The Effectiveness of Paired Associative Stimulation on Motor Recovery after Stroke: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Inclusion/Exclusion Criteria
2.3. Study Selection
2.4. Data Extraction
3. Results
3.1. PAS Procedures
3.1.1. Cortico-Peripheral PAS
3.1.2. Cortico-Cortical PAS
3.2. Treatment Duration
3.3. Associated Treatments
3.4. Comparators
3.5. Outcome Measures
3.5.1. Neurophysiological Measures
3.5.2. Clinical Measures
3.6. Adverse Effects
3.7. Quality Assessment
4. Discussion
4.1. C/P PAS
4.2. C/C PAS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freed, W.J.; de Medinaceli, L.; Wyatt, R.J. Promoting Functional Plasticity in the Damaged Nervous System. Science 1985, 227, 1544–1552. [Google Scholar] [CrossRef] [PubMed]
- Joy, M.T.; Carmichael, S.T. Encouraging an Excitable Brain State: Mechanisms of Brain Repair in Stroke. Nat. Rev. Neurosci. 2021, 22, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Mustafaoglu, R.; Rossi, S.; Cavdar, F.A.; Agyenkwa, S.K.; Pang, M.Y.C.; Straudi, S. Non-Invasive Brain Stimulation Techniques for the Improvement of Upper Limb Motor Function and Performance in Activities of Daily Living After Stroke: A Systematic Review and Network Meta-Analysis. Arch. Phys. Med. Rehabil. 2023, 104, 1683–1697. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Xu, W. Enhancing Brain Plasticity to Promote Stroke Recovery. Front. Neurol. 2020, 11, 554089. [Google Scholar] [CrossRef] [PubMed]
- Gulyaeva, N.V. Molecular Mechanisms of Neuroplasticity: An Expanding Universe. Biochemistry 2017, 82, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Wessel, M.J.; Zimerman, M.; Hummel, F.C. Non-Invasive Brain Stimulation: An Interventional Tool for Enhancing Behavioral Training after Stroke. Front. Hum. Neurosci. 2015, 9, 265. [Google Scholar] [CrossRef]
- Bornheim, S.; Croisier, J.-L.; Maquet, P.; Kaux, J.-F. Transcranial Direct Current Stimulation Associated with Physical-Therapy in Acute Stroke Patients—A Randomized, Triple Blind, Sham-Controlled Study. Brain Stimul. 2020, 13, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-S.; Kwon, B.; Seo, H.; Park, J.; Paik, N.-J. Low-Frequency Repetitive Transcranial Magnetic Stimulation Over Contralesional Motor Cortex for Motor Recovery in Subacute Ischemic Stroke: A Randomized Sham-Controlled Trial. Neurorehabilit. Neural Repair 2020, 34, 856–867. [Google Scholar] [CrossRef]
- Bressi, F.; Cinnera, A.M.; Morone, G.; Campagnola, B.; Cricenti, L.; Santacaterina, F.; Miccinilli, S.; Zollo, L.; Paolucci, S.; Di Lazzaro, V.; et al. Combining Robot-Assisted Gait Training and Non-Invasive Brain Stimulation in Chronic Stroke Patients: A Systematic Review. Front. Neurol. 2022, 13, 795788. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Tran, V.-D.; Dario, P.; Posteraro, F. Effects of Transcranial Direct Current Stimulation (tDCS) Combined with Wrist Robot-Assisted Rehabilitation on Motor Recovery in Subacute Stroke Patients: A Randomized Controlled Trial. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1458–1466. [Google Scholar] [CrossRef]
- Straudi, S.; Fregni, F.; Martinuzzi, C.; Pavarelli, C.; Salvioli, S.; Basaglia, N. tDCS and Robotics on Upper Limb Stroke Rehabilitation: Effect Modification by Stroke Duration and Type of Stroke. BioMed Res. Int. 2016, 2016, 5068127. [Google Scholar] [CrossRef] [PubMed]
- Cassani, R.; Novak, G.S.; Falk, T.H.; Oliveira, A.A. Virtual Reality and Non-Invasive Brain Stimulation for Rehabilitation Applications: A Systematic Review. J. Neuroeng. Rehabil. 2020, 17, 147. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Chen, C.-L.; Huang, Y.-Z.; Chen, H.-C.; Chen, C.-Y.; Wu, C.-Y.; Lin, K. Augmented Efficacy of Intermittent Theta Burst Stimulation on the Virtual Reality-Based Cycling Training for Upper Limb Function in Patients with Stroke: A Double-Blinded, Randomized Controlled Trial. J. Neuroeng. Rehabil. 2021, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Yan, Z.; Gu, F.; Tao, X.; Xue, T.; Liu, D.; Wang, Z. Transcranial Direct Current Stimulation with Virtual Reality versus Virtual Reality Alone for Upper Extremity Rehabilitation in Stroke: A Meta-Analysis. Heliyon 2023, 9, e12695. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Cui, L.; Wang, J.; Feng, W.; Bao, Y.; Xie, Q. Effects of Transcranial Direct Current Stimulation with Virtual Reality on Upper Limb Function in Patients with Ischemic Stroke: A Randomized Controlled Trial. J. Neuroeng. Rehabil. 2020, 17, 73. [Google Scholar] [CrossRef]
