A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts
Abstract
:1. Introduction
2. Sporadic Creutzfeldt-Jakob Disease—Overview of the Current Knowledge on Etiology, Pathogenesis, and Clinical Picture
2.1. Etiology
2.2. Pathogenesis
2.3. Classification
- -
- sporadic CJD, accounting for more than 80% of cases, thought to be due to unknown cellular events that lead to the conversion of PrPC to PrPSc,
- -
- genetic CJD, about 10–15% of cases, linked to a series of mutations in the PRNP gene transmitted in an autosomal-dominant pattern with variable penetrance [25], and
- -
2.4. Neuropathology
2.4.1. PrPSc Depositions
- Synaptic deposits are the most common ones, consisting of microgranular, diffuse PrPSc deposits identified in the cerebral cortex (mainly the occipital one) and in the molecular layer of the cerebellum.
- Plaque-like deposits are rounded and well defined, described in the cerebral cortex, striatum, thalamus, granular layer of the cerebellar cortex, and cerebellar white matter, as well as, occasionally, in the cerebral white matter.
- Perivacuolar deposits are found in the cerebral cortex, associated with large, confluent vacuoles.
- Perineuronal deposits are seen in the pyramidal neurons of the fifth cortical layer and in the hippocampus, delineating the perikarya and dendrites of neurons.
2.4.2. Microglial Activation
2.4.3. Spongiform Degeneration
- Small, round vacuoles 2–5 μm in diameter, located in the cerebral cortex, striatum, thalamus, and molecular layer of the cerebellar cortex, are most commonly found.
- Large vacuoles, 15–20 μm in diameter, with a tendency to merge into grape-like structures, are often observed in the cerebral cortex.
- Vacuoles of intermediate size are often seen in subcortical structures and the cerebellum.
2.4.4. Synaptic Loss
2.4.5. Amyloid Plaques
2.4.6. Secondary Tauopathy
2.4.7. Astrocytic Gliosis
2.5. Clinical Picture
2.6. Evaluation
2.6.1. Laboratory Studies
- -
- The family of 14-3-3 proteins was the first CSF biomarker to be used in diagnosing CJD. They are cytosolic proteins with regulatory functions, released into the CSF during neuronal damage. Although they may be increased in other conditions associated with neuronal destruction as well, the increase in 14-3-3 protein in the CSF shows an 87% sensitivity and 66% specificity if assessed semi-quantitatively by Western blotting, while assessment with ELISA increases the specificity to 84% [84].
- -
- The microtubule-associated protein tau (total tau—t-tau) as a marker of neuroaxonal degeneration is also largely used as a surrogate marker for the pre-mortem diagnosis of CJD [58,84], although it also increases in Alzheimer’s disease (AD) [85]. The cut-offs for differential diagnosis between CJD and AD are still not set, ranging between >1072 pg/mL [86] and >1583 pg/mL [87]. Because phosphorylated tau (p-tau) shows a less prominent increase in the CSF in CJD as compared to AD, the t-tau/p-tau ratio (cut-off < 0.075) [88] adds to the sensitivity (around 96%) and specificity (98–100%) [88]. In addition, the t-tau levels may suggest specific subtypes (being highest in the MM1, MV1, and VV2 types) [89] and could provide information related to prognosis and life expectancy [90].
- -
- -
- -
- YKL-40 (also known as chitinase 3-like 1), a marker of neuroinflammation, also shows an increase above the proposed cut-off of 315 ng/mL [95] in the CSF of patients with CJD, its sensitivity being around 76% [92], along with other markers of glial activation, such as CHIT-1 or GFAP (glial fibrillary acidic protein) [96,97].
- -
- Other biomarkers have been studied in recent years and shown to increase in sporadic CJD, such as neurogranin (related to synaptic plasticity) [98], ubiquitin (a marker of neuritic damage and neuroinflammation) [99], and calmodulin [100], as well as mitochondrial malate dehydrogenase 1 (a marker of mitochondrial dysfunction and oxidative stress) [101].
2.6.2. Imagistic Studies
- -
- Cerebral cortex, affecting most commonly the insula, cingulate gyrus, or superior frontal gyrus; commonly the cuneus, precuneus, medial and/or inferior frontal gyri, occipital gyri, angular and supramarginal gyri, or superior parietal lobule (depending also on the clinical variant); and less commonly the medial and superior temporal gyri or the precentral and postcentral gyri
- -
- Basal ganglia, most commonly in the putamen and striatum but also in the thalamus
- -
- In the cerebellum, in the Brownell-Oppenheimer variant,
- -
- In the parietooccipital cortex in the Heidenhain variant,
- -
- In the putamen and thalamus in the Stern-Garcin variant, with extrapyramidal features from onset.
2.6.3. Electroencephalography (EEG)
2.6.4. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT)
2.7. Diagnostic Criteria
- (a)
- Possible CJD:
- progressive dementia
- EEG atypical or not known
- duration <2 years
- At least two out of the following four clinical features:
- -
- myoclonus
- -
- visual or cerebellar disturbance
- -
- pyramidal/extrapyramidal dysfunction
- -
- akinetic mutism
- (b)
- Probable CJD: (in the absence of an alternative diagnosis from routine investigation)
- progressive dementia
- at least two of the following four clinical features:
- -
- myoclonus
- -
- visual or cerebellar disturbance
- -
- pyramidal/extrapyramidal dysfunction
- -
- akinetic mutism
- a typical EEG, whatever the clinical duration of the disease
- a positive 14-3-3 assay for CSF and a clinical duration to death <2 years
- (c)
- Confirmed (definite) CJD:
- neuropathological confirmation
- confirmation of protease-resistant prion protein (PrP) (immunocytochemistry or Western blot)
- Presence of scrapie-associated fibrils
- A.
- Definite sporadic CJD:
- Progressive neurological syndrome
- Neuropathologically or immunohistochemically or biochemically confirmed
- B.
- Probable sporadic CJD:
- 1.
- Rapidly progressive cognitive impairment
- Two of the following:
- -
- myoclonus
- -
- visual or cerebellar symptoms/signs
- -
- pyramidal or extrapyramidal features
- -
- akinetic mutism
- and a typical EEG showing generalized periodic complexes
- 2.
- Rapidly progressive cognitive impairment
- Two of the following:
- -
- myoclonus
- -
- visual or cerebellar symptoms/signs
- -
- pyramidal or extrapyramidal features
- -
- akinetic mutism
- and a typical MRI brain scan, showing a high signal in the caudate/putamen or at least two cortical regions (temporal, parietal, or occipital) on either the DWI or FLAIR
- 3.
- Rapidly progressive cognitive impairment
- Two of the following:
- -
- myoclonus
- -
- visual or cerebellar symptoms/signs
- -
- pyramidal or extrapyramidal features
- -
- akinetic mutism
- and positive CSF 14-3-3 protein
- and without routine investigations indicating an alternative diagnosis
- 4.
- Progressive neurological syndrome and positive RT-QuIC in CSF or other tissues
- C.
- Possiblesporadic CJD:
- Rapidly progressive cognitive impairment
- Two of the following:
- -
- myoclonus
- -
- visual or cerebellar symptoms/signs
- -
- pyramidal or extrapyramidal features
- -
- akinetic mutism
2.8. Differential Diagnosis
2.8.1. Clinical Differential Diagnosis
2.8.2. Imagistic Differential Diagnosis
3. Therapeutic Attempts and Future Perspectives
3.1. Assessed Pharmacological Agents
- -
- Flupirtine, a triaminopyridine shown in vitro to protect neurons from apoptosis caused by amyloid beta peptides and prion protein fragments, was evaluated in a study focusing on cognitive decline in patients with CJD. Although the rate of progression of dementia was slowed in the 13 patients randomized to flupirtine compared to the 15 patients randomized to the placebo, the overall survival rate was not influenced [25,176].
- -
- Quinacrine (300 mg/day), an antimalarial drug that supposedly could prevent the conversion of PrP to disease-associated protein forms, was assessed in two clinical trials: an open-label trial in the UK (PRION1) and a double-blind, placebo-controlled, stratified-randomization treatment trial in the US [177]. Unfortunately, no difference in mortality rates could be demonstrated in either trial [178,179], despite a transient improvement in symptoms at the beginning of the treatment [180].
- -
- Pentosan polysulfate has poor penetrance across the blood–brain barrier and had to be delivered via intraventricular injection. Although the survival was prolonged in observational studies, no symptomatic clinical benefit was discerned [181], and the aggressive delivery procedure was followed by many complications, mainly subdural effusions [182].
- -
- Doxycycline, a tetracycline antibiotic with good blood–brain barrier penetration and shown to inhibit the aggregation of PrP proteins and reverse the protease resistance of PrPSc [183], had promising results in animal experiments [184], but in the clinical setting, it also failed to prolong survival [185], except when administered in the early stages [186].
3.2. Future Directions
3.2.1. Active Immunization
3.2.2. Monoclonal Antibodies
3.2.3. Immune Modulation
3.2.4. Gene Therapy
3.2.5. Targeted Protein Degradation Therapies
3.2.6. Stem Cell Therapies
4. Concluding Remarks: Challenges in the Quest for a Cure for Prion Diseases
- The low incidence of prion disease (about 1–2/1 million persons or 5/1 million persons aged over 65) poses serious difficulties in designing clinical trials. This could be overcome by optimizing the exchange of information between researchers and clinicians and sharing diagnostic tools and protocols, thereby facilitating data collection and recruitment of subjects [177].
- The first clinical signs appear late in the disease course when degeneration is already quite advanced. In addition, the clinical presentation being unspecific, diagnosing CJD can be quite challenging and time-consuming, aided by the rapid, sometimes fulminant course to akinetic mutism and death in a few months.
- We still lack specific markers that could be used as primary endpoints in clinical trials. To date, most of the trials were considered successful if they prolonged life, but the disease duration varies naturally in the various genetic subtypes. Moreover, given the expanding area of stem cell and organ/tissue transplantation, the need for testing donors with reliable markers for asymptomatic prion disease is even more stringent to avoid iatrogenic transmission.
- From animal experiments, we know that a series of compound-resistant PrPSc strains can develop following the administration of a therapeutic compound [223]. Two hypotheses have tried to explain this phenomenon: (1) the “cloud” hypothesis, which posits that a prion strain contains a mixture of conformational variants from which the best-suited one in a specific environment thrives and becomes the dominant one while the others are progressively eliminated from the cloud over multiple propagation cycles [224], and (2) the “deformed templating” hypothesis, which postulates that prion conversion is not always fully faithful, leading to subsequent generations of prions with heterogeneous conformations. The new conformation(s) may possess a selective advantage in a specific environment and ultimately may become the dominant conformational variant [225]. As such, in vitro models must consist of cells capable of being infected by a wide range of PrPSc strains.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ironside, W.J. Creutzfeldt-Jakob disease: The story so far. Proc. R. Coll. Physicians Edinb. 1998, 28, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Watson, N.; Brandel, J.P.; Green, A.; Hermann, P.; Ladogana, A.; Lindsay, T.; Mackenzie, J.; Pocchiari, M.; Smith, C.; Zerr, I.; et al. The importance of ongoing international surveillance for Creutzfeldt-Jakob disease. Nat. Rev. Neurol. 2021, 17, 362–379. [Google Scholar] [CrossRef] [PubMed]
- The National CJD Research & Surveillance Unit. 31st Annual Report 2022. Creutzfeldt-Jakob Disease Surveillance in the UK. Available online: https://www.cjd.ed.ac.uk/sites/default/files/report31.pdf (accessed on 18 March 2024).
