SCN8A Encephalopathy: Case Report and Literature Review
Abstract
:1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berg, A.T.; Berkovic, S.F.; Brodie, M.J.; Buchhalter, J.; Cross, J.H.; van Emde Boas, W.; Engel, J.; French, J.; Glauser, T.A.; Mathern, G.W.; et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010, 51, 676–685. [Google Scholar] [CrossRef]
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshe, S.L.; Peltola, J.; Roulet Perez, E.; et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheffer, I.E.; Liao, J. Deciphering the concepts behind “Epileptic encephalopathy” and “Developmental and epileptic encephalopathy”. Eur. J. Paediatr. Neurol. 2020, 24, 11–14. [Google Scholar] [CrossRef]
- Larsen, J.; Carvill, G.L.; Gardella, E.; Kluger, G.; Schmiedel, G.; Barisic, N.; Depienne, C.; Brilstra, E.; Mang, Y.; Nielsen, J.E.; et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology 2015, 84, 480–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Specchio, N.; Curatolo, P. Developmental and epileptic encephalopathies: What we do and do not know. Brain 2020, 144, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A.; Goldin, A.L.; Waxman, S.G. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 2005, 57, 397–409. [Google Scholar] [CrossRef]
- Meisler, M.H. SCN8A encephalopathy: Mechanisms and models. Epilepsia 2019, 60 (Suppl. 3), S86–S91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardella, E.; Moller, R.S. Phenotypic and genetic spectrum of SCN8A-related disorders, treatment options, and outcomes. Epilepsia 2019, 60 (Suppl. 3), S77–S85. [Google Scholar] [CrossRef] [Green Version]
- Denis, J.; Villeneuve, N.; Cacciagli, P.; Mignon-Ravix, C.; Lacoste, C.; Lefranc, J.; Napuri, S.; Damaj, L.; Villega, F.; Pedespan, J.M.; et al. Clinical study of 19 patients with SCN8A-related epilepsy: Two modes of onset regarding EEG and seizures. Epilepsia 2019, 60, 845–856. [Google Scholar] [CrossRef]
- Gertler, T.S.; Carvill, G.L. SCN8A: When Neurons Are So Excited, They Just Can’t Hide It. Epilepsy Curr. 2019, 19, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Braakman, H.M.; Verhoeven, J.S.; Erasmus, C.E.; Haaxma, C.A.; Willemsen, M.H.; Schelhaas, H.J. Phenytoin as a last-resort treatment in SCN8A encephalopathy. Epilepsia Open 2017, 2, 343–344. [Google Scholar] [CrossRef]
- Ohba, C.; Kato, M.; Takahashi, S.; Lerman-Sagie, T.; Lev, D.; Terashima, H.; Kubota, M.; Kawawaki, H.; Matsufuji, M.; Kojima, Y.; et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia 2014, 55, 994–1000. [Google Scholar] [CrossRef]
- De Kovel, C.G.; Meisler, M.H.; Brilstra, E.H.; van Berkestijn, F.M.; van’t Slot, R.; van Lieshout, S.; Nijman, I.J.; O’Brien, J.E.; Hammer, M.F.; Estacion, M.; et al. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res. 2014, 108, 1511–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boerma, R.S.; Braun, K.P.; van den Broek, M.P.; van Berkestijn, F.M.; Swinkels, M.E.; Hagebeuk, E.O.; Lindhout, D.; van Kempen, M.; Boon, M.; Nicolai, J.; et al. Remarkable Phenytoin Sensitivity in 4 Children with SCN8A-related Epilepsy: A Molecular Neuropharmacological Approach. Neurotherapeutics 2016, 13, 192–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estacion, M.; O’Brien, J.E.; Conravey, A.; Hammer, M.F.; Waxman, S.G.; Dib-Hajj, S.D.; Meisler, M.H. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol. Dis. 2014, 69, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaher, U.; Noukas, M.; Nikopensius, T.; Kals, M.; Annilo, T.; Nelis, M.; Ounap, K.; Reimand, T.; Talvik, I.; Ilves, P.; et al. De novo SCN8A mutation identified by whole-exome sequencing in a boy with neonatal epileptic encephalopathy, multiple congenital anomalies, and movement disorders. J. Child Neurol. 2014, 29, NP202–NP206. [Google Scholar] [CrossRef] [PubMed]
- Rauch, A.; Wieczorek, D.; Graf, E.; Wieland, T.; Endele, S.; Schwarzmayr, T.; Albrecht, B.; Bartholdi, D.; Beygo, J.; Di Donato, N.; et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: An exome sequencing study. Lancet 2012, 380, 1674–1682. [Google Scholar] [CrossRef]