- Baroni, A.; Magro, G.; Martinuzzi, C.; Brondi, L.; Masiero, S.; Milani, G.; Zani, G.; Bergonzoni, A.; Basaglia, N.; Straudi, S. Combined Effects of Cerebellar tDCS and Task-Oriented Circuit Training in People with Multiple Sclerosis: A Pilot Randomized Control Trial. Restor. Neurol. Neurosci. 2022, 40, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Pavon, J.C.; San Agustín, A.; Wang, M.C.; Veniero, D.; Pons, J.L. Can We Manipulate Brain Connectivity? A Systematic Review of Cortico-Cortical Paired Associative Stimulation Effects. Clin. Neurophysiol. 2023, 154, 169–193. [Google Scholar] [CrossRef]
- Stefan, K.; Kunesch, E.; Cohen, L.G.; Benecke, R.; Classen, J. Induction of Plasticity in the Human Motor Cortex by Paired Associative Stimulation. Brain 2000, 123 Pt 3, 572–584. [Google Scholar] [CrossRef]
- Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Wiley: Oxford, UK, 1949; p. 335. [Google Scholar]
- Classen, J.; Wolters, A.; Stefan, K.; Wycislo, M.; Sandbrink, F.; Schmidt, A.; Kunesch, E. Paired Associative Stimulation. Suppl. Clin. Neurophysiol. 2004, 57, 563–569. [Google Scholar]
- Stent, G.S. A Physiological Mechanism for Hebb’s Postulate of Learning. Proc. Natl. Acad. Sci. USA 1973, 70, 997–1001. [Google Scholar] [CrossRef]
- Kirkwood, A.; Dudek, S.M.; Gold, J.T.; Aizenman, C.D.; Bear, M.F. Common Forms of Synaptic Plasticity in the Hippocampus and Neocortex in Vitro. Science 1993, 260, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sui, Y.; Guo, T.; Wang, S.; Hu, Y.; Lu, Y. Effect of Paired Associative Stimulation on Motor Cortex Excitability in Rats. Curr. Med. Sci. 2018, 38, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.; Leodori, G.; Cutrona, C.; Marchet, F.; De Bartolo, M.I.; Mancuso, M.; Belvisi, D.; Conte, A.; Berardelli, A.; Fabbrini, G. Motor Cortical Correlates of Paired Associative Stimulation Induced Plasticity: A TMS-EEG Study. Brain Sci. 2023, 13, 921. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.F.M.; Orekhov, Y.; Liu, Y.; Ziemann, U. Homeostatic Plasticity in Human Motor Cortex Demonstrated by Two Consecutive Sessions of Paired Associative Stimulation. Eur. J. Neurosci. 2007, 25, 3461–3468. [Google Scholar] [CrossRef] [PubMed]
- Castel-Lacanal, E.; Gerdelat-Mas, A.; Marque, P.; Loubinoux, I.; Simonetta-Moreau, M. Induction of Cortical Plastic Changes in Wrist Muscles by Paired Associative Stimulation in Healthy Subjects and Post-Stroke Patients. Exp. Brain Res. 2007, 180, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Castel-Lacanal, E.; Marque, P.; Tardy, J.; de Boissezon, X.; Guiraud, V.; Chollet, F.; Loubinoux, I.; Moreau, M.S. Induction of Cortical Plastic Changes in Wrist Muscles by Paired Associative Stimulation in the Recovery Phase of Stroke Patients. Neurorehabilit. Neural Repair 2009, 23, 366–372. [Google Scholar] [CrossRef]
- Palmer, J.A.; Wolf, S.L.; Borich, M.R. Paired Associative Stimulation Modulates Corticomotor Excitability in Chronic Stroke: A Preliminary Investigation. Restor. Neurol. Neurosci. 2018, 36, 183–194. [Google Scholar] [CrossRef]
- Tsuji, T.; Suzuki, K.; Masakado, Y.; Ota, T.; Kimura, A.; Liu, M.; Chino, N. Long-Lasting Effects of Paired Associative Stimulation in Hemiparetic Stroke Patients. Int. Congr. Ser. 2005, 1278, 280–283. [Google Scholar] [CrossRef]
- Koganemaru, S.; Fukuyama, H.; Mima, T. Two Is More Than One: How to Combine Brain Stimulation Rehabilitative Training for Functional Recovery? Front. Syst. Neurosci. 2015, 9, 154. [Google Scholar] [CrossRef]
- Bestmann, S.; Krakauer, J.W. The Uses and Interpretations of the Motor-Evoked Potential for Understanding Behaviour. Exp. Brain Res. 2015, 233, 679–689. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Joanna Briggs Institute. Checklist for Systematic Reviews and Research Syntheses; Joanna Briggs Institute: Adelaide, Australia, 2017. [Google Scholar]
