SCN8A Encephalopathy: Case Report and Literature Review
Abstract
1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berg, A.T.; Berkovic, S.F.; Brodie, M.J.; Buchhalter, J.; Cross, J.H.; van Emde Boas, W.; Engel, J.; French, J.; Glauser, T.A.; Mathern, G.W.; et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010, 51, 676–685. [Google Scholar] [CrossRef]
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshe, S.L.; Peltola, J.; Roulet Perez, E.; et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, I.E.; Liao, J. Deciphering the concepts behind “Epileptic encephalopathy” and “Developmental and epileptic encephalopathy”. Eur. J. Paediatr. Neurol. 2020, 24, 11–14. [Google Scholar] [CrossRef]
- Larsen, J.; Carvill, G.L.; Gardella, E.; Kluger, G.; Schmiedel, G.; Barisic, N.; Depienne, C.; Brilstra, E.; Mang, Y.; Nielsen, J.E.; et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology 2015, 84, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Specchio, N.; Curatolo, P. Developmental and epileptic encephalopathies: What we do and do not know. Brain 2020, 144, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A.; Goldin, A.L.; Waxman, S.G. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 2005, 57, 397–409. [Google Scholar] [CrossRef]
- Meisler, M.H. SCN8A encephalopathy: Mechanisms and models. Epilepsia 2019, 60 (Suppl. 3), S86–S91. [Google Scholar] [CrossRef] [PubMed]
- Gardella, E.; Moller, R.S. Phenotypic and genetic spectrum of SCN8A-related disorders, treatment options, and outcomes. Epilepsia 2019, 60 (Suppl. 3), S77–S85. [Google Scholar] [CrossRef]
- Denis, J.; Villeneuve, N.; Cacciagli, P.; Mignon-Ravix, C.; Lacoste, C.; Lefranc, J.; Napuri, S.; Damaj, L.; Villega, F.; Pedespan, J.M.; et al. Clinical study of 19 patients with SCN8A-related epilepsy: Two modes of onset regarding EEG and seizures. Epilepsia 2019, 60, 845–856. [Google Scholar] [CrossRef]
- Gertler, T.S.; Carvill, G.L. SCN8A: When Neurons Are So Excited, They Just Can’t Hide It. Epilepsy Curr. 2019, 19, 269–271. [Google Scholar] [CrossRef]
- Braakman, H.M.; Verhoeven, J.S.; Erasmus, C.E.; Haaxma, C.A.; Willemsen, M.H.; Schelhaas, H.J. Phenytoin as a last-resort treatment in SCN8A encephalopathy. Epilepsia Open 2017, 2, 343–344. [Google Scholar] [CrossRef]
- Ohba, C.; Kato, M.; Takahashi, S.; Lerman-Sagie, T.; Lev, D.; Terashima, H.; Kubota, M.; Kawawaki, H.; Matsufuji, M.; Kojima, Y.; et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia 2014, 55, 994–1000. [Google Scholar] [CrossRef]
- De Kovel, C.G.; Meisler, M.H.; Brilstra, E.H.; van Berkestijn, F.M.; van’t Slot, R.; van Lieshout, S.; Nijman, I.J.; O’Brien, J.E.; Hammer, M.F.; Estacion, M.; et al. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res. 2014, 108, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Boerma, R.S.; Braun, K.P.; van den Broek, M.P.; van Berkestijn, F.M.; Swinkels, M.E.; Hagebeuk, E.O.; Lindhout, D.; van Kempen, M.; Boon, M.; Nicolai, J.; et al. Remarkable Phenytoin Sensitivity in 4 Children with SCN8A-related Epilepsy: A Molecular Neuropharmacological Approach. Neurotherapeutics 2016, 13, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Estacion, M.; O’Brien, J.E.; Conravey, A.; Hammer, M.F.; Waxman, S.G.; Dib-Hajj, S.D.; Meisler, M.H. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol. Dis. 2014, 69, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Vaher, U.; Noukas, M.; Nikopensius, T.; Kals, M.; Annilo, T.; Nelis, M.; Ounap, K.; Reimand, T.; Talvik, I.; Ilves, P.; et al. De novo SCN8A mutation identified by whole-exome sequencing in a boy with neonatal epileptic encephalopathy, multiple congenital anomalies, and movement disorders. J. Child Neurol. 2014, 29, NP202–NP206. [Google Scholar] [CrossRef] [PubMed]
- Rauch, A.; Wieczorek, D.; Graf, E.; Wieland, T.; Endele, S.; Schwarzmayr, T.; Albrecht, B.; Bartholdi, D.; Beygo, J.; Di Donato, N.; et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: An exome sequencing study. Lancet 2012, 380, 1674–1682. [Google Scholar] [CrossRef]
- Blanchard, M.G.; Willemsen, M.H.; Walker, J.B.; Dib-Hajj, S.D.; Waxman, S.G.; Jongmans, M.C.; Kleefstra, T.; van de Warrenburg, B.P.; Praamstra, P.; Nicolai, J.; et al. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J. Med. Genet. 2015, 52, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Veeramah, K.R.; O’Brien, J.E.; Meisler, M.H.; Cheng, X.; Dib-Hajj, S.D.; Waxman, S.G.; Talwar, D.; Girirajan, S.; Eichler, E.E.; Restifo, L.L.; et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am. J. Hum. Genet. 2012, 90, 502–510. [Google Scholar] [CrossRef]