- Denouel, A.; Brandel, J.P.; Peckeu-Abboud, L.; Seilhean, D.; Bouaziz-Amar, E.; Quadrio, I.; Oudart, J.B.; Lehmann, S.; Bellecave, P.; Laplanche, J.L.; et al. Prospective 25-year surveillance of prion diseases in France, 1992 to 2016: A slow waning of epidemics and an increase in observed sporadic forms. Euro Surveill. 2023, 28, 2300101. [Google Scholar] [CrossRef] [PubMed]
- Maddox, R.A.; Person, M.K.; Blevins, J.E.; Abrams, J.Y.; Appleby, B.S.; Schonberger, L.B.; Belay, E.D. Prion disease incidence in the United States: 2003–2015. Neurology 2020, 94, e153–e157. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, C.C.; Fan, L.Y.; Huang, C.T.; Chen, T.F.; Lu, C.J.; Guo, W.Y.; Chang, Y.C.; Chiu, M.J. Incidence of and Mortality Due to Human Prion Diseases in Taiwan: A Prospective 20-Year Nationwide Surveillance Study from 1998 to 2017. Clin. Epidemiol. 2020, 12, 1073–1081. [Google Scholar] [CrossRef]
- Kim, Y.C.; Jeong, B.H. Creutzfeldt-Jakob Disease Incidence, South Korea, 2001–2019. Emerg. Infect. Dis. 2022, 28, 1863–1866. [Google Scholar] [CrossRef]
- Bernardini, A.; Gigli, G.L.; Janes, F.; Pellitteri, G.; Ciardi, C.; Fabris, M.; Valente, M. Creutzfeldt-Jakob disease after COVID-19: Infection-induced prion protein misfolding? A case report. Prion 2022, 16, 78–83. [Google Scholar] [CrossRef]
- Attia, A.M.M.A.; Badr, B.A.; Albalaihad, R.; Alharshan, R.; Almukhaitah, A.A. Creutzfeldt-Jakob Disease After the Second Dosage of The Novel Pfizer-Biontech Messenger Ribonucleic Acid (Mrna) COVID-19 Vaccination: A Case Report. HIV Nurs. 2023, 23, 743–747. [Google Scholar]
- Prusiner, S.B.; Scott, M.R.; DeArmond, S.J.; Cohen, F.E. Prion protein biology. Cell 1998, 93, 337–348. [Google Scholar] [CrossRef]
- Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef]
- Watson, N.; Hermann, P.; Ladogana, A.; Denouel, A.; Baiardi, S.; Colaizzo, E.; Giaccone, G.; Glatzel, M.; Green, A.J.E.; Haïk, S.; et al. Validation of Revised International Creutzfeldt-Jakob Disease Surveillance Network Diagnostic Criteria for Sporadic Creutzfeldt-Jakob Disease. JAMA Netw. Open 2022, 5, e2146319. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.W.; Torres-Chae, C.C.; Kuo, A.L.; Ando, T.; Nguyen, E.A.; Wong, K.; DeArmond, S.J.; Haman, A.; Garcia, P.; Johnson, D.Y.; et al. Differential diagnosis of Jakob-Creutzfeldt disease. Arch. Neurol. 2012, 69, 1578–1582. [Google Scholar] [CrossRef] [PubMed]
- Windl, O.; Dempster, M.; Estibeiro, P.; Lathe, R. A candidate marsupial PrP gene reveals two domains conserved in mammalian PrP proteins. Gene 1995, 159, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Baiardi, S.; Mammana, A.; Capellari, S.; Parchi, P. Human prion disease: Molecular pathogenesis, and possible therapeutic targets and strategies. Exp. Opin. Therap. Targets 2023, 27, 1271–1284. [Google Scholar] [CrossRef]
- Acevedo-Morantes, C.Y.; Wille, H. The structure of human prions: From biology to structural models—Considerations and pitfalls. Viruses 2014, 6, 3875–3892. [Google Scholar] [CrossRef]
- Mahabadi, H.M.; Taghibiglou, C. cellular prion protein (PrPc): Putative interacting partners and consequences of the interaction. Int. J. Mol. Sci. 2020, 21, 7058. [Google Scholar] [CrossRef]
- Thackray, A.M.; Knight, R.; Haswell, S.J.; Bujdoso, R.; Brown, D.R. Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem. J. 2002, 362, 253–258. [Google Scholar] [CrossRef]
- Lathe, R.; Darlix, J.L. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch. Virol. 2020, 165, 535–556. [Google Scholar] [CrossRef]
- Wulf, M.A.; Senatore, A.; Aguzzi, A. The biological function of the cellular prion protein: An update. BMC. Biol. 2017, 15, 34. [Google Scholar] [CrossRef]
- Baral, P.K.; Yin, J.; Aguzzi, A.; James, M.G. Transition of the prion protein from a structured cellular form (PrPC) to the infectious scrapie agent (PrPSc). Prot. Sci. 2019, 28, 2055–2063. [Google Scholar] [CrossRef]
- Sweeney, P.; Park, H.; Baumann, M.; Dunlop, J.; Frydman, J.; Kopito, R.; McCampbell, A.; Leblanc, G.; Venkateswaran, A.; Nurmi, A.; et al. Protein misfolding in neurodegenerative diseases: Implications and strategies. Transl. Neurodegener. 2017, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Yedidia, Y.; Horonchik, L.; Tzaban, S.; Yanai, A.; Taraboulos, A. Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J. 2001, 20, 5383–5391. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.M.; Baldwin, M.; Nguyen, J.; Gasset, M.; Serban, A.; Groth, D.; Mehlhorn, I.; Huang, Z.; Fletterick, R.J.; Cohen, F.E.; et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 1993, 90, 10962–10966. [Google Scholar] [CrossRef] [PubMed]
- Zerr, I.; Ladogana, A.; Mead, S.; Hermann, P.; Forloni, G.; Appleby, B.S. Creutzfeldt-Jakob disease and other prion diseases. Nat. Rev. Dis. Primers 2024, 10, 14. [Google Scholar] [CrossRef]
- Kimberlin, R.H.; Walker, C.A. Pathogenesis of mouse scrapie: Dynamics of agent replication in spleen, spinal cord and brain after infection by different routes. J. Comp. Pathol. 1979, 89, 551–562. [Google Scholar] [CrossRef]
- Houston, F.; Foster, J.D.; Chong, A.; Hunter, N.; Bostock, C.J. Transmission of BSE by blood transfusion in sheep. Lancet 2000, 356, 999–1000. [Google Scholar] [CrossRef]
- Mattei, V.; Garofalo, T.; Misasi, R.; Circella, A.; Manganelli, V.; Lucania, G.; Pavan, A.; Sorice, M. Prion protein is a component of the multimolecular signaling complex involved in T cell activation. FEBS. Lett. 2004, 560, 14–18. [Google Scholar] [CrossRef]
- Cha, S.; Kim, M.Y. The role of cellular prion protein in immune system. BMB Rep. 2023, 56, 645–650. [Google Scholar] [CrossRef]
- Kim, S.; Han, S.; Kim, T.; Nam, J.; Kim, Y.S.; Choi, E.K.; Kim, M.Y. Prolonged follicular helper T cell responses in ME7 scrapie-infected mice. Prion 2018, 12, 109–116. [Google Scholar] [CrossRef]
- Zhang, B.; She, P.; Yin, X.; Dai, Y.; Ding, M.; Cui, L. Expression and functions of cellular prion proteins in immunocytes. Scand. J. Immunol. 2020, 91, e12854. [Google Scholar] [CrossRef]
- Klein, M.A.; Frigg, R.; Flechsig, E.; Raeber, A.J.; Kalinke, U.; Bluethmann, H.; Bootz, F.; Suter, M.; Zinkernagel, R.M.; Aguzzi, A. A crucial role for B cells in neuroinvasive scrapie. Nature 1997, 390, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Montrasio, F.; Frigg, R.; Glatzel, M.; Klein, M.A.; Mackay, F.; Aguzzi, A.; Weissmann, C. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 2000, 288, 1257–1259. [Google Scholar] [CrossRef] [PubMed]
- Harischandra, D.S.; Kondru, N.; Martin, D.P.; Kanthasamy, A.; Jin, H.; Anantharam, V.; Kanthasamy, A.G. Role of proteolytic activation of protein kinase Cd in the pathogenesis of prion disease. Prion 2014, 8, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Chen, Z.; Feng, X.; Zuo, Y.; Zhang, J. Gut microbiota and metabolome in sporadic Creutzfeldt-Jakob disease. J. Neurol. 2023, 270, 6021–6032. [Google Scholar] [CrossRef] [PubMed]
- Jurcau, A.; Andronie-Cioara, F.L.; Nistor-Cseppento, D.C.; Pascalau, N.; Rus, M.; Vasca, E.; Jurcau, M.C. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson’s Disease. Int. J. Mol. Sci. 2023, 24, 14582. [Google Scholar] [CrossRef]
- Hara, H.; Sakaguchi, S. Virus Infection, Genetic Mutations, and Prion Infection in Prion Protein Conversion. Int. J. Mol. Sci. 2021, 22, 12439. [Google Scholar] [CrossRef]
- Leccese, D.; Cornacchini, S.; Nacmias, B.; Sorbi, S.; Bessi, V. Creutzfeldt-Jakob Disease in a Patient with Previous COVID-19 Infection: “The Virus Caused the Derangement in My Brain”. J. Alzheimers Dis. Rep. 2023, 7, 129–134. [Google Scholar] [CrossRef]
- Fevrier, B.; Vilette, D.; Archer, F.; Loew, D.; Faigle, W.; Vidal, M.; Laude, H.; Raposo, G. Cells release prions in association with exosomes. Proc. Natl. Acad. Sci. USA 2004, 101, 9683–9688. [Google Scholar] [CrossRef]
- Aguzzi, A.; Akk, L. Cell biology of prions and prionoids: A status report. Trends Cell Biol. 2016, 26, 40–51. [Google Scholar] [CrossRef]
- Gousset, K.; Schiff, E.; Langevin, C.; Marijanovic, Z.; Caputo, A.; Browman, D.T.; Chenouard, N.; de Chaumont, F.; Martino, A.; Enninga, J.; et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 2009, 11, 328–336. [Google Scholar] [CrossRef]
- Bueler, H.; Aguzzi, A.; Sailer, A.; Greiner, R.A.; Autenried, P.; Aguet, M.; Weissmann, C. Mice devoid of PrP are resistant to scrapie. Cell 1993, 73, 1339–1347. [Google Scholar] [CrossRef]
- Cox, B.; Ness, F.; Tuite, M. Analysis of the generation and segregation of propagons: Entities that propagate the [PSI+] prion in yeast. Genetics 2003, 165, 23–33. [Google Scholar] [PubMed]
- Scheckel, C.; Aguzzi, A. Prions, prionoids and protein misfolding disorders. Nat. Rev. Genet. 2018, 19, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Ntt, L.; Wu, B.; Harris, D.A. Prion neurotoxicity. Brain Pathol. 2019, 29, 263–277. [Google Scholar]
- Kraus, A.; Hoyt, F.; Schwartz, C.L.; Hansen, B.; Artikis, E.; Hughson, A.G.; Raymond, G.J.; Race, B.; Baron, G.S.; Caughey, B. High-resolution structure and strain comparison of infectious mammalian prions. Mol. Cell 2021, 81, 4540–4551. [Google Scholar] [CrossRef] [PubMed]