- Rosso, C.; Moulton, E.J.; Kemlin, C.; Leder, S.; Corvol, J.-C.; Mehdi, S.; Obadia, M.A.; Obadia, M.; Yger, M.; Meseguer, E.; et al. Cerebello-Motor Paired Associative Stimulation and Motor Recovery in Stroke: A Randomized, Sham-Controlled, Double-Blind Pilot Trial. Neurotherapeutics 2022, 19, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.-F.; Tong, L.-Q.; Zhang, X.-Y.; Song, Z.-H.; Guo, T.-C. Effects of Paired Associated Stimulation with Different Stimulation Position on Motor Cortex Excitability and Upper Limb Motor Function in Patients with Cerebral Infarction. J. Clin. Neurosci. 2021, 90, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Tarri, M.; Brihmat, N.; Gasq, D.; Lepage, B.; Loubinoux, I.; De Boissezon, X.; Marque, P.; Castel-Lacanal, E. Five-Day Course of Paired Associative Stimulation Fails to Improve Motor Function in Stroke Patients. Ann. Phys. Rehabil. Med. 2018, 61, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Tosun, A.; Türe, S.; Askin, A.; Yardimci, E.U.; Demirdal, S.U.; Kurt Incesu, T.; Tosun, O.; Kocyigit, H.; Akhan, G.; Gelal, F.M. Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation and Neuromuscular Electrical Stimulation on Upper Extremity Motor Recovery in the Early Period after Stroke: A Preliminary Study. Top. Stroke Rehabil. 2017, 24, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Kuznietsova, S.; Skachkova, N.; Semonova, O. ID 243—Enhancement of Cortical Excitability in Stroke Patients after Combined Repetitive Transcranial and Peripheral Magnetic Stimulation. Clin. Neurophysiol. 2016, 127, e121. [Google Scholar] [CrossRef]
- Tarri, M.; Simonetta-Moreau, M.; Loubinoux, I.; De Boissezon, X.; Gasq, D.; Marque, P.; Castel-Lacanal, E. Study of the Effects of a 5-Day Brain Stimulation with Paired Associative Stimulation (PAS) against Placebo in 28 Hemiplegic Patients. Ann. Phys. Rehabil. Med. 2015, 58, e2. [Google Scholar] [CrossRef]
- Mohamed, T.; Marion, S.-M.M.; Isabelle, L.; Xavier, D.B.; David, G.; Phillipe, M.; Evelyne, C.-L. P 123. CIPASS: Trial of a Daily Program of Cerebral Stimulation by TMS Using a PAS Paradigm in the Recovery Phase of Stroke Patients. Clin. Neurophysiol. 2013, 124, e123. [Google Scholar] [CrossRef]
- Uy, J.; Ridding, M.C.; Hillier, S.; Thompson, P.D.; Miles, T.S. Does Induction of Plastic Change in Motor Cortex Improve Leg Function after Stroke? Neurology 2003, 61, 982–984. [Google Scholar] [CrossRef]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and Recommendations for TMS Use in Healthy Subjects and Patient Populations, with Updates on Training, Ethical and Regulatory Issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef] [PubMed]
- Rossini, P.M.; Barker, A.T.; Berardelli, A.; Caramia, M.D.; Caruso, G.; Cracco, R.Q.; Dimitrijević, M.R.; Hallett, M.; Katayama, Y.; Lücking, C.H. Non-Invasive Electrical and Magnetic Stimulation of the Brain, Spinal Cord and Roots: Basic Principles and Procedures for Routine Clinical Application. Report of an IFCN Committee. Electroencephalogr. Clin. Neurophysiol. 1994, 91, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, J.; Cortes, M.; Tsagaris, K.Z.; Climent, A.; Gerber, L.M.; Oromendia, C.; Fonzetti, P.; Ratan, R.R.; Kitago, T.; Iacoboni, M.; et al. Paired Associative Stimulation as a Tool to Assess Plasticity Enhancers in Chronic Stroke. Front. Neurosci. 2019, 13, 792. [Google Scholar] [CrossRef]
- Edwards, J.D.; Dominguez-Vargas, A.U.; Rosso, C.; Branscheidt, M.; Sheehy, L.; Quandt, F.; Zamora, S.A.; Fleming, M.K.; Azzollini, V.; Mooney, R.A.; et al. A Translational Roadmap for Transcranial Magnetic and Direct Current Stimulation in Stroke Rehabilitation: Consensus-Based Core Recommendations from the Third Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2023, 19, 145–157. [Google Scholar] [CrossRef]
- Strick, P.L.; Dum, R.P.; Rathelot, J.-A. The Cortical Motor Areas and the Emergence of Motor Skills: A Neuroanatomical Perspective. Annu. Rev. Neurosci. 2021, 44, 425–447. [Google Scholar] [CrossRef] [PubMed]
- Turco, C.V.; El-Sayes, J.; Savoie, M.J.; Fassett, H.J.; Locke, M.B.; Nelson, A.J. Short- and Long-Latency Afferent Inhibition; Uses, Mechanisms and Influencing Factors. Brain Stimul. 2018, 11, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Edwards, L.L.; King, E.M.; Buetefisch, C.M.; Borich, M.R. Putting the “Sensory” Into Sensorimotor Control: The Role of Sensorimotor Integration in Goal-Directed Hand Movements After Stroke. Front. Integr. Neurosci. 2019, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, P. The Nature of Hand Motor Impairment after Stroke and Its Treatment. Curr. Treat. Options Cardiovasc. Med. 2007, 9, 221–228. [Google Scholar] [CrossRef]
- Di Pino, G.; Pellegrino, G.; Assenza, G.; Capone, F.; Ferreri, F.; Formica, D.; Ranieri, F.; Tombini, M.; Ziemann, U.; Rothwell, J.C.; et al. Modulation of Brain Plasticity in Stroke: A Novel Model for Neurorehabilitation. Nat. Rev. Neurol. 2014, 10, 597–608. [Google Scholar] [CrossRef]
- Koch, G.; Bonnì, S.; Giacobbe, V.; Bucchi, G.; Basile, B.; Lupo, F.; Versace, V.; Bozzali, M.; Caltagirone, C. θ-Burst Stimulation of the Left Hemisphere Accelerates Recovery of Hemispatial Neglect. Neurology 2012, 78, 24–30. [Google Scholar] [CrossRef]
