Macamides as Potential Therapeutic Agents in Neurological Disorders
Abstract
:1. Introduction
2. Macamides as Potential Drugs Affecting GPCRs
2.1. CB1 y CB2 Receptors
2.2. Adenosine Receptor
2.3. Opiod Receptor
3. Macamides as Potential Drugs for Neurological Diseases
3.1. Alzheimer’s Disease
3.2. Stroke
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; UN DESA/POP/2022/TR/NO. 3; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2022. [Google Scholar]
- World Health Organization. Optimizing Brain Health Across the Life Course: WHO Position Paper; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Huang, Y.; Todd, N.; Thathiah, A. The role of GPCRs in neurodegenerative diseases: Avenues for therapeutic intervention. Curr. Opin. Pharmacol. 2017, 32, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, J.D.; Seeher, K.M.; Schiess, N.; Nichols, E.; Cao, B.; Servili, C.; Cavallera, V.; Cousin, E.; Hagins, H.; Moberg, M.E.; et al. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 344–381. [Google Scholar] [CrossRef] [PubMed]
- Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series Introduction: Neurodegeneration: What is it and where are we? J. Clin. Investig. 2003, 111, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Dumurgier, J.; Tzourio, C. Epidemiology of neurological diseases in older adults. Rev. Neurol. 2020, 176, 642–648. [Google Scholar] [CrossRef]
- Stephenson, D.; Belfiore-Oshan, R.; Karten, Y.; Keavney, J.; Kwok, D.K.; Martinez, T.; Montminy, J.; Müller, M.L.; Romero, K.; Sivakumaran, S. Transforming drug development for neurological disorders: Proceedings from a multidisease area workshop. Neurotherapeutics 2023, 20, 1682–1691. [Google Scholar] [CrossRef]
- de Oliveira, P.G.; Ramos, M.L.; Amaro, A.J.; Dias, R.A.; Vieira, S.I. Gi/o-protein coupled receptors in the aging brain. Front. Aging Neurosci. 2019, 11, 89. [Google Scholar] [CrossRef]
- Yu, Y.; Nguyen, D.T.; Jiang, J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog. Neurobiol. 2019, 183, 101682. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Wang, J.; Chen, H.; Ouyang, L.; Wang, Y. Targeting GRK2 and GRK5 for treating chronic degenerative diseases: Advances and future perspectives. Eur. J. Med. Chem. 2022, 243, 114668. [Google Scholar] [CrossRef]
- Gainetdinov, R.R.; Premont, R.T.; Bohn, L.M.; Lefkowitz, R.J.; Caron, M.G. Desensitization of G protein–coupled receptors and neuronal functions. Annu. Rev. Neurosci. 2004, 27, 107–144. [Google Scholar] [CrossRef]
- Huang, Y.; Thathiah, A. Regulation of neuronal communication by G protein-coupled receptors. FEBS Lett. 2015, 589, 1607–1619. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, Q.; Labroska, V.; Qin, S.; Darbalaei, S.; Wu, Y.; Yuliantie, E.; Xie, L.; Tao, H.; Cheng, J.; et al. G protein-coupled receptors: Structure-and function-based drug discovery. Signal Transduct. Target. Ther. 2021, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Denis, C.; Saulière, A.; Galandrin, S.; Sénard, J.M.; Galés, C. Probing heterotrimeric G protein activation: Applications to biased ligands. Curr. Pharm. Des. 2012, 18, 128–144. [Google Scholar] [CrossRef]