- Thellung, S.; Corsaro, A.; Dellacasagrande, I.; Nizzari, M.; Zambito, M.; Florio, T. Proteostasis unbalance in prion diseases: Mechanisms of neurodegeneration and therapeutic targets. Front. Neurosci. 2022, 16, 966019. [Google Scholar] [CrossRef]
- Lakkaraju, A.K.K.; Frontzek, K.; Lemes, E.; Herrmann, U.; Losa, M.; Marpakwar, R.; Aguzzi, A. Loss of PIKfyve drives the spongiform degeneration in prion diseases. EMBO Mol. Med. 2021, 13, e14714. [Google Scholar] [CrossRef]
- Ugalde, C.L.; Lewis, V.; Stehmann, C.; McLean, C.A.; Lawson, V.A.; Collins, S.J.; Hill, A.F. Markers of A1 astrocytes stratify to molecular sub-types in sporadic Creutzfeldt-Jakob disease brain. Brain Commun. 2020, 2, fcaa029. [Google Scholar] [CrossRef]
- Andres Benito, P.; Dominguez Gonzalez, M.; Ferrer, I. Altered gene transcription linked to astrocytes and oligodendrocytes in frontal cortex in Creutzfeldt-Jakob disease. Prion 2018, 12, 216–225. [Google Scholar] [CrossRef]
- Martheswaran, T.; Desautels, J.D.; Moshirfar, M.; Shmunes, K.M.; Ronquillo, Y.C.; Hoopes, P.C. A Contemporary Risk Analysis of Iatrogenic Transmission of Creutzfeldt-Jakob Disease (CJD) via Corneal Transplantation in the United States. Ophthalmol. Ther. 2020, 9, 465–483. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Sakai, K.; Kobayashi, A.; Kitamoto, T.; Ae, R.; Nakamura, Y.; Sanjo, N.; Arai, K.; Koide, M.; Katada, F.; et al. Characterization of Sporadic Creutzfeldt-Jakob Disease and History of Neurosurgery to Identify Potential Iatrogenic Cases. Emerg. Infect. Dis. 2020, 26, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Douet, J.Y.; Huor, A.; Cassard, H.; Lugan, S.; Aron, N.; Mesic, C.; Vilette, D.; Barrio, T.; Streichenberger, N.; Perret-Liaudet, A.; et al. Prion strains associated with iatrogenic CJD in French and UK human growth hormone recipients. Acta Neuropathol. Commun. 2021, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Baiardi, S.; Rossi, M.; Mammana, A.; Appleby, B.S.; Barria, M.A.; Calì, I.; Gambetti, P.; Gelpi, E.; Giese, A.; Ghetti, B.; et al. Phenotypic diversity of genetic Creutzfeldt-Jakob disease: A histo-molecular-based classification. Acta Neuropathol. 2021, 142, 707–728. [Google Scholar] [CrossRef] [PubMed]
- Parchi, P.; Zou, W.; Wang, W.; Brown, P.; Capellari, S.; Ghetti, B.; Kopp, N.; Schulz-Schaeffer, W.J.; Kretzschmar, H.A.; Head, M.W.; et al. Genetic influence on the structural variations of the abnormal prion protein. Proc. Natl. Acad. Sci. USA 2000, 97, 10168–10172. [Google Scholar] [CrossRef]
- Iwasaki, Y. The Braak hypothesis in prion disease with a focus on Creutzfeldt-Jakob disease. Neuropathology 2020, 40, 436–449. [Google Scholar] [CrossRef]
- Rossi, M.; Saverioni, D.; Di Barri, M.; Baiardi, S.; Lemstra, A.W.; Pirisinu, L.; Capellari, S.; Rozemuller, A.; Nonno, R.; Parchi, P. Atypical Creutzfeldt-Jakob disease with atypical PrP-amyloid plaques in white matter: Molecular characterization and transmission to bank voles show the m1 strain signature. Acta Neuropathol. Commun. 2017, 5, 87. [Google Scholar] [CrossRef]
- Zerr, I.; Parchi, P. Sporadic Creutzfeldt-Jakob disease. In Handbook of Clinical Neurology. Human Prion Diseases; 3rd series; Pocchiari, M., Manson, J., Eds.; Elsevier: Oxford, UK, 2018; Volume 153, pp. 155–174. [Google Scholar]
- Cali, I.; Puoti, G.; Smucny, J.; Curtiss, P.M.; Cracco, L.; Kitamoto, T.; Occhipinti, R.; Cohen, M.L.; Appleby, B.S.; Gambetti, P. Co-existence of PrPD types 1 and 2 in sporadic Creutzfeldt-Jakob disease of the VV subgroup: Phenotypic and prion protein characteristics. Sci. Rep. 2020, 10, 1503. [Google Scholar] [CrossRef]
- Franceschini, A.; Strammiello, R.; Capellari, S.; Giese, A.; Parchi, P. Regional pattern of microgliosis in sporadic Creutzfeldt-Jakob disease in relation to phenotypic variants and disease progression. Neuropathol. Appl. Neurobiol. 2018, 44, 574–589. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, D.; Shah, S.Z.A.; Yang, W.; Li, C.; Yang, L. Proteome Analysis of Potential Synaptic Vesicle Cycle Biomarkers in the Cerebrospinal Fluid of Patients with Sporadic Creutzfeldt-Jakob Disease. Mol. Neurobiol. 2017, 54, 5177–5191. [Google Scholar] [CrossRef]
- Bentivenga, G.M.; Baiardi, S.; Mastrangelo, A.; Zenesini, C.; Mammana, A.; Polischi, B.; Capellari, S.; Parchi, P. Diagnostic and prognostic value of cerebrospinal fluid SNAP-25 and neurogranin in Creutzfeldt-Jakob disease in a clinical setting cohort of rapidly progressive dementias. Alzheimers. Res. Ther. 2023, 15, 150. [Google Scholar] [CrossRef]
- Jankovska, N.; Olejar, T.; Matej, R. Extracellular Amyloid Deposits in Alzheimer’s and Creutzfeldt–Jakob Disease: Similar Behavior of Different Proteins? Int. J. Mol. Sci. 2021, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Liberski, P.P. Amyloid plaques in transmissible spongiform encephalopathies (prion diseases). Folia Neuropathol. 2004, 42, 109–119. [Google Scholar] [PubMed]
- Kovacs, G.G.; Rahimi, J.; Ströbel, T.; Lutz, M.I.; Regelsberger, G.; Streichenberger, N.; Perret-Liaudet, A.; Höftberger, R.; Liberski, P.P.; Budka, H.; et al. Tau pathology in Creutzfeldt-Jakob disease revisited. Brain Pathol. 2017, 27, 332–344. [Google Scholar] [CrossRef]
- Lattanzio, F.; Abu-Rumeileh, S.; Franceschini, A.; Kai, H.; Amore, G.; Poggiolini, I.; Rossi, M.; Baiardi, S.; McGuire, L.; Ladogana, A.; et al. Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease: Diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels. Acta Neuropathol. 2017, 133, 559–578. [Google Scholar] [CrossRef] [PubMed]
- Tahir, W.; Thapa, S.; Schatzl, H.M. Astrocyte in prion disease: A double-edged sword. Neural Regen. Res. 2022, 17, 1659–1665. [Google Scholar]
- Makarava, N.; Chang, J.C.; Kushwaha, R.; Baskakov, I.V. Region-specific response of astrocytes to prion infection. Front. Neurosci. 2019, 13, 1048. [Google Scholar] [CrossRef]
- Bradford, B.M.; Wijaya, C.A.W.; Mabbott, N.A. Discrimination of prion strain targeting in the central nervous system via reactive astrocyte heterogeneity in CD44 expression. Front. Cell. Neurosci. 2019, 13, 411. [Google Scholar] [CrossRef]
- Makarava, N.; Chang, J.C.; Molesworth, K.; Baskakov, I.V. Region-specific glial homeostatic signature in prion diseases is replaced by a uniform neuroinflammation signature, common for brain regions and prion strains with different cell tropism. Neurobiol. Dis. 2020, 137, 104783. [Google Scholar] [CrossRef]
- Guijarro, I.M.; Garcés, M.; Andrés-Benito, P.; Marín, B.; Otero, A.; Barrio, T.; Carmona, M.; Ferrer, I.; Badiola, J.J.; Monzón, M. Assessment of glial activation response in the progress of natural scrapie after chronic dexamethasone treatment. Int. J. Mol. Sci. 2020, 21, 3231. [Google Scholar] [CrossRef]
- Smith, H.L.; Freeman, O.J.; Butcher, A.J.; Holmqvist, S.; Humoud, I.; Schätzl, T.; Hughes, D.T.; Verity, N.C.; Swinden, D.P.; Hayes, J.; et al. Astrocyte unfolded protein response induces a specific reactivity state that causes non-cell-autonomous neuronal degeneration. Neuron 2020, 105, 855–866. [Google Scholar] [CrossRef]
- Garcés, M.; Guijarro, M.I.; Vargas, A.; Badiola, J.J.; Monzón, M. Neuroglial patterns are shared by cerebella from prion and prion-like disorder affected patients. Mech. Ageing Dev. 2019, 184, 111176. [Google Scholar] [CrossRef] [PubMed]
- Yong, C.S.K.; Maniam, E.J.; Chang, C.W.L.; Lai, J.Y.; Ho, C.S.H. Case report: Creutzfeldt-Jakob disease presenting with anxiety symptoms in a COVID-19 post-infection patient. Front. Neurol. 2023, 14, 1239576. [Google Scholar] [CrossRef] [PubMed]
- El Sammak, S.; Attarian, H.; Taype-Roberts, C.; Standlee, J. REM sleep behavior disorder as a remote precedent to Creutzfeldt-Jakob disease. Neurol. Sci. 2022, 43, 5647–5649. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Zhang, L.Y.; Zhang, S.F.; Zhang, M.Y.; Zhu, M.; Dong, Q.; Wang, Q.S.; Han, X. Clinical and prognostic features of Heidenhain variant of Creutzfeldt-Jakob disease: A retrospective case series study. Eur. J. Neurol. 2022, 29, 2412–2419. [Google Scholar] [CrossRef]
- Pandey, S.; Garg, R.K.; Holla, V.V.; Kumar, N. A Case of Subacute Progressive Cerebellar Ataxia: Brownell-Oppenheimer Variant of Sporadic Creutzfeldt-Jakob Disease. Neurol. India 2021, 69, 217–218. [Google Scholar] [CrossRef]
- Tang, S.; Dou, X.; Zhang, Y. 18F-FP-CIT PET/CT in a case of probable sporadic Creutzfeldt-Jakob disease with parkinsonism as initial symptom. Prion 2022, 16, 91–94. [Google Scholar] [CrossRef]
- Bae, M.J.; Kang, I.H.; Hur, Y.R.; Hwang, K.H. Sporadic Creutzfeldt-Jakob Syndrome Misdiagnosed as Recurrent Stroke: A Case Report. Ann. Geriatr. Med. Res. 2021, 25, 133–136. [Google Scholar] [CrossRef]
- Cunha, I.A.; Gomes, I.; Gens, H.; Guimarães, S.; Martins, A.I.; Bento, C. Sporadic Creutzfeldt-Jakob disease presenting as epilepsia partialis continua and non-ictal nystagmus. Eur. J. Neurol. 2021, 28, 2456–2459. [Google Scholar] [CrossRef]
- Murphy, C.; Kang, C.D.; Hanif, B. Rapid cognitive decline and myoclonus in a 52-year-old woman. Cleve. Clin. J. Med. 2021, 88, 572–583. [Google Scholar]
- Tejedor-Romero, L.; López-Cuadrado, T.; Almazán-Isla, J.; Calero, M.; García López, F.J.; de Pedro-Cuesta, J. Survival Patterns of Human Prion Diseases in Spain, 1998-2018: Clinical Phenotypes and Etiological Clues. Front. Neurosci. 2022, 15, 773727. [Google Scholar] [CrossRef]