- Motolese, F.; Capone, F.; Di Lazzaro, V. New Tools for Shaping Plasticity to Enhance Recovery after Stroke. Handb. Clin. Neurol. 2022, 184, 299–315. [Google Scholar] [CrossRef] [PubMed]
- Dimyan, M.A.; Cohen, L.G. Neuroplasticity in the Context of Motor Rehabilitation after Stroke. Nat. Rev. Neurol. 2011, 7, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Morotti, A.; Poli, L.; Costa, P. Acute Stroke. Semin. Neurol. 2019, 39, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.B. Current Trends in Stroke Rehabilitation. A Review with Focus on Brain Plasticity. Acta Neurol. Scand. 2011, 123, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Anwer, S.; Waris, A.; Gilani, S.O.; Iqbal, J.; Shaikh, N.; Pujari, A.N.; Niazi, I.K. Rehabilitation of Upper Limb Motor Impairment in Stroke: A Narrative Review on the Prevalence, Risk Factors, and Economic Statistics of Stroke and State of the Art Therapies. Healthcare 2022, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H. The Recovery of Walking in Stroke Patients: A Review. Int. J. Rehabil. Res. 2010, 33, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.H. Modern Coordinates for the Motor Homunculus. J. Physiol. 2020, 598, 5305–5306. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Ponzo, V.; Di Lorenzo, F.; Caltagirone, C.; Veniero, D. Hebbian and Anti-Hebbian Spike-Timing-Dependent Plasticity of Human Cortico-Cortical Connections. J. Neurosci. 2013, 33, 9725–9733. [Google Scholar] [CrossRef]
- Ashe, J.; Lungu, O.V.; Basford, A.T.; Lu, X. Cortical Control of Motor Sequences. Curr. Opin. Neurobiol. 2006, 16, 213–221. [Google Scholar] [CrossRef]
- Mesulam, M. The Evolving Landscape of Human Cortical Connectivity: Facts and Inferences. Neuroimage 2012, 62, 2182–2189. [Google Scholar] [CrossRef]
- Casarotto, A.; Dolfini, E.; Cardellicchio, P.; Fadiga, L.; D’Ausilio, A.; Koch, G. Mechanisms of Hebbian-like Plasticity in the Ventral Premotor—Primary Motor Network. J. Physiol. 2023, 601, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Casarotto, A.; Dolfini, E.; Fadiga, L.; Koch, G.; D’Ausilio, A. Cortico-Cortical Paired Associative Stimulation Conditioning Superficial Ventral Premotor Cortex-Primary Motor Cortex Connectivity Influences Motor Cortical Activity during Precision Grip. J. Physiol. 2023, 601, 3945–3960. [Google Scholar] [CrossRef]
- Cinnera, A.M.; Bonnì, S.; D’Acunto, A.; Maiella, M.; Ferraresi, M.; Casula, E.P.; Pezzopane, V.; Tramontano, M.; Iosa, M.; Paolucci, S.; et al. Cortico-Cortical Stimulation and Robot-Assisted Therapy (CCS and RAT) for Upper Limb Recovery after Stroke: Study Protocol for a Randomised Controlled Trial. Trials 2023, 24, 823. [Google Scholar] [CrossRef]
- Guidali, G.; Roncoroni, C.; Bolognini, N. Paired Associative Stimulations: Novel Tools for Interacting with Sensory and Motor Cortical Plasticity. Behav. Brain Res. 2021, 414, 113484. [Google Scholar] [CrossRef] [PubMed]
- Spampinato, D.A.; Block, H.J.; Celnik, P.A. Cerebellar-M1 Connectivity Changes Associated with Motor Learning Are Somatotopic Specific. J. Neurosci. 2017, 37, 2377–2386. [Google Scholar] [CrossRef]
- Rehme, A.K.; Eickhoff, S.B.; Rottschy, C.; Fink, G.R.; Grefkes, C. Activation Likelihood Estimation Meta-Analysis of Motor-Related Neural Activity after Stroke. Neuroimage 2012, 59, 2771–2782. [Google Scholar] [CrossRef]
- Celnik, P. Understanding and Modulating Motor Learning with Cerebellar Stimulation. Cerebellum 2015, 14, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Bonnì, S.; Casula, E.P.; Iosa, M.; Paolucci, S.; Pellicciari, M.C.; Cinnera, A.M.; Ponzo, V.; Maiella, M.; Picazio, S.; et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients with Hemiparetic Stroke: A Randomized Clinical Trial. JAMA Neurol. 2018, 76, 170–178. [Google Scholar] [CrossRef]
- Krakauer, J.W.; Shadmehr, R. Consolidation of Motor Memory. Trends Neurosci. 2006, 29, 58–64. [Google Scholar] [CrossRef]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.B.; George, M.S.; et al. Non-Invasive Electrical and Magnetic Stimulation of the Brain, Spinal Cord, Roots and Peripheral Nerves: Basic Principles and Procedures for Routine Clinical and Research Application. An Updated Report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar] [CrossRef]
- Mazwi, N.L.; Adeletti, K.; Hirschberg, R.E. Traumatic Spinal Cord Injury: Recovery, Rehabilitation, and Prognosis. Curr. Trauma Rep. 2015, 1, 182–192. [Google Scholar] [CrossRef]
