis. Cochrane Database Syst. Rev. 2023, 1, CD013856. [Google Scholar] [PubMed]
- Suffoletto, B.; Kim, D.; Toth, C.; Mayer, W.; Glaister, S.; Cinkowski, C.; Ashenburg, N.; Lin, M.; Losak, M. Feasibility of Measuring Smartphone Accelerometry Data During a Weekly Instrumented Timed Up-and-Go Test After Emergency Department Discharge: Prospective Observational Cohort Study. JMIR Aging 2024, 7, e57601. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Herman, T.; Giladi, N.; Hausdorff, J.M. Properties of the ‘Timed Up and Go’ Test: More than Meets the Eye. Gerontology 2011, 57, 203–210. [Google Scholar] [CrossRef]
- Rabelo, A.; Folador, J.P.; Cabral, A.M.; Lima, V.; Arantes, A.P.; Sande, L.; Vieira, M.F.; de Almeida, R.M.A.; Andrade, A.d.O. Identification and Characterization of Short-Term Motor Patterns in Rest Tremor of Individuals with Parkinson’s Disease. Healthcare 2022, 10, 2536. [Google Scholar] [CrossRef]
- Robichaud, J.A.; Corcos, D.M. Motor Deficits, Exercise, and Parkinson’s Disease. Quest 2005, 57, 79–101. [Google Scholar] [CrossRef]
- Davis, M.M.; Wang, Y.; Kennedy, D.M. Constant and Dynamic Bimanual Isometric Force Production in Individuals with Parkinson’s Disease. J. Sport. Exerc. Psychol. 2021, 43, S9–S10. [Google Scholar]
- Wang, Y.; Davis, M.M.; Kennedy, D.M. Unimanual and Bimanual Force Control in Parkinson’s Patients. J. Sport Exerc. Psychol. 2021, 43, S50. [Google Scholar]
- Pickering, J.S.; Leroi, I.; McBride, J.; Poliakoff, E. Continuous force measurements reveal no inhibitory control deficits in Parkinson’s disease. Exp. Brain Res. 2020, 238, 1119–1132. [Google Scholar] [CrossRef]
- Bhatia, K.P.; Bain, P.; Bajaj, N.; Elble, R.J.; Hallett, M.; Louis, E.D.; Raethjen, J.; Stamelou, M.; Testa, C.M.; Deuschl, G.; et al. Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov. Disord. 2018, 33, 75–87. [Google Scholar] [CrossRef]
- Sánchez-Kuhn, A.; Pérez-Fernández, C.; Cánovas, R.; Flores, P.; Sánchez-Santed, F. Transcranial direct current stimulation as a motor neurorehabilitation tool: An empirical review. Biomed. Eng. Online 2017, 16, 76. [Google Scholar] [CrossRef]
- Simpson, M.W.; Mak, M. The effect of transcranial direct current stimulation on upper limb motor performance in Parkinson’s disease: A systematic review. J. Neurol. 2020, 267, 3479–3488. [Google Scholar] [CrossRef]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations The Movement Disorder Society Task Force on rating scales for Parkinson’s disease. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef]
- Collett, J.; Franssen, M.; Winward, C.; Izadi, H.; Meaney, A.; Mahmoud, W.; Bogdanovic, M.; Tims, M.; Wade, D.; Dawes, H. A long-term self-managed handwriting intervention for people with Parkinson’s disease: Results from the control group of a phase II randomized controlled trial. Clin. Rehabil. 2017, 31, 1636–1645. [Google Scholar] [CrossRef] [PubMed]
- Pigott, J.S.; Kane, E.J.; Ambler, G.; Walters, K.; Schrag, A. Systematic review and meta-analysis of clinical effectiveness of self-management interventions in Parkinson’s disease. BMC Geriatr. 2022, 22, 45. [Google Scholar] [CrossRef]
- Phan, V.; Peterson, D.S.; Richmond, S.B.; Lee, H. Effects of Parkinson’s Disease and a Secondary Cognitive Task on Standing Postural Stability. In Biosystems and Biorobotics; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2022; pp. 311–316. [Google Scholar]