- Wong, T.S.; Li, G.; Li, S.; Gao, W.; Chen, G.; Gan, S.; Zhang, M.; Li, H.; Wu, S.; Du, Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct. Target. Ther. 2023, 8, 177. [Google Scholar] [PubMed]
- Zhu, H.; Wang, R.; Hua, H.; Cheng, Y.; Guo, Y.; Qian, H.; Du, P. The macamide relieves fatigue by acting as inhibitor of inflammatory response in exercising mice: From central to peripheral. Eur. J. Pharmacol. 2022, 917, 174758. [Google Scholar] [CrossRef]
- Yu, Z.; Jin, W.; Cui, Y.; Ao, M.; Liu, H.; Xu, H.; Yu, L. Protective effects of macamides from Lepidium meyenii Walp. against corticosterone-induced neurotoxicity in PC12 cells. RSC Adv. 2019, 9, 23096–23108. [Google Scholar] [CrossRef] [PubMed]
- Alasmari, M.; Bohlke, M.; Kelley, C.; Maher, T.; Pino-Figueroa, A. Inhibition of fatty acid amide hydrolase (FAAH) by macamides. Mol. Neurobiol. 2019, 56, 1770–1781. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, M.; Zhou, Q.; Bai, Y.; Liu, J.; Yang, J.; Li, L.; Li, G.; Luo, L. Macamide B pretreatment attenuates neonatal hypoxic-ischemic brain damage of mice induced apoptosis and regulates autophagy via the PI3K/AKT signaling pathway. Mol. Neurobiol. 2022, 59, 2776–2798. [Google Scholar] [CrossRef]
- Gonzales, G.F.; Gonzales, C.; Gonzales-Castañeda, C. Lepidium meyenii (Maca): A plant from the highlands of Peru–from tradition to science. Forsch. Komplementärmedizin/Res. Complement. Med. 2009, 16, 373–380. [Google Scholar] [CrossRef]
- Yi, F.; Tan, X.l.; Yan, X.; Liu, H.b. In silico profiling for secondary metabolites from Lepidium meyenii (maca) by the pharmacophore and ligand-shape-based joint approach. Chin. Med. 2016, 11, 1–17. [Google Scholar] [CrossRef]
- Alquraini, A.; Waggas, D.; Bohlke, M.; Maher, T.; Pino-Figueroa, A. Neuroprotective effects of Lepidium meyenii (Maca) and macamides against amyloid-beta (25-35) induced toxicity in B-35 neuroblastoma cells (657.13). FASEB J. 2014, 28, 657-13. [Google Scholar] [CrossRef]
- Lee, J.H.; Agacinski, G.; Williams, J.H.; Wilcock, G.K.; Esiri, M.M.; Francis, P.T.; Wong, P.T.H.; Chen, C.P.; Lai, M.K. Intact cannabinoid CB1 receptors in the Alzheimer’s disease cortex. Neurochem. Int. 2010, 57, 985–989. [Google Scholar] [CrossRef]
- Ticona, L.N.A.; Pérez, V.T.; Benito, P.B. Local/traditional uses, secondary metabolites and biological activities of Mashua (Tropaeolum tuberosum Ruíz & Pavón). J. Ethnopharmacol. 2020, 247, 112152. [Google Scholar]
- Kovacevic, R.; Bayona-Garcia, J.N.; Gordillo-Tobar, A. América Latina y el Caribe Refuerzan su Respuesta Ante la Creciente Demanda de Servicios de Salud Mental. 2022. Available online: https://blogs.worldbank.org/es/health/america-latina-y-el-caribe-refuerzan-su-respuesta-ante-la-creciente-demanda-de-servicios-de (accessed on 5 April 2024).
- Group, P.A.L.I. Salud Mental en América Latina y el Caribe. La Pandemia Silenciosa. 2022. Available online: https://palig.com/es/mx/wellness-hub/p/hablemos-sobre-la-pandemia-silenciosa-en-honor-al-mes-de-la-concientizacion-sobre-la-salud-mental (accessed on 23 April 2024).