- Ling, Y.T.; Alam, M.; Zheng, Y.-P. Spinal Cord Injury: Lessons about Neuroplasticity from Paired Associative Stimulation. Neuroscientist 2020, 26, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Bunday, K.L.; Perez, M.A. Motor Recovery after Spinal Cord Injury Enhanced by Strengthening Corticospinal Synaptic Transmission. Curr. Biol. 2012, 22, 2355–2361. [Google Scholar] [CrossRef] [PubMed]
- Debanne, D.; Inglebert, Y. Spike Timing-Dependent Plasticity and Memory. Curr. Opin. Neurobiol. 2023, 80, 102707. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.L.; Spronk, M.; Kulkarni, K.; Repovš, G.; Anticevic, A.; Cole, M.W. Mapping the Human Brain’s Cortical-Subcortical Functional Network Organization. Neuroimage 2019, 185, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Guggisberg, A.G.; Koch, P.J.; Hummel, F.C.; Buetefisch, C.M. Brain Networks and Their Relevance for Stroke Rehabilitation. Clin. Neurophysiol. 2019, 130, 1098–1124. [Google Scholar] [CrossRef]
Unique Identifying Number | Title | Author | Year of Publication | Study Design | Country of Origin | RoB |
---|---|---|---|---|---|---|
1 | Cerebello-Motor Paired Associative Stimulation and Motor Recovery in Stroke: a Randomized, Sham-Controlled, Double-Blind Pilot Trial | Rosso et al. | 2022 | RCT | France | 6/7 |
2 | Effect of PAS with different stimulation position on motor cortex excitability and upper limb motor function in patients with cerebral infarction | Sui et al. | 2021 | RCT | China | 2/7 |
3 | Five-day course of paired associative stimulation fails to improve motor function in stroke patients | Tarri et al. | 2018 | RCT | France | 2/7 |
4 | Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke | Tosun et al. | 2017 | RCT | Turkey | 5/7 |
5 * | Enhancement of cortical excitability in stroke patients after combined repetitive transcranial and peripheral magnetic stimulation | Kuznietsova et al. | 2016 | RCT | Ukraine | - |
6 * | Study of the effects of a 5-day brain stimulation with Paired Associative Stimulation (PAS) against placebo in 28 hemiplegic patients | Tarri et al. | 2015 | RCT | France | - |
7 * | Trial of a daily program of cerebral stimulation by TMS using a PAS paradigm in the recovery phase of stroke patients | Mohamed et al. | 2013 | RCT | France | - |
8 | Does induction of plastic change in motor cortex improve leg function after stroke? | Uy et al. | 2003 | Case series | Australia | 3/10 |
N° | Sample Size | Type of Stroke | Time from Stroke | PAS Type | Point of Application | Parameters TMS | Parameters PNS | ISI | Time of Application | Associated Treatment | Control Group Treatment | Outcome Measures | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intensity | Frequency | Intensity | Frequency | ||||||||||||
1 | Total n = 27 Active group n = 14 (11 males, age 63 ± 14) Sham group n = 13 (10 males, age 60 ± 11) | Ischemic | Active group 202 ± 355 months Sham group 374 ± 481 months | C/C | Contralesional cerebellum (CS) | Ipsilesional M1 (TS) | CS = 90% RMT TS = 140% RMT If MEP could not be elicited: CS = 50% RMT TS = 50% RMT | 0.2 Hz | - | - | 2 ms | 120 paired stimuli 5 sessions (1 session/day for 5 days) | Physical therapy (45 min) | Sham PAS + physical therapy (45 min) | MEP, fMRI, JHFT, GS |
2 | Total n = 120 Ipsilateral stimulation group n = 30 (14 males, age 44.15 ± 4.76) Contralateral stimulation group n = 30 (13 males, age 43.53 ±4.88) Bilateral stimulation group n = 30 (14 males, age 45.35 ± 5.36) Control group n = 30 (15 males, age 44.83 ± 5.18) | Ischemic | Ipsilateral stimulation group 2.0 ± 0.73 months Contralateral stimulation group 1.8 ± 0.69 months Bilateral stimulation group 1.9 ± 0.78 months Control group 1.5 ± 0.71 months | C/P | Ipsilesional stimulation group (PAS25): Ipsilesional M1 Contralesional stimulation group (PAS10): contralesional M1 Bilateral stimulation group: PAS10 (contralesional M1) followed by PAS25 (ipsilesional M1) | Ipsilesional stimulation group (PAS25): median wrist nerves innervated by ipsilesional M1 Contralesional stimulation group (PAS10): median wrist nerves innervated by contralesional M1 Bilateral stimulation group: PAS10 (contralesional median wrist nerves) followed by PAS25 (ipsilesional median wrist nerves) | 120% RMT | 0.05 Hz | 300% of the sensory threshold | 0.2 ms | Ipsilesional stimulation group (PAS25): 25 ms Contralesional stimulation group (PAS10): 10 ms Bilateral stimulation group: PAS10 followed by PAS25 | 90 paired stimuli 28 sessions (1 session/day for 28 days) | - | Physical therapy | MEP, RMT, FMA-UE, STEF, (M)BI |