- Kennedy, D.M.; Christou, E.A. Greater amount of visual information exacerbates force control in older adults during constant isometric contractions. Exp. Brain Res. 2011, 213, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Baweja, H.S.; Patel, B.K.; Martinkewiz, J.D.; Vu, J.; Christou, E.A. Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions. Exp. Brain Res. 2009, 197, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Slifkin, A.B.; Newell, K.M. Noise, information transmission, and force variability. J. Exp. Psychol. Hum. Percept. Perform. 1999, 25, 837–851. [Google Scholar] [CrossRef]
- Freund, H.J.; Hefter, H. The role of basal ganglia in rhythmic movement. Adv. Neurol. 1993, 60, 88–92. [Google Scholar] [PubMed]
- Vaillancourt, D.E.; Newell, K.M. The dynamics of resting and postural tremor in Parkinson’s disease. Clin. Neurophysiol. 2000, 111, 2046–2056. [Google Scholar] [CrossRef]
- Slifkin, A.B.; Vaillancourt, D.E.; Newell, K.M. Intermittency in the Control of Continuous Force Production. J. Neurophysiol. 2000, 84, 1708–1718. [Google Scholar] [CrossRef]
- Penhune, V.B.; Steele, C.J. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res. 2012, 226, 579–591. [Google Scholar] [CrossRef]
- Matviyenko, G. Optimized Local Trigonometric Bases. Appl. Comput. Harmon. Anal. 1996, 3, 301–323. [Google Scholar] [CrossRef]
- Duarte, M.; Freitas, S.M.S.F. Revision of posturography based on force plate for balance evaluation. Rev. Bras. Fisioter. 2010, 14, 183–192. [Google Scholar] [CrossRef]
- Kamieniarz, A.; Michalska, J.; Marszałek, W.; Stania, M.; Słomka, K.J.; Gorzkowska, A.; Juras, G.; Okun, M.S.; Christou, E.A. Detection of postural control in early Parkinson’s disease: Clinical testing vs. modulation of center of pressure. PLoS ONE 2021, 16, e0245353. [Google Scholar] [CrossRef]
- Fregni, F.; Boggio, P.S.; Santos, M.C.; Lima, M.; Vieira, A.L.; Rigonatti, S.P.; Silva, M.T.A.; Barbosa, E.R.; Nitsche, M.A.; Pascual-Leone, A. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord. 2006, 21, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Gandiga, P.C.; Hummel, F.C.; Cohen, L.G. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 2006, 117, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Cunnington, R.; Iansek, R.; Bradshaw, J.L.; Phillips, J.G. Movement-related potentials in Parkinson’s disease. Brain 1995, 118, 935–950. [Google Scholar] [CrossRef]
- Jenkins, I.H.; Jahanshahi, M.; Jueptner, M.; Passingham, R.E.; Brooks, D.J. Self-initiated versus externally triggered movements. Brain 2000, 123, 1216–1228. [Google Scholar] [CrossRef] [PubMed]
- Costa-Ribeiro, A.; Maux, A.; Bosford, T.; Tenório, Y.; Marques, D.; Carneiro, M.; Nitsche, M.A.; Moura Filho, A.; Monte-Silva, K. Dopamine-independent effects of combining transcranial direct current stimulation with cued gait training on cortical excitability and functional mobility in Parkinson’s disease. J. Rehabil. Med. 2016, 48, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Shirota, Y.; Hamada, M.; Terao, Y.; Ohminami, S.; Tsutsumi, R.; Ugawa, Y.; Hanajima, R. Increased primary motor cortical excitability by a single-pulse transcranial magnetic stimulation over the supplementary motor area. Exp. Brain Res. 2012, 219, 339–349. [Google Scholar] [CrossRef]