- Parchi, P.; Strammiello, R.; Notari, S.; Giese, A.; Langeveld, J.P.; Ladogana, A.; Zerr, I.; Roncaroli, F.; Cras, P.; Ghetti, B.; et al. Incidence and spectrum of sporadic Creutzfeldt-Jakob disease variants with mixed phenotype and co-occurrence of PrPSc types: An updated classification. Acta Neuropathol. 2009, 118, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Senesi, M.; Lewis, V.; Varghese, S.; Stehmann, C.; McGlade, A.; Doecke, J.D.; Ellett, L.; Sarros, S.; Fowler, C.J.; Masters, C.L.; et al. Diagnostic performance of CSF biomarkers in a well-characterized Australian cohort of sporadic Creutzfeldt-Jakob disease. Front. Neurol. 2023, 14, 1072952. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Bennett, D.A., Jr.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.X.; Varghese, S.; Sarros, S.; Stehmann, C.; Doecke, J.D.; Fowler, C.J.; Masters, C.L.; Collins, S.J. CSF Tau supplements 14-3-3 protein detection for sporadic Creutzfeldt-Jakob disease diagnosis while transitioning to next generation diagnostics. J. Clin. Neurosci. 2018, 50, 292–293. [Google Scholar] [CrossRef] [PubMed]
- Hermann, P.; Haller, P.; Goebel, S.; Bunck, T.; Schmidt, C.; Wiltfang, J.; Zerr, I. Total and Phosphorylated Cerebrospinal Fluid Tau in the Differential Diagnosis of Sporadic Creutzfeldt-Jakob Disease and Rapidly Progressive Alzheimer’s Disease. Viruses 2022, 14, 276. [Google Scholar] [CrossRef]
- Llorens, F.; Karch, A.; Golanska, E.; Schmitz, M.; Lange, P.; Sikorska, B.; Liberski, P.P.; Zerr, I. Cerebrospinal Fluid Biomarker-Based Diagnosis of Sporadic Creutzfeldt-Jakob Disease: A Validation Study for Previously Established Cutoffs. Dement. Geriatr. Cogn. Disord. 2017, 43, 71–80. [Google Scholar] [CrossRef]
- Gmitterová, K.; Heinemann, U.; Krasnianski, A.; Gawinecka, J.; Zerr, I. Cerebrospinal Fluid Markers in the Differentiation of Molecular Subtypes of Sporadic Creutzfeldt-Jakob Disease. Eur. J. Neurol. 2016, 23, 1126–1133. [Google Scholar] [CrossRef]
- Llorens, F.; Rübsamen, N.; Hermann, P.; Schmitz, M.; Villar-Piqué, A.; Goebel, S.; Karch, A.; Zerr, I. A Prognostic Model for Overall Survival in Sporadic Creutzfeldt-Jakob Disease. Alzheimer’s Dement. 2020, 16, 1438–1447. [Google Scholar] [CrossRef]
- Schmitz, M.; Villar-Piqué, A.; Llorens, F.; Gmitterová, K.; Hermann, P.; Varges, D.; Zafar, S.; Lingor, P.; Vanderstichele, H.; Demeyer, L.; et al. Cerebrospinal Fluid Total and Phosphorylated α-Synuclein in Patients with Creutzfeldt–Jakob Disease and Synucleinopathy. Mol. Neurobiol. 2018, 56, 3476–3483. [Google Scholar] [CrossRef]
- Llorens, F.; Villar-Piqué, A.; Hermann, P.; Schmitz, M.; Calero, O.; Stehmann, C.; Sarros, S.; Moda, F.; Ferrer, I.; Poleggi, A.; et al. Diagnostic Accuracy of Prion Disease Biomarkers in Iatrogenic Creutzfeldt-Jakob Disease. Biomolecules 2020, 10, 290. [Google Scholar] [CrossRef]
- Kanata, E.; Golanska, E.; Villar-Piqué, A.; Karsanidou, A.; Dafou, D.; Xanthopoulos, K.; Schmitz, M.; Ferrer, I.; Karch, A.; Sikorska, B.; et al. Cerebrospinal fluid neurofilament light in suspected sporadic Creutzfeldt-Jakob disease. J. Clin. Neurosci. 2019, 60, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Zerr, I.; Schmitz, M.; Karch, A.; Villar-Piqué, A.; Kanata, E.; Golanska, E.; Díaz-Lucena, D.; Karsanidou, A.; Hermann, P.; Knipper, T.; et al. Cerebrospinal fluid neurofilament light levels in neurodegenerative dementia: Evaluation of diagnostic accuracy in the differential diagnosis of prion diseases. Alzheimer’s Dement. 2018, 14, 751–763. [Google Scholar] [CrossRef] [PubMed]
- Llorens, F.; Thüne, K.; Tahir, W.; Kanata, E.; Diaz-Lucena, D.; Xanthopoulos, K.; Kovatsi, E.; Pleschka, C.; Garcia-Esparcia, P.; Schmitz, M.; et al. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol. Neurodegener. 2017, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Altuna, M.; Ruiz, I.; Zelaya, M.V.; Mendioroz, M. Role of Biomarkers for the Diagnosis of Prion Diseases: A Narrative Review. Medicina 2022, 58, 473. [Google Scholar] [CrossRef]
- Mok, T.H.; Mead, S. Preclinical Biomarkers of Prion Infection and Neurodegeneration. Curr. Opin. Neurobiol. 2020, 61, 82–88. [Google Scholar] [CrossRef]
- Blennow, K.; Diaz-Lucena, D.; Zetterberg, H.; Villar-Pique, A.; Karch, A.; Vidal, E.; Hermann, P.; Schmitz, M.; Ferrer Abizanda, I.; Zerr, I.; et al. CSF Neurogranin as a Neuronal Damage Marker in CJD: A Comparative Study with AD. J. Neurol. Neurosurg. Psychiatry 2019, 90, 846–853. [Google Scholar] [CrossRef]
- Abu-Rumeileh, S.; Oeckl, P.; Baiardi, S.; Halbgebauer, S.; Steinacker, P.; Capellari, S.; Otto, M.; Parchi, P. CSF Ubiquitin Levels Are Higher in Alzheimer’s Disease than in Frontotemporal Dementia and Reflect the Molecular Subtype in Prion Disease. Biomolecules 2020, 10, 497. [Google Scholar] [CrossRef]
- Chen, C.; Hu, C.; Zhou, W.; Chen, J.; Shi, Q.; Xiao, K.; Wang, Y.; Dong, X.-P. Calmodulin Level Is Significantly Increased in the Cerebrospinal Fluid of Patients with Sporadic Creutzfeldt-Jakob Disease. Eur. J. Neurol. 2021, 28, 1134–1141. [Google Scholar] [CrossRef]
- Zerr, I.; Villar-Piqué, A.; Schmitz, V.E.; Poleggi, A.; Pocchiari, M.; Sánchez-Valle, R.; Calero, M.; Calero, O.; Baldeiras, I.; Santana, I.; et al. Evaluation of Human Cerebrospinal Fluid Malate Dehydrogenase 1 as a Marker in Genetic Prion Disease Patients. Biomolecules 2019, 9, 800. [Google Scholar] [CrossRef]
- Abu-Rumeileh, S.; Baiardi, S.; Ladogana, A.; Zenesini, C.; Bartoletti-Stella, A.; Poleggi, A.; Mammana, A.; Polischi, B.; Pocchiari, M.; Capellari, S.; et al. Comparison between plasma and cerebrospinal fluid biomarkers for the early diagnosis and association with survival in prion disease. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1181–1188. [Google Scholar] [CrossRef]
- Norsworthy, P.J.; Thompson, A.G.B.; Mok, T.H.; Guntoro, F.; Dabin, L.C.; Nihat, A.; Paterson, R.W.; Schott, J.M.; Collinge, J.; Mead, S.; et al. A Blood MiRNA Signature Associates with Sporadic Creutzfeldt-Jakob Disease Diagnosis. Nat. Commun. 2020, 11, 3960. [Google Scholar] [CrossRef] [PubMed]
- Saborio, G.P.; Permanne, B.; Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 2001, 411, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Ascari, L.M.; Rocha, S.C.; Gonçalves, P.B.; Vieira, T.C.R.G.; Cordeiro, Y. Challenges and advances in antemortem diagnosis of human transmissible spongiform encephalopathies. Front. Bioeng. Biotechnol. 2020, 8, 585896. [Google Scholar] [CrossRef] [PubMed]
- Atarashi, R.; Wilham, J.M.; Christensen, L.; Hughson, A.G.; Moore, R.A.; Johnson, L.M.; Onwubiko, H.A.; Priola, S.A.; Caughey, B. Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat. Methods 2008, 5, 211–212. [Google Scholar] [CrossRef]
- Wilham, J.M.; Orrú, C.D.; Bessen, R.A.; Atarashi, R.; Sano, K.; Race, B.; Meade-White, K.D.; Taubner, L.M.; Timmes, A.; Caughey, B. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. 2010, 6, e1001217. [Google Scholar] [CrossRef]
- Figgie, M.P.J.; Appleby, B.S. Clinical Use of Improved Diagnostic Testing for Detection of Prion Disease. Viruses 2021, 13, 789. [Google Scholar] [CrossRef]
- Behaeghe, O.; Mangelschots, E.; De Vil, B.; Cras, P. A Systematic Review Comparing the Diagnostic Value of 14-3-3 Protein in the Cerebrospinal Fluid, RT-QuIC and RT-QuIC on Nasal Brushing in Sporadic Creutzfeldt-Jakob Disease. Acta Neurol. Belg. 2018, 118, 395–403. [Google Scholar] [CrossRef]
- Tschampa, H.J.; Kallenberg, K.; Urbach, H.; Meissner, B.; Nicolay, C.; Kretzschmar, H.A.; Knauth, M.; Zerr, I. MRI in the diagnosis of sporadic Creutzfeldt-Jakob disease: A study on inter-observer agreement. Brain 2005, 128, 2026–2033. [Google Scholar] [CrossRef]
- Zerr, I.; Kallenberg, K.; Summers, D.M.; Romero, C.; Taratuto, A.; Heinemann, U.; Breithaupt, M.; Varges, D.; Meissner, B.; Ladogana, A.; et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain 2009, 132, 2659–2668. [Google Scholar] [CrossRef]
- Bizzi, A.; Pascuzzo, R.; Blevins, J.; Grisoli, M.; Lodi, R.; Moscatelli, M.E.M.; Castelli, G.; Cohen, M.L.; Schonberger, L.B.; Foutz, A.; et al. Evaluation of a New Criterion for Detecting Prion Disease with Diffusion Magnetic Resonance Imaging. JAMA Neurol. 2020, 77, 1141–1149. [Google Scholar] [CrossRef]
- Fragoso, D.C.; Gonçalves Filho, A.L.; Pacheco, F.T.; Barros, B.R.; Aguiar Littig, I.; Nunes, R.H.; Maia Júnior, A.C.; da Rocha, A.J. Imaging of Creutzfeldt-Jakob Disease: Imaging Patterns and Their Differential Diagnosis. Radiographics 2017, 37, 234–257. [Google Scholar] [CrossRef] [PubMed]
- Sacco, S.; Paoletti, M.; Staffaroni, A.M.; Kang, H.; Rojas, J.; Marx, G.; Goh, S.Y.; Luisa Mandelli, M.; Allen, I.E.; Kramer, J.H.; et al. Multimodal MRI staging for tracking progression and clinical-imaging correlation in sporadic Creutzfeldt-Jakob disease. Neuroimage Clin. 2021, 30, 102523. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, F.; Petrovic, A.; Bell, D. T2 Shine Through. Reference Article, Radiopaedia.org. Available online: https://radiopaedia.org/articles/t2-shine-through?lang=us (accessed on 18 April 2024).