- Blanchard, M.G.; Willemsen, M.H.; Walker, J.B.; Dib-Hajj, S.D.; Waxman, S.G.; Jongmans, M.C.; Kleefstra, T.; van de Warrenburg, B.P.; Praamstra, P.; Nicolai, J.; et al. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J. Med. Genet. 2015, 52, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veeramah, K.R.; O’Brien, J.E.; Meisler, M.H.; Cheng, X.; Dib-Hajj, S.D.; Waxman, S.G.; Talwar, D.; Girirajan, S.; Eichler, E.E.; Restifo, L.L.; et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am. J. Hum. Genet. 2012, 90, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Atanasoska, M.V.R.; Ivanov, I.; Balabanski, L.; Andonova, S.; Ivanov, S.; Pacheva, I.; Malinov, M.; Toncheva, D. SCN8A p.Arg1872Gln mutation in early infantile epileptic encephalopathy type 13: Review and case report. Biotechnol. Biotechnol. Equip. 2018, 32, 7. [Google Scholar] [CrossRef]
- Johannesen, K.M.; Gardella, E.; Scheffer, I.; Howell, K.; Smith, D.M.; Helbig, I.; Moller, R.S.; Rubboli, G. Early mortality in SCN8A-related epilepsies. Epilepsy Res. 2018, 143, 79–81. [Google Scholar] [CrossRef]
- O’Brien, J.E.; Meisler, M.H. Sodium channel SCN8A (Nav1.6): Properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front. Genet. 2013, 4, 213. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Jayapal, S.; Goyal, S.; Jungbluth, H.; Lascelles, K. Early-onset movement disorder and epileptic encephalopathy due to de novo dominant SCN8A mutation. Seizure 2015, 26, 69–71. [Google Scholar] [CrossRef] [Green Version]
- Gardella, E.; Becker, F.; Moller, R.S.; Schubert, J.; Lemke, J.R.; Larsen, L.H.; Eiberg, H.; Nothnagel, M.; Thiele, H.; Altmuller, J.; et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann. Neurol. 2016, 79, 428–436. [Google Scholar] [CrossRef]
- Wagnon, J.L.; Barker, B.S.; Ottolini, M.; Park, Y.; Volkheimer, A.; Valdez, P.; Swinkels, M.E.M.; Patel, M.K.; Meisler, M.H. Loss-of-function variants of SCN8A in intellectual disability without seizures. Neurol. Genet. 2017, 3, e170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagnon, J.L.; Mencacci, N.E.; Barker, B.S.; Wengert, E.R.; Bhatia, K.P.; Balint, B.; Carecchio, M.; Wood, N.W.; Patel, M.K.; Meisler, M.H. Partial loss-of-function of sodium channel SCN8A in familial isolated myoclonus. Hum. Mutat. 2018, 39, 965–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duflocq, A.; Le Bras, B.; Bullier, E.; Couraud, F.; Davenne, M. Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments. Mol. Cell Neurosci. 2008, 39, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Gasser, A.; Ho, T.S.; Cheng, X.; Chang, K.J.; Waxman, S.G.; Rasband, M.N.; Dib-Hajj, S.D. An ankyrinG-binding motif is necessary and sufficient for targeting Nav1.6 sodium channels to axon initial segments and nodes of Ranvier. J. Neurosci. 2012, 32, 7232–7243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leterrier, C.; Potier, J.; Caillol, G.; Debarnot, C.; Rueda Boroni, F.; Dargent, B. Nanoscale Architecture of the Axon Initial Segment Reveals an Organized and Robust Scaffold. Cell Rep. 2015, 13, 2781–2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osorio, N.; Alcaraz, G.; Padilla, F.; Couraud, F.; Delmas, P.; Crest, M. Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells. J. Physiol. 2005, 569, 801–816. [Google Scholar] [CrossRef]
- Osorio, N.; Cathala, L.; Meisler, M.H.; Crest, M.; Magistretti, J.; Delmas, P. Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells. J. Physiol. 2010, 588, 651–670. [Google Scholar] [CrossRef]
- Van Wart, A.; Trimmer, J.S.; Matthews, G. Polarized distribution of ion channels within microdomains of the axon initial segment. J. Comp. Neurol. 2007, 500, 339–352. [Google Scholar] [CrossRef]
- Schaller, K.L.; Caldwell, J.H. Developmental and regional expression of sodium channel isoform NaCh6 in the rat central nervous system. J. Comp. Neurol. 2000, 420, 84–97. [Google Scholar] [CrossRef]