- Lu, C.; Amundsen Huffmaster, S.L.; Tuite, P.J.; MacKinnon, C.D. The effects of anodal tDCS over the supplementary motor area on gait initiation in Parkinson’s disease with freezing of gait: A pilot study. J. Neurol. 2018, 265, 2023–2032. [Google Scholar] [CrossRef]
- King, L.A.; Mancini, M.; Smulders, K.; Harker, G.; Lapidus, J.A.; Ramsey, K.; Carlson-Kuhta, P.; Fling, B.W.; Nutt, J.G.; Peterson, D.S.; et al. Cognitively Challenging Agility Boot Camp Program for Freezing of Gait in Parkinson Disease. Neurorehabilit. Neural Repair 2020, 34, 417–427. [Google Scholar] [CrossRef]
- Jacobs, J.V.; Lou, J.S.; Kraakevik, J.A.; Horak, F.B. The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease. Neuroscience 2009, 164, 877–885. [Google Scholar] [CrossRef]
- Reis, J.; Schambra, H.M.; Cohen, L.G.; Buch, E.R.; Fritsch, B.; Zarahn, E.; Celnik, P.A.; Krakauer, J.W. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. USA 2009, 106, 1590–1595. [Google Scholar] [CrossRef]
- Flöel, A. tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 2014, 85, 934–947. [Google Scholar] [CrossRef] [PubMed]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. Cochrane Database Syst. Rev. 2019, 5, CD009760. [Google Scholar] [CrossRef]
- Robertson, E.M.; Théoret, H.; Pascual-Leone, A. Studies in Cognition: The Problems Solved and Created by Transcranial Magnetic Stimulation. J. Cogn. Neurosci. 2003, 15, 948–960. [Google Scholar] [CrossRef] [PubMed]
- Kan, B.; Dundas, J.E.; Nosaka, K. Effect of transcranial direct current stimulation on elbow flexor maximal voluntary isometric strength and endurance. Appl. Physiol. Nutr. Metab. 2013, 38, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Hanakawa, T.; Honda, M.; Watanabe, K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp. Brain Res. 2009, 196, 459–465. [Google Scholar] [CrossRef]
- Cogiamanian, F.; Marceglia, S.; Ardolino, G.; Barbieri, S.; Priori, A. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur. J. Neurosci. 2007, 26, 242–249. [Google Scholar] [CrossRef]
- Benninger, D.H.; Lomarev, M.; Lopez, G.; Wassermann, E.M.; Li, X.; Considine, E.; Hallett, M. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1105–1111. [Google Scholar] [CrossRef]
- Deiber, M.P.; Honda, M.; Ibañez, V.; Sadato, N.; Hallett, M. Mesial Motor Areas in Self-Initiated Versus Externally Triggered Movements Examined With fMRI: Effect of Movement Type and Rate. J. Neurophysiol. 1999, 81, 3065–3077. [Google Scholar] [CrossRef] [PubMed]
- Hugon, M.; Massion, J.; Wiesendanger, M. Anticipatory postural changes induced by active unloading and comparison with passive unloading in man. Pflug. Arch. 1982, 393, 292–296. [Google Scholar] [CrossRef]
- Viallet, F.; Massion, J.; Massarino, R.; Khalil, R. Coordination between posture and movement in a bimanual load lifting task: Putative role of a medial frontal region including the supplementary motor area. Exp. Brain Res. 1992, 88, 674–684. [Google Scholar] [CrossRef]