- Manara, R.; Fragiacomo, F.; Ladogana, A.; Vaianella, L.; Camporese, G.; Zorzi, G.; Vicinanza, S.; Zanusso, G.; Pocchiari, M.; Cagnin, A. MRI abnormalities in Creutzfeldt-Jakob disease and other rapidly progressive dementia. J. Neurol. 2024, 271, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Eisenmenger, L.; Porter, M.C.; Carswell, C.J.; Thompson, A.; Mead, S.; Rudge, P.; Collinge, J.; Brandner, S.; Jäger, H.R.; Hyare, H. Evolution of diffusion-weighted magnetic resonance imaging signal abnormality in sporadic Creutzfeldt-Jakob disease, with histopathological correlation. JAMA Neurol. 2016, 73, 7. [Google Scholar] [CrossRef]
- Rudge, P.; Hyare, H.; Green, A.; Collinge, J.; Mead, S. Imaging and CSF analyses effectively distinguish CJD from its mimics. J. Neurol. Neurosurg. Psychiatry 2018, 89, 461–466. [Google Scholar] [CrossRef]
- Ayyappan, S.; Seneviratne, U. Electroencephalographic changes in sporadic Creutzfeldt-Jakob disease and correlation with clinical stages: A retrospective analysis. J. Clin. Neurophysiol. 2014, 31, 586–593. [Google Scholar] [CrossRef]
- Hermann, P.; Laux, M.; Glatzel, M.; Matschke, J.; Knipper, T.; Goebel, S.; Treig, J.; Schulz-Schaefer, W.; Cramm, M.; Schmitz, M.; et al. Validation and utilization of amended diagnostic criteria in Creutzfeldt-Jakob disease surveillance. Neurology 2018, 91, e331–e338. [Google Scholar] [CrossRef]
- Bhatia, P.; Sonbol, M.; Jain, D.; Rincon-Flores, N.; Frontera, A. Status Epilepticus in Creutzfeldt-Jakob Disease: A Case Report of an Unusual Presentation. Cureus 2022, 14, e26470. [Google Scholar] [CrossRef]
- Fanella, M.; Valente, G.; Borrello, L.; Marinelli, F.; Bracaglia, M.; Di Marco, O.; Costanzo, F.; Apponi, F.; De Simone, R. Non-convulsive status epilepticus versus periodic EEG pattern in sporadic Creutzfeldt-Jakob disease: Two sides of the same coin? Int. J. Neurosci. 2023, 19, 1–5. [Google Scholar] [CrossRef]
- Mattoli, M.V.; Giancipoli, R.G.; Cocciolillo, F.; Calcagni, M.L.; Taralli, S. The Role of PET Imaging in Patients with Prion Disease: A Literature Review. Mol. Imaging Biol. 2024, 26, 195–212. [Google Scholar] [CrossRef]
- Chen, Z.; Kong, Y.; Zhang, J.; Chu, M.; Liu, L.; Xie, K.; Cui, Y.; Ye, H.; Li, J.; Wang, L.; et al. Toward an early clinical diagnosis of MM2-type sporadic Creutzfeldt-Jakob disease. Ann. Clin. Transl. Neurol. 2023, 10, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Global Surveillance, Diagnosis and Therapy of Human Transmissible Spongiform Encephalopathies: Report of a WHO Consultation, Geneva, Switzerland, 9–11 February 1998. Available online: https://iris.who.int/handle/10665/65516 (accessed on 24 April 2024).
- Creutzfeldt-Jakob Disease International Surveillance Network. Diagnostic Criteria for Surveillance of CJD from 1 January 2017. Updated 2021. Available online: https://www.eurocjd.ed.ac.uk/node/833 (accessed on 25 April 2024).
- Green, A.J.E. RT-QuIC: A new test for sporadic CJD. Pract. Neurol. 2019, 19, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Hermann, P.; Appleby, B.; Brandel, J.P.; Caughey, B.; Collins, S.; Geschwind, M.D.; Green, A.; Haïk, S.; Kovacs, G.G.; Ladogana, A.; et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol. 2021, 20, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, M.D.; Murray, K. Differential diagnosis with other rapid progressive dementias in human prion diseases. In Handbook of Clinical Neurology; 3rd series; Pocchiari, M., Manson, J., Eds.; Elsevier: Oxford, UK, 2018; Volume 153, pp. 371–397. [Google Scholar]
- Jurcau, A.; Nunkoo, V.S. Tau-targeted therapy in Alzheimer’s disease: History and current state. In Frontiers in Clinical Drug Research; Ibarra Arias, J.J.J., Ed.; Bentham Science Publishers: Singapore, 2021; Volume 2, pp. 56–138. [Google Scholar]
- Jurcau, A.; Simion, A.; Jurcau, M.C. Emerging antibody-based therapies for Huntington’s disease: Current status and perspectives for future development. Expert Rev. Neurother. 2024, 24, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, G.; Farmer, S.F.; Hyare, H.; Jaunmuktane, Z.; Mead, S.; Ryan, N.S.; Schott, J.M.; Werring, D.J.; Rudge, P.; Collinge, J. Iatrogenic Alzheimer’s disease in recipients of cadaveric pituitary-derived growth hormone. Nat. Med. 2024, 30, 394–402. [Google Scholar] [CrossRef]
- Marra, C.M. Syphilis screening in neurology. JAMA Neurol. 2016, 21, 1714–1728. [Google Scholar] [CrossRef]
- Lin, C.R.; Kuo, S.H. Ataxias: Hereditary, Acquired, and Reversible Etiologies. Semin. Neurol. 2023, 43, 48–64. [Google Scholar] [CrossRef]
- Verity, M.A. Comparative observations in inorganic and organic lead neurotoxicity. Environ. Health Perspect. 1990, 89, 43–48. [Google Scholar] [CrossRef]
- Scalzo, S.J.; Bowden, S.C.; Ambrose, M.L.; Whelan, G.; Cook, M.J. Wernicke-Korsakoff syndrome not related to alcohol use: A systematic review. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1362–1368. [Google Scholar] [CrossRef]
- Rosenbloom, M.H.; Tartaglia, M.C.; Forner, S.A.; Wong, K.K.; Kuo, A.; Johnson, D.Y.; Colacurcio, V.; Andrews, B.D.; Miller, B.L.; DeArmond, S.J.; et al. Metabolic disorders with clinical and radiologic features of sporadic Creutzfeldt-Jakob disease. Neurol. Clin. Pract. 2015, 5, 108–115. [Google Scholar] [CrossRef]
- Kimura, M.; Kimura, H.; Ishikawa, H.; Matsuo, H.; Takada, M.; Matsuo, K. Hepatic Encephalopathy Mimicking Creutzfeldt-Jakob Disease on Laboratory, Physiological, and Imaging Evaluations. Am. J. Case Rep. 2021, 22, e932958. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Eesa, M.; Scott, N.S. Toxic and acquired metabolic encephalopathies: MRI appearance. AJR Am. J. Roentgenol. 2009, 193, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Farrall, A.L.; Smith, J.R. Changing Incidence and Survival of Primary Central Nervous System Lymphoma in Australia: A 33-Year National Population-Based Study. Cancers 2021, 13, 403. [Google Scholar] [CrossRef] [PubMed]
- Mead, S.; Rudge, P. CJD mimics and chameleons. Pract. Neurol. 2017, 17, 113–121. [Google Scholar] [CrossRef]
- Bentivenga, G.M.; Baiardi, S.; Righini, L.; Ladogana, A.; Capellari, S.; Sabattini, E.; Parchi, P. Rapidly progressive dementia due to intravascular lymphoma: A prion disease reference center experience. Eur. J. Neurol. 2024, 31, e16068. [Google Scholar] [CrossRef]
- Hermetter, C.; Fazekas, F.; Hochmeister, S. Systematic Review: Syndromes, Early Diagnosis, and Treatment in Autoimmune Encephalitis. Front. Neurol. 2018, 9, 706. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, S.T. The Laboratory Diagnosis of Autoimmune Encephalitis. J. Epilepsy Res. 2016, 6, 45–50. [Google Scholar] [CrossRef]
- Banks, S.A.; Sechi, E.; Flanagan, E.P. Autoimmune encephalopathies presenting as dementia of subacute onset and rapid progression. Ther. Adv. Neurol. Disord. 2021, 14, 1756286421998906. [Google Scholar] [CrossRef]
- Laurido-Soto, O.; Brier, M.R.; Simon, L.E.; McCullough, A.; Bucelli, R.C.; Day, G.S. Patient characteristics and outcome associations in AMPA receptor encephalitis. J. Neurol. 2019, 266, 450–460. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Zhou, P.; Meng, Q. Analysis of characteristics of movement disorders in patients with anti-N-methyl-D-aspartate receptor encephalitis. Front. Neurol. 2024, 15, 1357697. [Google Scholar] [CrossRef]
- Hara, M.; Ariño, H.; Petit-Pedrol, M.; Sabater, L.; Titulaer, M.J.; Martinez-Hernandez, E.; Schreurs, M.W.; Rosenfeld, M.R.; Graus, F.; Dalmau, J. DPPX antibody-associated encephalitis: Main syndrome and antibody effects. Neurology 2017, 88, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Maureille, A.; Fenouil, T.; Joubert, B.; Picard, G.; Rogemond, V.; Pinto, A.L.; Thomas, L.; Ducray, F.; Quadrio, I.; Psimaras, D.; et al. Isolated seizures are a common early feature of paraneoplastic anti-GABAB receptor encephalitis. J. Neurol. 2019, 266, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Spatola, M.; Petit-Pedrol, M.; Simabukuro, M.M.; Armangue, T.; Castro, F.J.; Barcelo Artigues, M.I.; Julià Benique, M.R.; Benson, L.; Gorman, M.; Felipe, A.; et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017, 88, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.M.; Dubey, D.; Liebo, G.B.; Flanagan, E.P.; Britton, J.W. Clinical Course and Features of Seizures Associated with LGI1-Antibody Encephalitis. Neurology 2021, 97, e1141–e1149. [Google Scholar] [CrossRef]