- Schaller, K.L.; Caldwell, J.H. Expression and distribution of voltage-gated sodium channels in the cerebellum. Cerebellum 2003, 2, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Schaller, K.L.; Krzemien, D.M.; Yarowsky, P.J.; Krueger, B.K.; Caldwell, J.H. A novel, abundant sodium channel expressed in neurons and glia. J. Neurosci. 1995, 15, 3231–3242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, D.L.; Kohrman, D.C.; Galt, J.; Plummer, N.W.; Jones, J.M.; Spear, B.; Meisler, M.H. Mutation of a new sodium channel gene, Scn8a, in the mouse mutant ‘motor endplate disease’. Nat. Genet. 1995, 10, 461–465. [Google Scholar] [CrossRef]
- Chen, K.; Godfrey, D.A.; Ilyas, O.; Xu, J.; Preston, T.W. Cerebellum-related characteristics of Scn8a-mutant mice. Cerebellum 2009, 8, 192–201. [Google Scholar] [CrossRef]
- Kearney, J.A.; Buchner, D.A.; De Haan, G.; Adamska, M.; Levin, S.I.; Furay, A.R.; Albin, R.L.; Jones, J.M.; Montal, M.; Stevens, M.J.; et al. Molecular and pathological effects of a modifier gene on deficiency of the sodium channel Scn8a (Na(v)1.6). Hum. Mol. Genet. 2002, 11, 2765–2775. [Google Scholar] [CrossRef] [Green Version]
- Levin, S.I.; Khaliq, Z.M.; Aman, T.K.; Grieco, T.M.; Kearney, J.A.; Raman, I.M.; Meisler, M.H. Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar purkinje neurons and granule cells. J. Neurophysiol. 2006, 96, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Woodruff-Pak, D.S.; Green, J.T.; Levin, S.I.; Meisler, M.H. Inactivation of sodium channel Scn8A (Na-sub(v)1.6) in Purkinje neurons impairs learning in Morris water maze and delay but not trace eyeblink classical conditioning. Behav. Neurosci. 2006, 120, 229–240. [Google Scholar] [CrossRef]
- Zaydman, M.A.; Silva, J.R.; Cui, J. Ion channel associated diseases: Overview of molecular mechanisms. Chem. Rev. 2012, 112, 6319–6333. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Schubert, J.; Sonnenberg, L.; Helbig, K.L.; Hoei-Hansen, C.E.; Koko, M.; Rannap, M.; Lauxmann, S.; Huq, M.; Schneider, M.C.; et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain 2019, 142, 376–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trump, N.; McTague, A.; Brittain, H.; Papandreou, A.; Meyer, E.; Ngoh, A.; Palmer, R.; Morrogh, D.; Boustred, C.; Hurst, J.A.; et al. Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J. Med. Genet. 2016, 53, 310–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beydoun, A. Safety and efficacy of oxcarbazepine: Results of randomized, double-blind trials. Pharmacotherapy 2000, 20, 152S–158S. [Google Scholar] [CrossRef] [Green Version]
- Beydoun, A.; Sachdeo, R.C.; Rosenfeld, W.E.; Krauss, G.L.; Sessler, N.; Mesenbrink, P.; Kramer, L.; D’Souza, J. Oxcarbazepine monotherapy for partial-onset seizures: A multicenter, double-blind, clinical trial. Neurology 2000, 54, 2245–2251. [Google Scholar] [CrossRef]
- Huang, C.W.; Huang, C.C.; Lin, M.W.; Tsai, J.J.; Wu, S.N. The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108-15 neuronal cells and model neurons. Int. J. Neuropsychopharmacol. 2008, 11, 597–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipkind, G.M.; Fozzard, H.A. Molecular model of anticonvulsant drug binding to the voltage-gated sodium channel inner pore. Mol. Pharmacol. 2010, 78, 631–638. [Google Scholar] [CrossRef]
- Wong, P.T.; Teo, W.L. The effect of phenytoin on glutamate and GABA transport. Neurochem. Res. 1986, 11, 1379–1382. [Google Scholar] [CrossRef]
- Cunningham, M.O.; Dhillon, A.; Wood, S.J.; Jones, R.S. Reciprocal modulation of glutamate and GABA release may underlie the anticonvulsant effect of phenytoin. Neuroscience 2000, 95, 343–351. [Google Scholar] [CrossRef]
- Griffith, W.H.; Taylor, L. Phenytoin reduces excitatory synaptic transmission and post-tetanic potentiation in the in vitro hippocampus. J. Pharmacol. Exp. Ther. 1988, 246, 851–858. [Google Scholar]