- Playford, E.D.; Jenkins, I.H.; Passingham, R.E.; Nutt, J.; Frackowiak, R.S.J.; Brooks, D.J. Impaired mesial frontal and putamen activation in Parkinson’s disease: A positron emission tomography study. Ann. Neurol. 1992, 32, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, U.; Boulanouar, K.; Fabre, N.; Martin, F.; Carel, C.; Colonnese, C.; Bozzao, L.; Berry, I.; Montastruc, J.L.; Chollet, F.; et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease. Brain 2000, 123, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Hamada, M.; Ugawa, Y.; Tsuji, S. High-frequency rTMS over the supplementary motor area for treatment of Parkinson’s disease. Mov. Disord. 2008, 23, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, B.K.; Farley, B.G.; Boyd, L.A. Repetitive Transcranial Magnetic Stimulation Improves Handwriting in Parkinson’s Disease. Park. Dis. 2013, 2013, 751925. [Google Scholar] [CrossRef]
- Haslinger, B.; Erhard, P.; Kämpfe, N.; Boecker, H.; Rummeny, E.; Schwaiger, M.; Conrad, B.; Ceballos-Baumann, A.O. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 2001, 124, 558–570. [Google Scholar] [CrossRef]
- Grafton, S.T. Contributions of functional imaging to understanding parkinsonian symptoms. Curr. Opin. Neurobiol. 2004, 14, 715–719. [Google Scholar] [CrossRef]
- Rahimpour, S.; Rajkumar, S.; Hallett, M. The Supplementary Motor Complex in Parkinson’s Disease. J. Mov. Disord. 2022, 15, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Serrien, D.J.; Strens, L.H.A.; Cassidy, M.J.; Thompson, A.J.; Brown, P. Functional significance of the ipsilateral hemisphere during movement of the affected hand after stroke. Exp. Neurol. 2004, 190, 425–432. [Google Scholar] [CrossRef]
- Goodwin, V.A.; Richards, S.H.; Taylor, R.S.; Taylor, A.H.; Campbell, J.L. The effectiveness of exercise interventions for people with Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2008, 23, 631–640. [Google Scholar] [CrossRef]
- Gobbi, L.T.; Oliveira-Ferreira, M.D.; Caetano, M.J.D.; Lirani-Silva, E.; Barbieri, F.A.; Stella, F.; Gobbi, S. Exercise programs improve mobility and balance in people with Parkinson’s disease. Park. Relat. Disord. 2009, 15, S49–S52. [Google Scholar] [CrossRef]
- Meserve, B.B.; Cleland, J.A.; Boucher, T.R. A meta-analysis examining clinical test utilities for assessing meniscal injury. Clin. Rehabil. 2008, 22, 143–161. [Google Scholar] [CrossRef] [PubMed]
- King, L.A.; Wilhelm, J.P.; Chen, Y.; Blehm, R.; Nutt, J.; Chen, Z.; Serdar, A.P.; Horak, F.B. Effects of Group, Individual, and Home Exercise in Persons With Parkinson Disease. J. Neurol. Phys. Ther. 2015, 39, 204–212. [Google Scholar] [CrossRef] [PubMed]
Group | Prolopa 200 mg + Benserazide 50 mg (Pills per Day) | Prolopa 100 mg + Benserazide 50 mg (Pills per Day) | Prolopa Hbs (Pills per Day) | Entacapona 200 mg (Pills per Day) | Pramipexol 0.25 mg (Pills per Day) | LEDD |
---|---|---|---|---|---|---|
Control | 2 | 0 | 0 | 0 | 0 | 400 |
Control | 0 | 4 | 0 | 0 | 0 | 400 |
Control | 2 | 0 | 0 | 0 | 0 | 400 |
Control | 2.5 | 0 | 0 | 0 | 0 | 500 |
Control | 2 | 0 | 0 | 0 | 0 | 400 |
Control | 3 | 0 | 0 | 0 | 0 | 600 |
Control | 2 | 0 | 0 | 0 | 0 | 400 |
Control | 2 | 0 | 0 | 0 | 0 | 400 |
Control | 2 | 0 | 0 | 0 | 0 | 400 |
Intervention | 2 | 0 | 0 | 0 | 0 | 400 |
Intervention | 2 | 0 | 0 | 0 | 0 | 400 |
Intervention | 2 | 0 | 0 | 0 | 0 | 400 |
Intervention | 4 | 0 | 0 | 0 | 0 | 800 |
Intervention | 4 | 0 | 0 | 0 | 3 | 1200 |
Intervention | 0.5 | 0 | 0 | 0 | 0 | 100 |
Intervention | 3 | 0 | 0 | 3 | 0 | 1200 |