- Boyko, M.; Au, K.L.K.; Casault, C.; de Robles, P.; Pfeffer, G. Systematic review of the clinical spectrum of CASPR2 antibody syndrome. J. Neurol. 2020, 267, 1137–1146. [Google Scholar] [CrossRef]
- Gaig, C.; Graus, F.; Compta, Y.; Högl, B.; Bataller, L.; Brüggemann, N.; Giordana, C.; Heidbreder, A.; Kotschet, K.; Lewerenz, J.; et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 2017, 88, 1736–1743. [Google Scholar] [CrossRef]
- Christ, M.; Müller, T.; Bien, C.; Hagen, T.; Naumann, M.; Bayas, A. Autoimmune encephalitis associated with antibodies against the metabotropic glutamate receptor type 1: Case report and review of the literature. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419847418. [Google Scholar] [CrossRef]
- Spatola, M.; Sabater, L.; Planagumà, J.; Martínez-Hernandez, E.; Armangué, T.; Prüss, H.; Iizuka, T.; Caparó Oblitas, R.L.; Antoine, J.C.; Li, R.; et al. Encephalitis with mGluR5 antibodies: Symptoms and antibody effects. Neurology 2018, 90, e1964–e1972. [Google Scholar] [CrossRef]
- Swayne, A.; Tjoa, L.; Broadley, S.; Dionisio, S.; Gillis, D.; Jacobson, L.; Woodhall, M.R.; McNabb, A.; Schweitzer, D.; Tsang, B.; et al. Antiglycine receptor antibody related disease: A case series and literature review. Eur. J. Neurol. 2018, 25, 1290–1298. [Google Scholar] [CrossRef]
- Hansen, N.; Lange, C.; Maass, F.; Hassoun, L.; Bouter, C.; Stöcker, W.; Schott, B.H.; Wiltfang, J.; Fitzner, D. Mild Amnestic Cognitive Impairment and Depressive Symptoms in Autoimmune Encephalitis Associated with Serum Anti-Neurexin-3α Autoantibodies. Brain Sci. 2021, 11, 673. [Google Scholar] [CrossRef]
- Li, E.C.; Lai, Q.L.; Cai, M.T.; Fang, G.L.; Shen, C.H.; Ding, M.P.; Zhang, Y.X. Anti-adenylate kinase 5 encephalitis: Clinical characteristics, diagnosis, and management of this rare entity. J. Transl. Autoimmun. 2023, 7, 100218. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Qin, X.; Huang, D.; Zhou, Z.; Zhang, Y.; Wang, Q. Anti-amphiphysin encephalitis: Expanding the clinical spectrum. Front. Immunol. 2023, 14, 1084883. [Google Scholar] [CrossRef]
- Qi, J.; Maheshwari, M. ANNA-1-associated paraneoplastic limbic encephalitis in a patient with pelvic ganglioneuroblastoma. Semin. Roentgenol. 2023, 58, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Gilligan, M.; McGuigan, C.; McKeon, A. Paraneoplastic Neurologic Disorders. Curr. Neurol. Neurosci. Rep. 2023, 23, 67–82. [Google Scholar] [CrossRef]
- Tsiortou, P.; Alexopoulos, H.; Dalakas, M.C. GAD antibody-spectrum disorders: Progress in clinical phenotypes, immunopathogenesis and therapeutic interventions. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211003486. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.; Takekoshi, A.; Yoshikura, N.; Hayashi, Y.; Shimohata, T. Clinical characteristics of autoimmune GFAP astrocytopathy. J. Neuroimmunol. 2019, 332, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Jarius, S.; Bräuninger, S.; Chung, H.Y.; Geis, C.; Haas, J.; Komorowski, L.; Wildemann, B.; Roth, C. Inositol 1,4,5-trisphosphate receptor type 1 autoantibody (ITPR1-IgG/anti-Sj)-associated autoimmune cerebellar ataxia, encephalitis and peripheral neuropathy: Review of the literature. J. Neuroinflamm. 2022, 19, 196. [Google Scholar] [CrossRef]
- Bien, C.G. Diagnosing autoimmune encephalitis based on clinical features and autoantibody findings. Expert Rev. Clin. Immunol. 2019, 15, 511–527. [Google Scholar] [CrossRef]
- Wang, S.; Hou, H.; Tang, Y.; Zhang, S.; Wang, G.; Guo, Z.; Zhu, L.; Wu, J. An overview on CV2/CRMP5 antibody-associated paraneoplastic neurological syndromes. Neural Regen. Res. 2023, 18, 2357–2364. [Google Scholar] [CrossRef]
- Hegde, A.N.; Mohan, S.; Lath, N.; Lim, C.C. Differential diagnosis for bilateral abnormalities of the basal ganglia and thalamus. RadioGraphics 2011, 31, 5–30. [Google Scholar] [CrossRef]
- Dalmau, J.; Rosenfeld, M.R. Autoimmune encephalitis update. Neuro-Oncology 2014, 16, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Bulakbasi, N.; Kocaoglu, M. Central nervous system infections of herpesvirus family. Neuroimaging Clin. N. Am. 2008, 18, 53–84. [Google Scholar] [CrossRef] [PubMed]
- Cianfoni, A.; Caulo, M.; Cerase, A.; Della Marca, G.; Falcone, C.; Di Lella, G.M.; Gaudino, S.; Edwards, J.; Colosimo, C. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities. Eur. J. Radiol. 2013, 82, 1964–1972. [Google Scholar] [CrossRef] [PubMed]
- U-King-Im, J.M.; Yu, E.; Bartlett, E.; Soobrah, R.; Kucharczyk, W. Acute hyperammonemic encephalopathy in adults: Imaging findings. Am. J. Neuroradiol. 2011, 32, 413–418. [Google Scholar] [CrossRef]
- Appenzeller, S.; Schirmacher, A.; Halfter, H.; Bäumer, S.; Pendziviat, M.; Timmerman, V.; De Jonghe, P.; Fekete, K.; Stögbauer, F.; Lüdemann, P.; et al. Autosomal dominant striatal degeneration is caused by a mutation in the phosphodiesterase 8B gene. Am. J. Hum. Genet. 2010, 86, 83–87. [Google Scholar] [CrossRef]
- Collie, D.A.; Summers, D.M.; Sellar, R.J.; Ironside, J.W.; Cooper, S.; Zeidler, M.; Knight, R.; Will, R.G. Diagnosing variant Creutzfeldt-Jakob disease with the pulvinar sign: MR imaging findings in 86 neuropathologically confirmed cases. Am. J. Neuroradiol. 2003, 24, 1560–1569. [Google Scholar]
- Appleby, B.S.; Yobs, D.R. Symptomatic treatment, care, and support of CJD patients. Handb. Clin. Neurol. 2018, 153, 399–408. [Google Scholar]
- Uflacker, A.; Edmondson, M.C.; Onyike, C.U.; Appleby, B.S. Caregiver burden in atypical dementias: Comparing frontotemporal dementia, Creutzfeldt-Jakob disease, and Alzheimer’s disease. Int. Psychogeriatr. 2016, 28, 269–273. [Google Scholar] [CrossRef]
- Otto, M.; Cepek, L.; Ratzka, P.; Doehlinger, S.; Boekhoff, I.; Wiltfang, J.; Irle, E.; Pergande, G.; Ellers-Lenz, B.; Windl, O.; et al. Efficacy of flupirtine on cognitive function in patients with CJD: A double-blind study. Neurology 2004, 62, 714–718. [Google Scholar] [CrossRef]
- Forloni, G.; Roiter, I.; Tagliavini, F. Clinical trials of prion disease therapeutics. Curr. Opin. Pharmacol. 2019, 44, 53–60. [Google Scholar] [CrossRef]
- Collinge, J.; Gorham, M.; Hudson, F.; Kennedy, A.; Keogh, G.; Pal, S.; Rossor, M.; Rudge, P.; Siddique, D.; Spyer, M.; et al. Safety and efficacy of quinacrine in human prion disease (PRION-1 study): A patient-preference trial. Lancet Neurol. 2009, 8, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, M.D.; Kuo, A.L.; Wong, K.S.; Haman, A.; Devereux, G.; Raudabaugh, B.J.; Johnson, D.Y.; Torres-Chae, C.C.; Finley, R.; Garcia, P.; et al. Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology 2013, 81, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Bone, I.; Belton, L.; Walker, A.S.; Darbyshire, J. Intraventricular pentosan polysulphate in human prion diseases: An observational study in the UK. Eur. J. Neurol. 2008, 15, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Yamada, T.; Kusuhara, T.; Furukawa, H.; Takahashi, M.; Yamauchi, A.; Kataoka, Y. Results of quinacrine administration to patients with Creutzfeldt-Jakob disease. Dement. Geriatr. Cogn. Disord. 2004, 17, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, Y.; Doh-Ura, K.; Yamada, T. Continuous intraventricular infusion of pentosan polysulfate: Clinical trial against prion diseases. Neuropathology 2009, 29, 632–636. [Google Scholar] [CrossRef]
- Tagliavini, F.; Forloni, G.; Colombo, L.; Rossi, G.; Girola, L.; Canciani, B.; Angeretti, N.; Giampaolo, L.; Peressini, E.; Awan, T.; et al. Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J. Mol. Biol. 2000, 300, 1309–1322. [Google Scholar] [CrossRef]
- De Luigi, A.; Colombo, L.; Diomede, L.; Capobianco, R.; Mangieri, M.; Miccolo, C.; Limido, L.; Forloni, G.; Tagliavini, F.; Salmona, M. The efficacy of tetracyclines in peripheral and intracerebral prion infection. PLoS ONE 2008, 3, e1888. [Google Scholar] [CrossRef]
- Haïk, S.; Marcon, G.; Mallet, A.; Tettamanti, M.; Welaratne, A.; Giaccone, G.; Azimi, S.; Pietrini, V.; Fabreguettes, J.R.; Imperiale, D.; et al. Doxycycline in Creutzfeldt-Jakob disease: A phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2014, 13, 150–158. [Google Scholar] [CrossRef]
- Varges, D.; Manthey, H.; Heinemann, U.; Ponto, C.; Schmitz, M.; Schulz-Schaeffer, W.J.; Krasnianski, A.; Breithaupt, M.; Fincke, F.; Kramer, K.; et al. Doxycycline in early CJD: A double-blinded randomised phase II and observational study. J. Neurol. Neurosurg. Psychiatry 2017, 88, 119–125. [Google Scholar] [CrossRef]