- Gugnani, K.S.; Vu, N.; Rondón-Ortiz, A.N.; Böhlke, M.; Maher, T.J.; Pino-Figueroa, A.J. Neuroprotective activity of macamides on manganese-induced mitochondrial disruption in U-87 MG glioblastoma cells. Toxicol. Appl. Pharmacol. 2018, 340, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Jiao, M.; Dong, Q.; Zhang, Y.; Lin, M.; Zhou, W.; Liu, T.; Yuan, B.; Yin, H. Neuroprotection of N-benzyl eicosapentaenamide in neonatal mice following hypoxic–ischemic Brain Injury. Molecules 2021, 26, 3108. [Google Scholar] [CrossRef] [PubMed]
- Beharry, S.; Heinrich, M. Is the hype around the reproductive health claims of maca (Lepidium meyenii Walp.) justified? J. Ethnopharmacol. 2018, 211, 126–170. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Hu, B.; Hua, H.; Liu, C.; Cheng, Y.; Guo, Y.; Yao, W.; Qian, H. Macamides: A review of structures, isolation, therapeutics and prospects. Food Res. Int. 2020, 138, 109819. [Google Scholar] [CrossRef]
- Chen, R.; Wei, J.; Gao, Y. A review of the study of active components and their pharmacology value in Lepidium meyenii (Maca). Phytother. Res. 2021, 35, 6706–6719. [Google Scholar] [CrossRef]
- Fu, L.; Wei, J.; Gao, Y.; Chen, R. Antioxidant and antitumoral activities of isolated macamide and macaene fractions from Lepidium meyenii (Maca). Talanta 2021, 221, 121635. [Google Scholar] [CrossRef]
- Pena, M.; Guzman, A.; Martinez, R.; Mesas, C.; Prados, J.; Porres, J.M.; Melguizo, C. Preventive effects of Brassicaceae family for colon cancer prevention: A focus on in vitro studies. Biomed. Pharmacother. 2022, 151, 113145. [Google Scholar] [CrossRef]
- Tao, H.; Shi, H.; Wang, M.; Xu, Y. Macamide B suppresses lung cancer progression potentially via the ATM signaling pathway. Oncol. Lett. 2023, 25, 115. [Google Scholar] [CrossRef]
- Dimmito, M.P.; Stefanucci, A.; Della Valle, A.; Scioli, G.; Cichelli, A.; Mollica, A. An overview on plants cannabinoids endorsed with cardiovascular effects. Biomed. Pharmacother. 2021, 142, 111963. [Google Scholar] [CrossRef] [PubMed]
- Chain, F.E.; Ladetto, M.F.; Grau, A.; Catalán, C.A.; Brandán, S.A. Structural, electronic, topological and vibrational properties of a series of N-benzylamides derived from Maca (Lepidium meyenii) combining spectroscopic studies with ONION calculations. J. Mol. Struct. 2016, 1105, 403–414. [Google Scholar] [CrossRef]
- Gonzales-Urday, A.L.; Martínez-Málaga, J.A.; Rondón-Ortiz, A.N.; Böhlke, M.; Chocano-Coralla, E.J.; Pino-Figueroa, A. Lepidium meyenii L. and Isolated Macamides Reduces Lipopolysaccharide-Induced Inflammatory Response in THP-1 Cells. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Liu, C.; Hua, H.; Zhu, H.; Xu, W.; Guo, Y.; Yao, W.; Qian, H.; Cheng, Y. Study of the anti-fatigue properties of macamide, a key component in maca water extract, through foodomics and gut microbial genomics. Food Biosci. 2022, 49, 101876. [Google Scholar] [CrossRef]
- Petruska, P.; Capcarova, M.; Sutovsky, P. Antioxidant supplementation and purification of semen for improved artificial insemination in livestock species. Turk. J. Vet. Anim. Sci. 2014, 38, 643–652. [Google Scholar] [CrossRef]
- Apaza, L.; Pérez, V.T.; Serban, A.M.; Navarro, M.J.A.; Rumbero, A. Alkamides from Tropaeolum tuberosum inhibit inflammatory response induced by TNF–α and NF–κB. J. Ethnopharmacol. 2019, 235, 199–205. [Google Scholar] [CrossRef]
- Jacobson, K.A.; Gao, Z.G.; Matricon, P.; Eddy, M.T.; Carlsson, J. Adenosine A2A receptor antagonists: From caffeine to selective non-xanthines. Br. J. Pharmacol. 2022, 179, 3496–3511. [Google Scholar] [CrossRef]