Intervention | 4 | 0 | 1 | 0 | 0 | 800 |
Sham | 3 | 0 | 0 | 0 | 0 | 1400 |
Sham | 3 | 0 | 0 | 0 | 0 | 600 |
Sham | 2 | 0 | 0 | 0 | 0 | 400 |
Sham | 2 | 0 | 0 | 0 | 0 | 400 |
Sham | 8 | 0 | 0 | 0 | 0 | 1600 |
Sham | 2 | 0 | 0 | 0 | 0 | 400 |
Sham | 0 | 4 | 0 | 0 | 0 | 400 |
Sham | 2 | 0 | 0 | 0 | 0 | 400 |
Characteristics | Intervention Group (Mean ± SD) | Sham Group (Mean ± SD) | Control Group (Mean ± SD) | p-Value |
---|---|---|---|---|
Age (years) | 69.62 ± 0.76 | 64 ± 2 | 65.12 ± 9.7 | 0.578 # |
Weight (kg) | 72.87 ± 12.73 | 62.2. ± 17.19 | 72.75 ± 7.8 | 0.412 # |
Height (cm) | 165.25 ± 7.75 | 165.8 ± 7.49 | 169.1 ± 6.72 | 0.356 # |
Sex (M:F) | 6:2 | 4:4 | 5:4 | |
H&Y score | 2.75 ± 0.46 | 2.6 ± 0.54 | 2.22 ± 0.44 | 0.093 @ |
Measure | Intervention | Sham | Control | p/ηp2 |
---|---|---|---|---|
Dominant Freq AccR | Pre: 6.52 ± 0.58 | 6.51 ± 0.68 | 6.98 ± 0.52 | 0.965/0.003 |
Post: 6.30 ± 0.69 | 6.41 ± 0.78 | 6.83 ± 0.73 | ||
ApEn AccR_f | 1.36 ± 0.37 | 1.19 ± 0.46 | 0.82 ± 0.15 | 0.527/0.057 |
1.30 ± 0.49 | 1.25 ± 0.44 | 0.87 ± 0.18 | ||
MVC (N) | Pre: 178.5 ± 94.4 | 137.3 ± 65.9 | 139.7 ± 47.3 | 0.230/0.125 |
Post: 195.6 ± 100.3 | 134.8 ± 50.9 | 118.3 ± 42.18 | ||
Mean Force (N) | Pre: 35.33 ± 18.39 | 23.50 ± 11.99 | 26.69 ± 6.82 | 0.061/0.224 |
Post: 39.49 ± 20.94 | 25.63 ± 8.90 | 21.80 ± 8.02 | ||
SD Force (N) | Pre: 0.96 ± 0.58 | 1.42 ± 2.07 | 1.36 ± 1.28 | 0.397/0.080 |
Post: 1.25 ± 0.75 | 0.90 ± 0.51 | 1.07 ± 1.12 | ||
CV Force | Pre: 2.83 ± 1.26 | 5.35 ± 5.82 | 5.10 ± 5.04 | 0.569/0.050 |
Post: 3.60 ± 2.20 | 3.93 ± 3.24 | 4.83 ± 4.43 | ||
RMSE Force (N) | Pre: 1.32 ± 0.44 | 1.83 ± 2.16 | 1.96 ± 0.97 | 0.082/0.203 |
Post: 1.98 ± 1.33 | 1.26 ± 0.46 | 1.01 ± 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Almeida, F.D.; Wang, Y.; de Mello Pedreiro, R.C.; Brizzi, A.C.B.; Campos, S.F.; Sales, M.P.; Kennedy, D.M.; Pinto Neto, O. Combining Transcranial Direct Current Stimulation with Exercise to Improve Mobility, Stability, and Tremor Management in 25 Individuals with Parkinson’s Disease. Neurol. Int. 2024, 16, 1223-1238. https://doi.org/10.3390/neurolint16060093
de Almeida FD, Wang Y, de Mello Pedreiro RC, Brizzi ACB, Campos SF, Sales MP, Kennedy DM, Pinto Neto O. Combining Transcranial Direct Current Stimulation with Exercise to Improve Mobility, Stability, and Tremor Management in 25 Individuals with Parkinson’s Disease. Neurology International. 2024; 16(6):1223-1238. https://doi.org/10.3390/neurolint16060093
Chicago/Turabian Stylede Almeida, Fabrício D., Yiyu Wang, Rodrigo C. de Mello Pedreiro, Ana Carolina B. Brizzi, Shirley F. Campos, Melina P. Sales, Deanna M. Kennedy, and Osmar Pinto Neto. 2024. "Combining Transcranial Direct Current Stimulation with Exercise to Improve Mobility, Stability, and Tremor Management in 25 Individuals with Parkinson’s Disease" Neurology International 16, no. 6: 1223-1238. https://doi.org/10.3390/neurolint16060093
APA Stylede Almeida, F. D., Wang, Y., de Mello Pedreiro, R. C., Brizzi, A. C. B., Campos, S. F., Sales, M. P., Kennedy, D. M., & Pinto Neto, O. (2024). Combining Transcranial Direct Current Stimulation with Exercise to Improve Mobility, Stability, and Tremor Management in 25 Individuals with Parkinson’s Disease. Neurology International, 16(6), 1223-1238. https://doi.org/10.3390/neurolint16060093