3 | Total n = 24 PAS group n = 13 (9 males, age 48.6 ± 12.3) Sham group n = 11 (7 males, age 51.8 ± 12.2) | Ischemic/ hemorrhagic | PAS group 9.8 ± 5.1 weeks Sham group 10.4 ± 5.8 weeks | C/P | Lesioned M1 | ECR muscle of the paretic limb | Adjusted to obtain an ECR MEP with peak-to-peak amplitude of about 1 mV | 0.1 Hz | 150% of the motor threshold | 5 hz | 25 ms | 30 min PAS 5 sessions (1 session/day for 5 days) | Physical therapy (2 h) | Sham PAS + physical therapy (2 h) | MEP, FMA-UE |
4 | Total n = 25 TMS group n = 9 (6 males, age 57.6 ± 12.6) TMS + NMSE group n = 7 (3 males, age 56 ± 10.1) Control group n = 9 (5 males, age 61.3 ± 10.1) | Ischemic | TMS group 49.3 ± 43.6 days TMS + NMSE group 59.6 ± 58.3 days Control group 47.2 ± 41.1 days | C/P | Contralesional M1 | Wrist extensors and extensor digitorum communis | 90% RMT | 1 Hz | Adjusted to produce the extension of wrist and fingers (90% RMT) | 50 Hz | Not specified | 20 min PAS 10 sessions (5 sessions/week for 2 weeks) | Physical therapy (duration not specified) | Physical therapy (duration not specified) | fMRI, FMA-UE, MI-UE, BRS-UE, BRS-H, MAS, BI |
5 * | Total n = 77 (age 63.02 ± 1.21) | Ischemic | Not specified | C/P | Not specified | Not specified | Not specified | 1 Hz | Not specified | Not specified | Not specified | Not specified PAS duration 10 consecutive days | Not specified | Sham PAS | MEP, RMT, MCAS |
6 * | Total n = 28 (19 males, age 49.9 ± 13.5) Analyzed n = 24 PAS group n = 13 Sham group n = 11 | Not specified | 10.0 ± 5.1 weeks | C/P | Wrist area (Not specified side) | Wrist extensor muscle | Not specified | 0.1 Hz | Not specified | Not specified | 25 ms | 30 min PAS 5 sessions (1 session/day for 5 days) | - | Sham TMS | MEP, FMA-UE |
7 * | Total n = 18 (13 males, age 47.3 ± 12.7) PAS group n = 10 Placebo n = 8 | Not specified | <6 months | C/P | Not specified | ECR | Not specified | 0.1 Hz | Not specified | 0.1 Hz | Not specified | 30 min PAS 5 sessions (1 session/day for 5 days) | Not specified | Placebo | MEP, FMA-UE |
8 | Total n = 9 (6 males, age 60.6 ± 10.5) | Ischemic/ hemorrhagic | 3.6 ± 10.9 years | C/P | Not specified | Common peroneal nerve in the weak limb | Intensity evoking a just-visible motor response in tibialis anterior and peroneus longus | Not specified | Intensity evoking a just-visible motor response in tibialis anterior and peroneus longus | 10 Hz | 35 ms | 30 min PAS 1 session/day for 4 weeks | - | - | MEP, MVC, ROM, GAIT PARAMETERS |
Study | Intervention | Results | ||||
---|---|---|---|---|---|---|
UPPER EXTREMITY | ||||||
BRAIN STRUCTURE | ||||||
MEP | Rosso, 2022 | Active PAS + PT vs Sham PAS + PT | Experimental group pre: 0.44 ± 0.62 post: 0.45 ± 0.65 fu: 0.55 ± 1.09 | Control group pre: 0.27 ± 0.51 post: 0.33 ± 0.59 fu: 0.27 ± 0.44 | Significance No differences within and between groups | |
Sui, 2021 | Ipsilateral PAS vs Contralateral PAS vs Bilateral PAS vs PT | Decrease in MEP amplitude on the contralesional side compared to before treatment. Increase in MEP amplitude on the ipsilesional side compared to before treatment. [significative differences p < 0.05] Decrease in MEP amplitude on the contralesional side compared to PT group. Increase in MEP amplitude on the ipsilesional side compared to PT group. [no significative differences between them] Decrease in MEP amplitude on the contralesional side and increase in MEP amplitude in the ipsilesional side in the bilateral group compared to contralesional and ipsilesional group [significative differences between them]. | Significance Significative differences within group for the stimulation groups (p < 0.05) Significative differences between groups for the stimulation groups compared to PT group (p < 0.05) Significative differences between groups for the ipsilateral PAS25 and the contralateral PAS10 group compared to bilateral PAS group (p < 0.05) | |||
Tarri, 2018 | Active PAS + PT vs Sham PAS + PT | Experimental group Mean (SD) surface area of MEP was 239% (230) of baseline | Control group Mean (SD) surface area of MEP was 154% (81) of baseline | Significance No differences within and between groups | ||
Kuznietsova, 2016 | Active PAS vs Sham PAS | Reduction of latency and increase in amplitude and area in the experimental group compared to control | ||||
Tarri, 2015 | Active PAS vs Sham PAS | No significant differences between the two groups | ||||