- Liu, F.; Lü, W.; Liu, L. New implications for prion diseases therapy and prophylaxis. Front. Mol. Neurosci. 2024, 17, 1324702. [Google Scholar] [CrossRef]
- Andronie-Cioara, F.L.; Ardelean, A.I.; Nistor-Cseppento, C.D.; Jurcau, A.; Jurcau, M.C.; Pascalau, N.; Marcu, F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer’s Disease Progression. Int. J. Mol. Sci. 2023, 24, 1869. [Google Scholar] [CrossRef] [PubMed]
- Jurcau, A. Molecular Pathophysiological Mechanisms in Huntington’s Disease. Biomedicines 2022, 10, 1432. [Google Scholar] [CrossRef] [PubMed]
- Bachy, V.; Ballerini, C.; Gourdain, P.; Prignon, A.; Iken, S.; Antoine, N.; Rosset, M.; Carnaud, C. Mouse vaccination with dendritic cells loaded with prion protein peptides overcomes tolerance and delays scrapie. J. Gen. Virol. 2010, 91, 809–820. [Google Scholar] [CrossRef]
- Han, Y.; Li, Y.; Song, J.; Wang, Y.; Shi, Q.; Chen, C.; Zhang, B.; Guo, Y.; Li, C.; Han, J.; et al. Immune responses in wild-type mice against prion proteins induced using a DNA prime-protein boost strategy. Biomed. Environ. Sci. 2011, 24, 523–529. [Google Scholar] [PubMed]
- Nitschke, C.; Flechsig, E.; van den Brandt, J.; Lindner, N.; Lührs, T.; Dittmer, U.; Klein, M.A. Immunisation strategies against prion diseases: Prime-boost immunisation with a PrP DNA vaccine containing foreign helper T-cell epitopes does not prevent mouse scrapie. Vet. Microbiol. 2007, 123, 367–376. [Google Scholar] [CrossRef]
- Taschuk, R.; Scruten, E.; Woodbury, M.; Cashman, N.; Potter, A.; Griebel, P.; Tikoo, S.K.; Napper, S. Induction of PrPSc-specific systemic and mucosal immune responses in white-tailed deer with an oral vaccine for chronic wasting disease. Prion 2017, 11, 368–380. [Google Scholar] [CrossRef]
- Taschuk, R.; Marciniuk, K.; Määttänen, P.; Madampage, C.; Hedlin, P.; Potter, A.; Lee, J.; Cashman, N.R.; Griebel, P.J.; Napper, S. Safety, specificity and immunogenicity of a PrP(Sc)-specific prion vaccine based on the YYR disease specific epitope. Prion 2014, 8, 51–59. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, J. Immunotherapy against Prion Disease. Pathogens 2020, 9, 216. [Google Scholar] [CrossRef]
- Collinge, J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 2016, 539, 217–226. [Google Scholar] [CrossRef]
- Peretz, D.; Williamson, R.A.; Kaneko, K.; Vergara, J.; Leclerc, E.; Schmitt-Ulms, G.; Mehlhorn, I.R.; Legname, G.; Wormald, M.R.; Rudd, P.M.; et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 2001, 412, 739–743. [Google Scholar] [CrossRef]
- Ohsawa, N.; Song, C.H.; Suzuki, A.; Furuoka, H.; Hasebe, R.; Horiuchi, M. Therapeutic effect of peripheral administration of an anti-prion protein antibody on mice infected with prions. Microbiol. Immunol. 2013, 57, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Mead, S.; Khalili-Shirazi, A.; Potter, C.; Mok, T.; Nihat, A.; Hyare, H.; Canning, S.; Schmidt, C.; Campbell, T.; Darwent, L.; et al. Prion protein monoclonal antibody (PRN100) therapy for Creutzfeldt-Jakob disease: Evaluation of a first-in-human treatment programme. Lancet Neurol. 2022, 21, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Terao, I.; Kodama, W. Comparative efficacy, tolerability and acceptability of donanemab, lecanemab, aducanumab and lithium on cognitive function in mild cognitive impairment and Alzheimer’s disease: A systematic review and network meta-analysis. Ageing Res. Rev. 2024, 94, 102203. [Google Scholar] [CrossRef] [PubMed]
- Frontzek, K.; Bardelli, M.; Senatore, A.; Henzi, A.; Reimann, R.R.; Bedir, S.; Marino, M.; Hussain, R.; Jurt, S.; Meisl, G.; et al. A conformational switch controlling the toxicity of the prion protein. Nat. Struct. Mol. Biol. 2022, 29, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Fares, J.; Fares, M.Y.; Fares, Y. Immune checkpoint inhibitors: Advances and impact in neuro-oncology. Surg. Neurol. Int. 2019, 10, 9. [Google Scholar] [CrossRef]
- Obst, J.; Mancuso, R.; Simon, E.; Gomez-Nicola, D. PD-1 deficiency is not sufficient to induce myeloid mobilization to the brain or alter the inflammatory profile during chronic neurodegeneration. Brain Behav. Immun. 2018, 73, 708–716. [Google Scholar] [CrossRef]
- Liu, Y.; Sorce, S.; Nuvolone, M.; Domange, J.; Aguzzi, A. Lymphocyte activation gene 3 (Lag3) expression is increased in prion infections but does not modify disease progression. Sci. Rep. 2018, 8, 14600. [Google Scholar] [CrossRef]
- Li, B.; Chen, M.; Zhu, C. Neuroinflammation in Prion Disease. Int. J. Mol. Sci. 2021, 22, 2196. [Google Scholar] [CrossRef]
- Jurcau, A.; Jurcau, M.C. Therapeutic Strategies in Huntington’s Disease: From genetic Defect to Gene Therapy. Biomedicines 2022, 10, 1895. [Google Scholar] [CrossRef]
- Minikel, E.V.; Zhao, H.T.; Le, J.; O’Moore, J.; Pitstick, R.; Graffam, S.; Carlson, G.A.; Kavanaugh, M.P.; Kriz, J.; Kim, J.B.; et al. Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Res. 2020, 48, 10615–10631. [Google Scholar] [CrossRef]
- Aguzzi, A.; Frontzek, K. New paradigms of clinical trial design for genetic prion diseases. Lancet Neurol. 2020, 19, 284–285. [Google Scholar] [CrossRef] [PubMed]
- White, M.D.; Farmer, M.; Mirabile, I.; Brandner, S.; Collinge, J.; Mallucci, G.R. Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc. Natl. Acad. Sci. USA 2008, 105, 10238–10243. [Google Scholar] [CrossRef] [PubMed]
- Genoud, N.; Ott, D.; Braun, N.; Prinz, M.; Schwarz, P.; Suter, U.; Trono, D.; Aguzzi, A. Antiprion prophylaxis by gene transfer of a soluble prion antagonist. Am. J. Pathol. 2008, 172, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Espargaró, A.; Sabate, R. Phosphorylation-driven aggregative proteins in neurodegenerative diseases: Implications and therapeutics. Neural Regen. Res. 2024, 19, 966–968. [Google Scholar] [CrossRef] [PubMed]
- Banik, S.M.; Pedram, K.; Wisnovsky, S.; Ahn, G.; Riley, N.M.; Bertozzi, C.R. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 2020, 584, 291–297. [Google Scholar] [CrossRef]
- Kocak, M.; Ezazi Erdi, S.; Jorba, G.; Maestro, I.; Farrés, J.; Kirkin, V.; Martinez, A.; Pless, O. Targeting autophagy in disease: Established and new strategies. Autophagy 2022, 18, 473–495. [Google Scholar] [CrossRef]
- Bourdenx, M.; Martín-Segura, A.; Scrivo, A.; Rodriguez-Navarro, J.A.; Kaushik, S.; Tasset, I.; Diaz, A.; Storm, N.J.; Xin, Q.; Juste, Y.R.; et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 2021, 184, 2696–2714.e25. [Google Scholar] [CrossRef]
- Evgen’ev, M.; Bobkova, N.; Krasnov, G.; Garbuz, D.; Funikov, S.; Kudryavtseva, A.; Kulikov, A.; Samokhin, A.; Maltsev, A.; Nesterova, I. The Effect of Human HSP70 Administration on a Mouse Model of Alzheimer’s Disease Strongly Depends on Transgenicity and Age. J. Alzheimers. Dis. 2019, 67, 1391–1404. [Google Scholar] [CrossRef]
- Mays, C.E.; Armijo, E.; Morales, R.; Kramm, C.; Flores, A.; Tiwari, A.; Bian, J.; Telling, G.C.; Pandita, T.K.; Hunt, C.R.; et al. Prion disease is accelerated in mice lacking stress-induced heat shock protein 70 (HSP70). J. Biol. Chem. 2019, 294, 13619–13628. [Google Scholar] [CrossRef]
- Thackray, A.M.; Lam, B.; McNulty, E.E.; Nalls, A.V.; Mathiason, C.K.; Magadi, S.S.; Jackson, W.S.; Andréoletti, O.; Marrero-Winkens, C.; Schätzl, H.; et al. Clearance of variant Creutzfeldt-Jakob disease prions in vivo by the Hsp70 disaggregase system. Brain 2022, 145, 3236–3249. [Google Scholar] [CrossRef]
- Nistor-Cseppento, D.C.; Jurcau, M.C.; Jurcau, A.; Andronie-Cioara, F.L.; Marcu, F. Stem Cell- and Cell-Based Therapies for ischemic Stroke. Bioengineering 2022, 11, 717. [Google Scholar] [CrossRef] [PubMed]
- Relaño-Ginés, A.; Lehmann, S.; Bencsik, A.; Herva, M.E.; Torres, J.M.; Crozet, C.A. Stem cell therapy extends incubation and survival time in prion-infected mice in a time window-dependent manner. J. Infect. Dis. 2011, 204, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Hay, A.J.D.; Latham, A.S.; Mumford, G.; Hines, A.D.; Risen, S.; Gordon, E.; Siebenaler, C.; Gilberto, V.S.; Zabel, M.D.; Moreno, J.A. Intranasally delivered mesenchymal stromal cells decrease glial inflammation early in prion disease. Front. Neurosci. 2023, 17, 1158408. [Google Scholar] [CrossRef] [PubMed]
- Zayed, M.; Kook, S.-H.; Jeong, B.-H. Potential Therapeutic Use of Stem Cells for Prion Diseases. Cells 2023, 12, 2413. [Google Scholar] [CrossRef]