- Hou, T.; Xu, F.; Peng, X.; Zhou, H.; Zhang, X.; Qiu, M.; Wang, J.; Liu, Y.; Liang, X. Label-free cell phenotypic study of opioid receptors and discovery of novel mu opioid ligands from natural products. J. Ethnopharmacol. 2021, 270, 113872. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Gupta, M. Physiology, Opioid Receptor; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Devane, W.A.; Dysarz, F.r.; Johnson, M.R.; Melvin, L.S.; Howlett, A.C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 1988, 34, 605–613. [Google Scholar]
- Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65. [Google Scholar] [CrossRef]
- Howlett, A.C.; Abood, M.E. CB1 and CB2 receptor pharmacology. Adv. Pharmacol. 2017, 80, 169–206. [Google Scholar] [PubMed]
- Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; De Costa, B.R.; Rice, K.C. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. USA 1990, 87, 1932–1936. [Google Scholar] [CrossRef]
- Tsou, K.; Brown, S.; Sanudo-Pena, M.; Mackie, K.; Walker, J. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 1998, 83, 393–411. [Google Scholar] [CrossRef] [PubMed]
- Galiègue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carrière, D.; Carayon, P.; Bouaboula, M.; Shire, D.; LE Fur, G.; Casellas, P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 1995, 232, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.M.; Wager-Miller, J.; Mackie, K. Cloning and molecular characterization of the rat CB2 cannabinoid receptor. Biochim. Et Biophys. Acta (BBA)-Gene Struct. Expr. 2002, 1576, 255–264. [Google Scholar] [CrossRef]
- Benito, C.; Núñez, E.; Tolón, R.M.; Carrier, E.J.; Rábano, A.; Hillard, C.J.; Romero, J. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci. 2003, 23, 11136–11141. [Google Scholar] [CrossRef]
- Benito, C.; Romero, J.P.; Tolón, R.M.; Clemente, D.; Docagne, F.; Hillard, C.J.; Guaza, C.; Romero, J. Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J. Neurosci. 2007, 27, 2396–2402. [Google Scholar] [CrossRef]
- Ulloa del Carpio, N.; Alvarado-Corella, D.; Quiñones-Laveriano, D.M.; Araya-Sibaja, A.; Vega-Baudrit, J.; Monagas-Juan, M.; Navarro-Hoyos, M.; Villar-López, M. Exploring the chemical and pharmacological variability of Lepidium meyenii: A comprehensive review of the effects of maca. Front. Pharmacol. 2024, 15, 1360422. [Google Scholar] [CrossRef]
- Vazquez, C.; Tolón, R.M.; Pazos, M.R.; Moreno, M.; Koester, E.C.; Cravatt, B.F.; Hillard, C.J.; Romero, J. Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies. Neurobiol. Dis. 2015, 79, 41–50. [Google Scholar] [CrossRef]
- Hajdu, Z.; Nicolussi, S.; Rau, M.; Lorántfy, L.; Forgo, P.; Hohmann, J.; Csupor, D.; Gertsch, J. Identification of endocannabinoid system-modulating N-alkylamides from Heliopsis helianthoides var. scabra and Lepidium meyenii. J. Nat. Prod. 2014, 77, 1663–1669. [Google Scholar] [CrossRef]
- Singh, N.; Barnych, B.; Morisseau, C.; Wagner, K.M.; Wan, D.; Takeshita, A.; Pham, H.; Xu, T.; Dandekar, A.; Liu, J.Y.; et al. N-Benzyl-linoleamide, a constituent of Lepidium meyenii (Maca), is an orally bioavailable soluble epoxide hydrolase inhibitor that alleviates inflammatory pain. J. Nat. Prod. 2020, 83, 3689–3697. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gil, M.; Camici, M.; Allegrini, S.; Pesi, R.; Tozzi, M.G. Metabolic aspects of adenosine functions in the brain. Front. Pharmacol. 2021, 12, 672182. [Google Scholar] [CrossRef] [PubMed]
- Domenici, M.R.; Ferrante, A.; Martire, A.; Chiodi, V.; Pepponi, R.; Tebano, M.T.; Popoli, P. Adenosine A2A receptor as potential therapeutic target in neuropsychiatric disorders. Pharmacol. Res. 2019, 147, 104338. [Google Scholar] [CrossRef]
- Moreira-de Sá, A.; Lourenço, V.S.; Canas, P.M.; Cunha, R.A. Adenosine A2A receptors as biomarkers of brain diseases. Front. Neurosci. 2021, 15, 702581. [Google Scholar] [CrossRef]