Mohamed, 2013 | Active PAS vs Placebo | Experimental group Increase of MEP surface of 168 ± 268% | Control group Increase of MEP surface of 0.1 ± 48% | Significance No differences between groups | ||
RMT | Sui, 2021 | Ipsilateral PAS vs Contralateral PAS vs Bilateral PAS vs PT | Increase in RMT on the contralesional side compared to before treatment. Decrease in RMT on the ipsilesional side compared to before treatment. [significative differences p < 0.05] Increase in RMT on the contralesional side compared to PT group. Decrease in RMT on the ipsilesional side compared to PT group. [no significative differences between them] Increase in RMT on the contralesional side and decrease in RMT in the ipsilesional side in the bilateral group compared to contralesional and ipsilesional group [significative differences between them] | Significance Significative differences within group for the stimulation groups (p < 0.05) Significative differences between groups for the stimulation groups compared to PT group (p < 0.05) Significative differences between groups for the ipsilateral PAS25 and the contralateral PAS10 group compared to bilateral PAS group (p < 0.05) | ||
Kuznietsova, 2016 | Active PAS vs Sham PAS | Reduction in RMT in the experimental group compared to control. | ||||
fMRI | Rosso, 2022 | Active PAS + PT vs Sham PAS + PT | Experimental group Ipsilesional M1 activity: pre: 4.3 ± 1.3 post: 3.9 ± 1.6 fu: 4.1 ± 0.8 FarCST: pre: 0.91 ± 0.17 post: - fu: - FarDTCT: pre: 0.94 ± 0.12 post: - fu: - | Control group Ipsilesional M1 activity: pre: 3.25 ± 1.17 post: 3.64 ± 1.45 fu: 3.62 ± 1.82 FarCST: pre: 0.95 ± 0.35 post: - fu: - FarDTCT: pre: 0.96 ± 0.15 post: - fu: - | Significance Not reported | |
Tosun, 2017 | Active TMS + PT vs Active PAS + PT vs PT | Active TMS + PT group Affected M1: Increased activation during the movements of the paretic hand in 66.7% of the group | Active PAS + PT group Affected M1: Increased activation during the movements of the paretic hand in 57.1% of the group | PT group Affected M1: 42.9% of the group revealed no change | Significance Not performed | |
BODY FUNCTION | ||||||
Upper limb function | ||||||
FMA-UE | Sui, 2021 | Ipsilateral PAS vs Contralateral PAS vs Bilateral PAS vs PT | Increase in FMA-UE in stimulation groups compared to PT group | Significance Significative differences within group for the stimulation groups (p < 0.05) Significative differences between groups for the stimulation groups compared to PT group (p < 0.05) Significative differences between groups for the ipsilateral PAS25 and the contralateral PAS10 group compared to bilateral PAS group (p < 0.05) | ||
Tarri, 2018 | Active PAS + PT vs Sham PAS + PT | No significant differences were found for time or group (p = 0.99). ANCOVA adjusted to the initial FMA-UE score failed to reveal a significant difference between the two groups (p = 0.66, 95% CI [-2.26%, 3.51%]). | ||||
Tosun, 2017 | Active TMS + PT vs Active PAS + PT vs PT | Active TMS + PT group pre: 28.8 ± 14.9 post: 51.0 ± 11.1 p = 0.008 | Active PAS + PT group pre: 17.3 ± 11.6 post: 30.0 ± 14.3 p = 0.018 | PT group pre: 28.5 ± 18.2 post: 33.2 ± 19.9 p = 0.011 | Significance Not performed between groups comparison | |
Tarri, 2015 | Active PAS vs Sham PAS | No significant differences between the two groups | ||||
Mohamed, 2013 | Active PAS vs Placebo | Experimental group Increase of FMA-UE score: 6.1 ± 4.5 | Control group Increase of FMA-UE score: 4.6 ± 4.1 | Significance Not reported | ||
MI-UE | Tosun, 2017 | Active TMS + PT vs Active PAS + PT vs PT | Active TMS + PT group pre: 48.4 ± 22.8 post: 78.0 ± 17.5 p = 0.008 | Active PAS + PT group pre: 28.5 ± 11.1 post: 56.8 ± 18.9 p = 0.018 | PT group pre: 43.9 ± 27.0 post: 51.2 ± 27.6 p = 0.018 | Significance Between-group comparison not performed |
BRS-UE | Tosun, 2017 | Active TMS + PT vs Active PAS + PT vs PT | Active TMS + PT group pre: 3.4 ± 1.2 post: 4.8 ± 1.1 p = 0.01 | Active PAS + PT group pre: 2.3 ± 0.8 post: 4.0 ± 1.3 p = 0.016 | PT group pre: 3.2 ± 1.5 post: 3.89 ± 1.6 p = 0.034 | Significance Between-group comparison not performed |
Hand function | ||||||
JHFT | Rosso, 2022 | Active PAS + PT vs Sham PAS + PT | Experimental group pre: 5.92 ± 6.95 post: 6.00 ± 7.28 fu: 5.31 ± 6.66 | Control group pre: 9.03 ± 11.7 post: 9.71 ± 10.59 fu: 10.14 ± 12.38 | Significance Significant GROUP*TIME interaction (F (1, 26): 3.27, p: 0.04). There was no effect of TIME (F (2, 50): 0.6, p: 0.55) and GROUP (F (1, 25): 1.1, p: 0.29). The change in JHFT score between the active and the sham group was not significant at D5 (p: 0.16) but was at D30 (p: 0.01) | |