- Groveman, B.R.; Smith, A.; Williams, K.; Haigh, C.L. Cerebral organoids as a new model for prion disease. PLoS Pathog. 2021, 17, e1009747. [Google Scholar] [CrossRef]
- Krance, S.H.; Luke, R.; Shenouda, M.; Israwi, A.R.; Colpitts, S.J.; Darwish, L.; Strauss, M.; Watts, J.C. Cellular models for discovering prion disease therapeutics: Progress and challenges. J. Neurochem. 2020, 153, 139–289. [Google Scholar] [CrossRef]
- Collinge, J. Prion Strain Mutation and Selection. Science 2010, 328, 1111–1112. [Google Scholar] [CrossRef]
- Makarava, N.; Baskakov, I.V. The evolution of transmissible prions: The role of deformed templating. PLoS Path. 2013, 9, e1003759. [Google Scholar] [CrossRef]
- Pritzkow, S.; Ramirez, F.; Lyon, A.; Schulz, P.E.; Appleby, B.; Moda, F.; Ramirez, S.; Notari, S.; Gambetti, P.; Soto, C. Detection of prions in the urine of patients affected by sporadic Creutzfeldt-Jakob disease. Ann. Clin. Transl. Neurol. 2023, 10, 2316–2323. [Google Scholar] [CrossRef]
Subtype of Sporadic CJD | Mean Age of Onset (Years) | Mean Disease Duration (Months) | Neuropathological Features | Characteristic Clinical Symptoms/Signs |
---|---|---|---|---|
MM(V)1 | 69 | 4 | Spongiform changes in the cerebral (occipital) cortex, cerebellum, thalamus and striatum | Dementia, visual impairments, ataxia, myoclonus |
VV2 | 65 | 6–9 | Involvement of the cerebellum, basal ganglia, and diencephalon; spongiform changes often limited to the deep layers of the neocortex | Ataxia, with dementia following later in the disease course |
MV2K | 65 | 9–17 | Amyloid kuru plaques in the cerebellum, involvement of the basal ganglia | Ataxia, extrapyramidal signs, dementia |
MM2T | 42–52 | 16–18 | Atrophy of the medial thalamus and inferior olive, patchy spongiform changes in the cortex | Ataxia, double vision, sleep disturbances, psychiatric symptoms, followed by cognitive decline |
MM2C | 61–64 | 16–18 | Rapidly progressive dementia | Spongiform changes and PrP deposits in the neocortex |
VV1 | 42–44 | 18–21 | Dementia, followed by ataxia, extrapyramidal signs | Spongiform changes in the neocortex, hippocampus, and striatum |
Type of Antigen | Autoantibody Target | Incidence of Cognitive Impairment | Clinical Features | Possibility of Underlying Cancer and Type of More Common Neoplasia | MRI Features (T2/FLAIR) | Ref. |
---|---|---|---|---|---|---|
Surface antigens | AMPA receptors | 100% | LE, hyponatremia | 64%, small cell lung, thymoma | Hyperintensities in medial temporal lobes and/or cerebellum | [146] |
NMDA receptors | 90–100% | LE, psychosis, facio-brachial dyskinesias | 40–60%, usually ovarian teratoma | Normal aspect or non-specific regional changes | [147] | |
DPPX | 80–100% | Sleep disturbances, gastrointestinal symptoms (diarrhea) | 10%, hematologic malignancies | Normal or non-specific changes | [148] | |
GABAB receptors | 80–100% | LE, epileptic seizures | 40–60%, thymoma, bronchial carcinoma | Hyperintense signals in medial temporal lobes | [149] | |
GABAA receptors | 67% | Refractory seizures, status epilepticus | 25–40%, thymoma | Hyperintense signals in multiple cortical and subcortical areas | [150] | |
LGI1 receptors | 90–100% | LE, facio-brachial dystonic seizures, myoclonus, hyponatremia, | 10%, thymoma, bronchial carcinoma | Hyperintensities in medial temporal lobes and basal ganglia | [151] | |
CASPR2 | 40–80% | LE, stiff person syndrome, ataxia | 10–20%, thymoma | Normal aspect or hyperintensities in medial temporal lobes | [152] | |
IgLON5 | 30–40% | Sleep disturbances, ataxia | rare | Normal aspect | [153] | |
mGLUR1 | rare | Cerebellar ataxia | Rare cases of Hodgkin’s lymphoma | Normal aspect or cerebellar atrophy | [154] | |
mGLUR5 | 90% | LE, seizures | 50%, Hodgkin’s lymphoma | Normal aspect or hyperintensities in various brain regions | [155] | |
GlyRα1 | 40–50% | Stiff person syndrome, rigidity, myoclonus, seizures | 10%, thymoma | Normal aspect or non-specific features | [156] | |
Neurexin 3α | 40–50% | Orofacial dyskinesias | unknown | Normal aspect | [157] | |
Intracellular antigens | AK5 | 100% | LE | Not cancer-associated | Temporal lobe hyperintensities | [158] |
amphiphysin | 30% | LE, peripheral neuropathy | 80%, small cell lung, breast | Normal aspect or temporal lobe hyperintensities | [159] | |
ANNA1 (Hu) | 10–20% | LE, cerebellar ataxia, sensory neuronopathy | 80–90%, small cell lung carcinoma | Temporal lobe hyperintensities | [160] | |
ANNA2 (Ri) | 10–20% | Ataxia, opsoclonus-myoclonus | 75%, small cell lung carcinoma, breast adenocarcinoma | Non-specific features | [161] | |
ANNA3 | 10–20% | LE, cerebellar ataxia, peripheral neuropathy | 80–90%, small cell lung carcinoma | Non-specific changes | [161] | |
GAD | 3–5% | LE, ataxia, seizures | 8%, small cell lung carcinoma | Atrophy of temporal and frontal lobes | [162] | |
GFAP | 15–60% | Tremor, myoclonus, ataxia | 35%, teratomas | Hyperintensities in the posterior parts of the thalamus | [163] | |
ITPR1 | 20% | Cerebellar ataxia, seizures | 30–40%, breast cancer | Normal aspect | [164] | |
Ma2 | 60–70% | LE, sleep disorders, narcolepsy | 90%, testicular neoplasias | Temporal lobe hyperintensities | [165] | |
CRMP5 (CV2) | 30% | LE, chorea, cerebellar ataxia, myelopathy, optic neuritis | 90%, small cell lung carcinoma | Normal aspect or multiple hyperintensities in the temporal lobe, basal ganglia, thalamus and frontal lobe | [166] |
Main Brain Areas Involved | Condition | Similar Aspects | Differences | Supplemental Clues to Diagnosis | Ref. |
---|---|---|---|---|---|
Cortex | Severe hypoxic-ischemic encephalopathy | DWI, FLAIR and T2 hyperintensities in the cerebral cortex, hippocampus, basal ganglia |
| Acute onset following cardio-respiratory arrest, asphyxia, drowning | [167] |
Autoimmune encephalopathy | DWI, FLAIR and T2 hyperintensities in the cortex, insula and cingulate areas | FLAIR/T2 hyperintensities involving mainly hippocampus, amygdala, mesial temporal lobe | Specific autoantibodies | [168] | |
Infectious encephalitis (herpetic encephalitis) | Asymmetrical DWI and FLAIR/T2 hyperintensities in the cortex, mainly of the medial temporal lobe and orbitofrontal lobe | T1 hyperintensity in the presence of necrosis and hemorrhage | Acute onset, fever, stiff neck | [169] | |
Postictal state following focal or generalized seizures | DWI, FLAIR/T2 hyperintensities in the hippocampus, neocortex, splenium of the corpus callosum, basal ganglia and thalami | Abnormalities are transient and disappear on subsequent imaging studies | [170] | ||
Hyperammonemia | Extensive cortical signal abnormalities with restricted diffusion affecting mainly cingulate gyrus and insula | Involvement of the perirolandic cortex | Increased serum ammonia | [171] | |
Basal ganglia | Extrapontine osmotic demyelination | Bilateral symmetrical FLAIR/T2 hyperintensities in the globus pallidus, putamen, thalamus | Absent DWI abnormalities | Rapid correction of hypo- or hyperosmolar states | [167] |
Ebstein Barr virus encephalitis | DWI/FLAIR/T2 hyperintensities in basal ganglia, cortex, and splenium of the corpus callosum | Abnormalities are transient | [169] | ||
Autosomal dominant striatal degeneration | DWI/FLAIR/T2 signal abnormalities in the striatum |
| Familial clustering | [172] | |
Thalamus | Variant CJD | Pulvinar and double hockey stick signs | Lack of cortical involvement | Younger age of onset | [173] |
Wernicke encephalopathy | FLAIR/T2 hyperintensities in the medial thalamus |
| Presence of conditions leading to thiamine deficiency | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurcau, M.C.; Jurcau, A.; Diaconu, R.G.; Hogea, V.O.; Nunkoo, V.S. A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurol. Int. 2024, 16, 1039-1065. https://doi.org/10.3390/neurolint16050079
Jurcau MC, Jurcau A, Diaconu RG, Hogea VO, Nunkoo VS. A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurology International. 2024; 16(5):1039-1065. https://doi.org/10.3390/neurolint16050079
Chicago/Turabian StyleJurcau, Maria Carolina, Anamaria Jurcau, Razvan Gabriel Diaconu, Vlad Octavian Hogea, and Vharoon Sharma Nunkoo. 2024. "A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts" Neurology International 16, no. 5: 1039-1065. https://doi.org/10.3390/neurolint16050079
APA StyleJurcau, M. C., Jurcau, A., Diaconu, R. G., Hogea, V. O., & Nunkoo, V. S. (2024). A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurology International, 16(5), 1039-1065. https://doi.org/10.3390/neurolint16050079