- Atif, M.; Alsrhani, A.; Naz, F.; Imran, M.; Imran, M.; Ullah, M.I.; Alameen, A.A.; Gondal, T.A.; Raza, Q. Targeting adenosine receptors in neurological diseases. Cell. Reprogramming 2021, 23, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Mori, A. How do adenosine A2A receptors regulate motor function? Park. Relat. Disord. 2020, 80, S13–S20. [Google Scholar] [CrossRef]
- Finsterer, J.; Mahjoub, S.Z. Fatigue in healthy and diseased individuals. Am. J. Hosp. Palliat. Med. 2014, 31, 562–575. [Google Scholar] [CrossRef]
- Minton, O.; Richardson, A.; Sharpe, M.; Hotopf, M.; Stone, P. A systematic review and meta-analysis of the pharmacological treatment of cancer-related fatigue. J. Natl. Cancer Inst. 2008, 100, 1155–1166. [Google Scholar] [CrossRef]
- Alves, A.C.d.B.; Bristot, V.J.d.O.; Limana, M.D.; Speck, A.E.; Barros, L.S.d.; Solano, A.F.; Aguiar, A.S. Role of adenosine A2A receptors in the central fatigue of neurodegenerative diseases. J. Caffeine Adenosine Res. 2019, 9, 145–156. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F. Chemical composition and health effects of maca (Lepidium meyenii). Food Chem. 2019, 288, 422–443. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, W.; Wang, N.; Jiang, W.; Cheng, Y.; Guo, Y.; Yao, W.; Hu, B.; Du, P.; Qian, H. Anti-fatigue effect of Lepidium meyenii Walp. (Maca) on preventing mitochondria-mediated muscle damage and oxidative stress in vivo and vitro. Food Funct. 2021, 12, 3132–3141. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, R.; Hua, H.; Cheng, Y.; Guo, Y.; Qian, H.; Du, P. Network pharmacology exploration reveals gut microbiota modulation as a common therapeutic mechanism for anti-fatigue effect treated with maca compounds prescription. Nutrients 2022, 14, 1533. [Google Scholar] [CrossRef]
- Machelska, H.; Celik, M.Ö. Opioid receptors in immune and glial cells—Implications for pain control. Front. Immunol. 2020, 11, 472575. [Google Scholar] [CrossRef]
- Stein, C. Opioid receptors. Annu. Rev. Med. 2016, 67, 433–451. [Google Scholar] [CrossRef]
- Badal, S.; Turfus, S.; Rajnarayanan, R.; Wilson-Clarke, C.; Sandiford, S. Analysis of natural product regulation of opioid receptors in the treatment of human disease. Pharmacol. Ther. 2018, 184, 51–80. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, L.G. Alzheimer disease. Contin. Lifelong Learn. Neurol. 2016, 22, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Zvěřová, M. Clinical aspects of Alzheimer’s disease. Clin. Biochem. 2019, 72, 3–6. [Google Scholar] [CrossRef]
- De-Paula, V.J.; Radanovic, M.; Diniz, B.S.; Forlenza, O.V. Alzheimer’s Disease. In Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease; Springer: Dordrecht, The Netherlands, 2012; pp. 329–352. [Google Scholar]
- Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef] [PubMed]
- Chong, F.P.; Ng, K.Y.; Koh, R.Y.; Chye, S.M. Tau proteins and tauopathies in Alzheimer’s disease. Cell. Mol. Neurobiol. 2018, 38, 965–980. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.g.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 1240–1247. [Google Scholar] [CrossRef]
- Supnet, C.; Bezprozvanny, I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 2010, 47, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef] [PubMed]
- Brodie, M.J.; Besag, F.; Ettinger, A.B.; Mula, M.; Gobbi, G.; Comai, S.; Aldenkamp, A.P.; Steinhoff, B.J. Epilepsy, antiepileptic drugs, and aggression: An evidence-based review. Pharmacol. Rev. 2016, 68, 563–602. [Google Scholar] [CrossRef] [PubMed]
- Flint Rehab. 9 Major Areas of the Brain Affected by Stroke: How Location Impacts Recovery. 2023. Available online: https://www.flintrehab.com/areas-of-the-brain-affected-by-stroke/ (accessed on 20 June 2024).