- Yu, F.H.; Mantegazza, M.; Westenbroek, R.E.; Robbins, C.A.; Kalume, F.; Burton, K.A.; Spain, W.J.; McKnight, G.S.; Scheuer, T.; Catterall, W.A. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 2006, 9, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.C.; D’Alessandro, G. The ion channel inverse problem: Neuroinformatics meets biophysics. PLoS Comput. Biol. 2006, 2, e91. [Google Scholar] [CrossRef]
- Heyne, H.O.; Baez-Nieto, D.; Iqbal, S.; Palmer, D.S.; Brunklaus, A.; May, P.; Epi, C.; Johannesen, K.M.; Lauxmann, S.; Lemke, J.R.; et al. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci. Transl. Med. 2020, 12, eaay6848. [Google Scholar] [CrossRef] [PubMed]
- Cummins, T.R.; Dib-Hajj, S.D.; Herzog, R.I.; Waxman, S.G. Nav1.6 channels generate resurgent sodium currents in spinal sensory neurons. FEBS Lett. 2005, 579, 2166–2170. [Google Scholar] [CrossRef] [Green Version]
- Do, M.T.; Bean, B.P. Sodium currents in subthalamic nucleus neurons from Nav1.6-null mice. J. Neurophysiol. 2004, 92, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Raman, I.M.; Sprunger, L.K.; Meisler, M.H.; Bean, B.P. Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 1997, 19, 881–891. [Google Scholar] [CrossRef] [Green Version]
Case | Position | PM | Gender | Onset Age | SZ | IT | SF | DD | ID | WA | AEDs | PHT | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | V216D | GOF | F | 7 mo | + | + | − | + | + | − | + | NE | [12] |
2 | R223G | GOF/LOF | F | 6 mo | + | + | − | + | + | − | + | NE | [13] |
3 | F260S | NA | F | 4 mo | + | + | − | + | + | − | + | E | [14] |
4 | T767I | GOF | M | 0 | + | + | − | + | + | NA | + | NE | [15] |
5 | F864S | NA | M | 0 | + | + | + | + | − | + | E | [12] | |
6 | N984K | GOF | M | 6 wk | + | + | + | + | + | − | + | E | [14] |
7 | I1327V | GOF | M | 0 | + | + | − | + | + | − | + | E | [16] |
8 | G1451S | LOF | M | 18 mo | − | − | − | + | + | + | NA | NA | [12] |
9 | N1466K | NA | M | 3 d | + | + | − | + | + | − | + | E | [12] |
10 | N1466T | NA | M | 4 mo | + | + | − | + | + | + | + | E | [12] |
11 | S1596C | NA | M | 5 mo | + | + | + | + | + | NA | + | E | [14] |
12 | R1617Q | GOF | F | 3 mo | + | + | − | + | + | − | + | NE | [12] |
13 | R1617Q | GOF | F | NA | NA | NA | NA | + | + | NA | NA | NA | [17] |
14 | A1650T | NA | M | 3.5 mo | + | + | − | + | + | − | + | NE | [12] |
15 | P1719R | NA | M | 0 | − | − | − | + | + | − | NA | NA | [18] |
16 | N1768D | GOF | F | 0 | + | + | NA | + | + | + | NA | NA | [19] |
17 | R1872W | GOF | F | 3 mo | + | + | + | + | + | − | + | NE | [14] |
18 | R1872W | GOF | F | 4 mo | + | + | − | + | + | − | + | NE | [12] |
19 | R1872W | GOF | F | 7 mo | + | + | − | + | + | + | NA | NA | [20] |
20 | R1872W | GOF | F | 4 mo | + | + | − | + | + | NA | + | E | [20] |
21 | R1872W | GOF | M | 4 mo | + | + | − | + | + | NA | + | E | [20] |
22 | R1872W | GOF | M | 4 mo | + | + | − | + | + | + | + | NE | [20] |
23 | R1872W | GOF | F | 3 mo | + | + | − | + | + | − | + | E | [20] |
24 | R1872W | GOF | M | 4 mo | + | − | − | − | − | − | + | NE | [20] |
25 | E1870D | NA | M | 3.5 mo | + | + | − | + | + | NA | + | E | [20] |
26 | L1865P | NA | F | 5 mo | + | + | + | + | + | − | + | E | Fan et al. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.-C.; Lee, H.-F.; Chi, C.-S. SCN8A Encephalopathy: Case Report and Literature Review. Neurol. Int. 2021, 13, 143-150. https://doi.org/10.3390/neurolint13020014
Fan H-C, Lee H-F, Chi C-S. SCN8A Encephalopathy: Case Report and Literature Review. Neurology International. 2021; 13(2):143-150. https://doi.org/10.3390/neurolint13020014
Chicago/Turabian StyleFan, Hueng-Chuen, Hsiu-Fen Lee, and Ching-Shiang Chi. 2021. "SCN8A Encephalopathy: Case Report and Literature Review" Neurology International 13, no. 2: 143-150. https://doi.org/10.3390/neurolint13020014
APA StyleFan, H. -C., Lee, H. -F., & Chi, C. -S. (2021). SCN8A Encephalopathy: Case Report and Literature Review. Neurology International, 13(2), 143-150. https://doi.org/10.3390/neurolint13020014