GS | Rosso, 2022 | Active PAS + PT vs Sham PAS + PT | Experimental group pre: 0.37 ± 0.27 post: 0.48 ± 0.24 fu: 0.53 ± 0.27 | Control group pre: 0.37 ± 0.26 post: 0.38 ± 0.26 fu: 0.41 ± 0.29 | Significance No effect of treatment (GROUP*TIME interaction: F (1.25): 0.60; p: 0.54) | |
STEF | Sui, 2021 | Ipsilateral PAS vs Contralateral PAS vs Bilateral PAS vs PT | Increase in STEF in stimulation groups compared to PT group | Significance Significative differences within group for the stimulation groups (p < 0.05) Significative differences between groups for the stimulation groups compared to PT group (p < 0.05) Significative differences between groups for the ipsilateral PAS25 and the contralateral PAS10 group compared to bilateral PAS group (p < 0.05) | ||
BRS-H | Tosun, 2017 | Active TMS + PT vs Active PAS + PT vs PT | Active TMS + PT group pre: 3.3 ± 1.4 post: 4.7 ± 1.2 p = 0.006 | Active PAS + PT group pre: 2.2 ± 0.4 post: 3.6 ± 0.9 p = 0.014 | PT group pre: 3.44 ± 1.3 post: 3.89 ± 1.5 p = 1.02 | Significance Not performed between groups comparison |
Muscle tone | ||||||
MAS | Tosun, 2017 | Active TMS + PT vs Active PAS + PT vs PT | Active TMS + PT group pre: 0.7 ± 0.9 post: 1.5 ± 1.0 p = 0.102 | Active PAS + PT group pre: 1 ± 0.8 post: 1.0±0.5 p = 0.083 | PT group pre: 0.7 ± 1.0 post: 1.0 ± 1.0 p = 0.180 | Significance Not performed between groups comparison |
ADL | ||||||
(M)BI | Sui, 2021 | Ipsilateral PAS vs Contralateral PAS vs Bilateral PAS vs PT | Increase in MBI in stimulation groups compared to PT group | Significance Significative differences within group for the stimulation groups (p < 0.05) Significative differences between groups for the stimulation groups compared to PT group (p < 0.05) Significative differences between groups for the ipsilateral PAS25 and the contralateral PAS10 group compared to bilateral PAS group (p < 0.05) | ||
BI | Tosun, 2017 | Active TMS + PT vs Active PAS + PT vs PT | Active TMS + PT group pre: 66.6 ± 22.7 post: 93.3 ± 6.1 p = 0.008 | Active PAS + PT group pre: 55.0 ± 22.1 post: 81.4 ± 20.1 p = 0.017 | PT group pre: 39.4 ± 22.3 post: 50.5 ± 32.1 p = 0.043 | Significance Not performed between groups comparison |
OTHER | ||||||
MCAS | Kuznietsova, 2016 | Active PAS vs Sham PAS | Experimental group Increase of MAS score: 40.4% | Control group Increase of MAS score: 17.1% | Significance Not reported | |
LOWER EXTREMITY | ||||||
BRAIN STRUCTURE | ||||||
MEP | Uy, 2003 | Active PAS | MEP-TArelaxed pre: 0.12 MEP-TArelaxed post: 0.19 MEP-PLrelaxed pre: 0.8 MEP-PLrelaxed post: 0.8 | MEP-TAactive pre: 0.74 MEP-TAactive post: 0.87 MEP-PLactive pre: 0.30 MEP-PLactive post: 0.34 | Significance No significance for grouped data | |
BODY FUNCTION | ||||||
Lower limb function | ||||||
MVC | Uy, 2003 | Active PAS | MVC-TA pre: 0.043 MVC-TA post: 0.055 MVC-PL pre: 0.014 MVC-PL post: 0.022 | Significance No significance for grouped data | ||
ROM | Uy, 2003 | Active PAS | No data reported | |||
ACTIVITIES | ||||||
Walking | ||||||
GAIT PARAMETERS | Uy, 2003 | Active PAS | No changes for 10 m timed walk, step and stride length, and cadence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baroni, A.; Antonioni, A.; Fregna, G.; Lamberti, N.; Manfredini, F.; Koch, G.; D’Ausilio, A.; Straudi, S. The Effectiveness of Paired Associative Stimulation on Motor Recovery after Stroke: A Scoping Review. Neurol. Int. 2024, 16, 567-589. https://doi.org/10.3390/neurolint16030043
Baroni A, Antonioni A, Fregna G, Lamberti N, Manfredini F, Koch G, D’Ausilio A, Straudi S. The Effectiveness of Paired Associative Stimulation on Motor Recovery after Stroke: A Scoping Review. Neurology International. 2024; 16(3):567-589. https://doi.org/10.3390/neurolint16030043
Chicago/Turabian StyleBaroni, Andrea, Annibale Antonioni, Giulia Fregna, Nicola Lamberti, Fabio Manfredini, Giacomo Koch, Alessandro D’Ausilio, and Sofia Straudi. 2024. "The Effectiveness of Paired Associative Stimulation on Motor Recovery after Stroke: A Scoping Review" Neurology International 16, no. 3: 567-589. https://doi.org/10.3390/neurolint16030043
APA StyleBaroni, A., Antonioni, A., Fregna, G., Lamberti, N., Manfredini, F., Koch, G., D’Ausilio, A., & Straudi, S. (2024). The Effectiveness of Paired Associative Stimulation on Motor Recovery after Stroke: A Scoping Review. Neurology International, 16(3), 567-589. https://doi.org/10.3390/neurolint16030043