- Mondal, A.C. Role of GPCR signaling and calcium dysregulation in Alzheimer’s disease. Mol. Cell. Neurosci. 2019, 101, 103414. [Google Scholar]
- Cummings, J.L.; Tong, G.; Ballard, C. Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options. J. Alzheimer’s Dis. 2019, 67, 779–794. [Google Scholar] [CrossRef]
- Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in Alzheimer disease: An update. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520907397. [Google Scholar] [CrossRef]
- Xia, N.; Xu, L.; Huang, M.; Xu, D.; Li, Y.; Wu, H.; Mei, Z.; Yu, Z. Neuroprotection of macamide in a mouse model of Alzheimer’s disease involves Nrf2 signaling pathway and gut microbiota. Eur. J. Pharmacol. 2024, 975, 176638. [Google Scholar] [CrossRef]
- Murphy, S.J.; Werring, D.J. Stroke: Causes and clinical features. Medicine 2020, 48, 561–566. [Google Scholar] [CrossRef]
- Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef]
- Yousufuddin, M.; Young, N. Aging and ischemic stroke. Aging 2019, 11, 2542. [Google Scholar] [CrossRef]
- Wajngarten, M.; Silva, G.S. Hypertension and stroke: Update on treatment. Eur. Cardiol. Rev. 2019, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart disease and stroke statistics—2018 update: A report from the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
a Position | Neurological | DALYs | YLDs | YLLs | Prevalence | Deaths |
---|---|---|---|---|---|---|
Conditions | ||||||
1 (1) | Stroke | 160,000 | 15,200 | 145,000 | 93,800 | 7250 |
[148,000 to 172,000] | [11,000 to 19,400] | [134,000 to 157,000] | [89,000 to 99,300] | [6610 to 7820] | ||
2 (3) | Neonatal encephalopathy | 58,600 | 4280 | 54,300 | 18,600 | 604 |
[50,100 to 69,000] | [3100 to 5590] | [46,000 to 64,900] | [16,100 to 21,100] | [511 to 722] | ||
3 (2) | Migraine | - | 43,400 | - | 1,160,000 | - |
[6740 to 95,100] | [996,000 to 1,330,000] | |||||
4 (5) | b Alzheimer’s disease | 36,300 | 11,600 | 24,700 | 56,900 | 1950 |
[17,200 to 77,400] | [7960 to 15,300] | [6370 to 65,700] | [49,400 to 65,000] | [503 to 5080] | ||
5 (4) | Diabetic neuropathy | - | 26,300 | - | 206,000 | - |
[18,000 to 37,400] | [171,000 to 249,000] | |||||
6 (19) | Meningitis | 14,500 | 603 | 13,900 | 7270 | 214 |
[11,500 to 18,700] | [425 to 791] | [11,000 to 18,000] | [5930 to 9070] | [177 to 266] | ||
7 (6) | Epilepsy | 14,400 | 7760 | 6610 | 24,400 | 140 |
[11,000 to 18,500] | [4660 to 11,800] | [5450 to 7340] | [18,600 to 30,800] | [116 to 153] | ||
8 (9) | c Preterm birth | - | 13,800 | - | 97,500 | - |
[9950 to 17,900] | [83,000 to 112,000] | |||||
9 (8) | autism spectrum disorder | - | 11,500 | - | 61,800 | - |
[7840 to 16,300] | [52,100 to 72,700] | |||||
10 (7) | nervous system cancer | 9200 | 132 | 9070 | 1030 | 264 |
[7890 to 10,600] | [93.8 to 174] | [7750 to 10,500] | [907 to 1140] | [226 to 302] | ||
11 (10) | Parkinson’s disease | 7470 | 1670 | 5800 | 11,800 | 388 |
[6730 to 8140] | [1170 to 2210] | [5250 to 6260] | [10,400 to 13,400] | [345 to 419] |
Name | Formula | 2D | 3D (ESP) |
---|---|---|---|
N-benzyl-9,16-dioxo-10E,12E,14E-octadecatrienamide | C25H33NO3 | ||
N-benzyl-16(S)-hydroxy-9-oxo-10E,12E,14E-octadecatrienamide | C25H35NO3 | ||
N-benzyl-5-oxo-6E,8E-octadecadienamide | C25H37NO2 | ||
N-benzyl-hexadecanamide | C23H39NO | ||
N-benzyl-9-oxo-12Z-octadecenamide | C25H39NO2 | ||
N-benzyl-9-oxo-12Z,15Z-octadecadienamide | C25H37NO2 | ||
N-benzyl-13-oxo-9E,11E-octadecadienamide | C25H37NO2 | ||
N-benzyl-15Z-tetracosenamide | C31H53NO | ||
N-(m-methoxybenzyl)-hexadecanamide | C24H41NO2 | ||
N-benzyl-9Z-octadecenamide | C25H41NO | ||
N-(m-methoxybenzyl)-9Z-octadecenamide | C26H43NO2 | ||
N-benzyl-9Z,12Z-octadecadienamide | C25H39NO | ||
N-(m-methoxybenzyl)-9Z,12Z-octadecadienamide | C26H41NO2 | ||
N-benzyl-9Z,12Z,15Z-octadecatrienamide | C25H37NO | ||
N-(m-methoxybenzyl)-9Z,12Z,15Z-octadecatrienamide | C26H39NO2 | ||
N-benzyl-octadecanamide | C25H43NO | ||
N-benzyl-pentadecanamide | C22H37NO | ||
N-benzyl-heptadecanamide | C24H41NO | ||
N-benzyl-octanamide | C15H23NO | ||
N-(m-methoxybenzyl)-octanamide | C16H25NO | ||
N-(3,4-dimethoxybenzyl)-hexadecanamide | C25H43NO3 | ||
N-benzyl-tetracosanamide | C31H55NO | ||
N-benzyl-2E-octadecadienamide | C25H41NO | ||
N-benzyl-9-oxo-10E,12E-octadecadienamide | C25H37NO2 | ||
N-benzyl-9-oxo-10E,12Z-octadecadienamide | C25H37NO2 | ||
N-(3,4-dimethoxybenzyl)-9Z-oleamide | C27H45NO3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vera-López, K.J.; Davila-Del-Carpio, G.; Nieto-Montesinos, R. Macamides as Potential Therapeutic Agents in Neurological Disorders. Neurol. Int. 2024, 16, 1611-1625. https://doi.org/10.3390/neurolint16060117
Vera-López KJ, Davila-Del-Carpio G, Nieto-Montesinos R. Macamides as Potential Therapeutic Agents in Neurological Disorders. Neurology International. 2024; 16(6):1611-1625. https://doi.org/10.3390/neurolint16060117
Chicago/Turabian StyleVera-López, Karin J., Gonzalo Davila-Del-Carpio, and Rita Nieto-Montesinos. 2024. "Macamides as Potential Therapeutic Agents in Neurological Disorders" Neurology International 16, no. 6: 1611-1625. https://doi.org/10.3390/neurolint16060117
APA StyleVera-López, K. J., Davila-Del-Carpio, G., & Nieto-Montesinos, R. (2024). Macamides as Potential Therapeutic Agents in Neurological Disorders. Neurology International, 16(6), 1611-1625. https://doi.org/10.3390/neurolint16060117