- Atanasoska, M.V.R.; Ivanov, I.; Balabanski, L.; Andonova, S.; Ivanov, S.; Pacheva, I.; Malinov, M.; Toncheva, D. SCN8A p.Arg1872Gln mutation in early infantile epileptic encephalopathy type 13: Review and case report. Biotechnol. Biotechnol. Equip. 2018, 32, 7. [Google Scholar] [CrossRef]
- Johannesen, K.M.; Gardella, E.; Scheffer, I.; Howell, K.; Smith, D.M.; Helbig, I.; Moller, R.S.; Rubboli, G. Early mortality in SCN8A-related epilepsies. Epilepsy Res. 2018, 143, 79–81. [Google Scholar] [CrossRef]
- O’Brien, J.E.; Meisler, M.H. Sodium channel SCN8A (Nav1.6): Properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front. Genet. 2013, 4, 213. [Google Scholar] [CrossRef]
- Singh, R.; Jayapal, S.; Goyal, S.; Jungbluth, H.; Lascelles, K. Early-onset movement disorder and epileptic encephalopathy due to de novo dominant SCN8A mutation. Seizure 2015, 26, 69–71. [Google Scholar] [CrossRef]
- Gardella, E.; Becker, F.; Moller, R.S.; Schubert, J.; Lemke, J.R.; Larsen, L.H.; Eiberg, H.; Nothnagel, M.; Thiele, H.; Altmuller, J.; et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann. Neurol. 2016, 79, 428–436. [Google Scholar] [CrossRef]
- Wagnon, J.L.; Barker, B.S.; Ottolini, M.; Park, Y.; Volkheimer, A.; Valdez, P.; Swinkels, M.E.M.; Patel, M.K.; Meisler, M.H. Loss-of-function variants of SCN8A in intellectual disability without seizures. Neurol. Genet. 2017, 3, e170. [Google Scholar] [CrossRef] [PubMed]
- Wagnon, J.L.; Mencacci, N.E.; Barker, B.S.; Wengert, E.R.; Bhatia, K.P.; Balint, B.; Carecchio, M.; Wood, N.W.; Patel, M.K.; Meisler, M.H. Partial loss-of-function of sodium channel SCN8A in familial isolated myoclonus. Hum. Mutat. 2018, 39, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Duflocq, A.; Le Bras, B.; Bullier, E.; Couraud, F.; Davenne, M. Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments. Mol. Cell Neurosci. 2008, 39, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Gasser, A.; Ho, T.S.; Cheng, X.; Chang, K.J.; Waxman, S.G.; Rasband, M.N.; Dib-Hajj, S.D. An ankyrinG-binding motif is necessary and sufficient for targeting Nav1.6 sodium channels to axon initial segments and nodes of Ranvier. J. Neurosci. 2012, 32, 7232–7243. [Google Scholar] [CrossRef] [PubMed]
- Leterrier, C.; Potier, J.; Caillol, G.; Debarnot, C.; Rueda Boroni, F.; Dargent, B. Nanoscale Architecture of the Axon Initial Segment Reveals an Organized and Robust Scaffold. Cell Rep. 2015, 13, 2781–2793. [Google Scholar] [CrossRef] [PubMed]
- Osorio, N.; Alcaraz, G.; Padilla, F.; Couraud, F.; Delmas, P.; Crest, M. Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells. J. Physiol. 2005, 569, 801–816. [Google Scholar] [CrossRef]
- Osorio, N.; Cathala, L.; Meisler, M.H.; Crest, M.; Magistretti, J.; Delmas, P. Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells. J. Physiol. 2010, 588, 651–670. [Google Scholar] [CrossRef]
- Van Wart, A.; Trimmer, J.S.; Matthews, G. Polarized distribution of ion channels within microdomains of the axon initial segment. J. Comp. Neurol. 2007, 500, 339–352. [Google Scholar] [CrossRef]
- Schaller, K.L.; Caldwell, J.H. Developmental and regional expression of sodium channel isoform NaCh6 in the rat central nervous system. J. Comp. Neurol. 2000, 420, 84–97. [Google Scholar] [CrossRef]
- Schaller, K.L.; Caldwell, J.H. Expression and distribution of voltage-gated sodium channels in the cerebellum. Cerebellum 2003, 2, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Schaller, K.L.; Krzemien, D.M.; Yarowsky, P.J.; Krueger, B.K.; Caldwell, J.H. A novel, abundant sodium channel expressed in neurons and glia. J. Neurosci. 1995, 15, 3231–3242. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.L.; Kohrman, D.C.; Galt, J.; Plummer, N.W.; Jones, J.M.; Spear, B.; Meisler, M.H. Mutation of a new sodium channel gene, Scn8a, in the mouse mutant ‘motor endplate disease’. Nat. Genet. 1995, 10, 461–465. [Google Scholar] [CrossRef]
- Chen, K.; Godfrey, D.A.; Ilyas, O.; Xu, J.; Preston, T.W. Cerebellum-related characteristics of Scn8a-mutant mice. Cerebellum 2009, 8, 192–201. [Google Scholar] [CrossRef]
- Kearney, J.A.; Buchner, D.A.; De Haan, G.; Adamska, M.; Levin, S.I.; Furay, A.R.; Albin, R.L.; Jones, J.M.; Montal, M.; Stevens, M.J.; et al. Molecular and pathological effects of a modifier gene on deficiency of the sodium channel Scn8a (Na(v)1.6). Hum. Mol. Genet. 2002, 11, 2765–2775. [Google Scholar] [CrossRef]
- Levin, S.I.; Khaliq, Z.M.; Aman, T.K.; Grieco, T.M.; Kearney, J.A.; Raman, I.M.; Meisler, M.H. Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar purkinje neurons and granule cells. J. Neurophysiol. 2006, 96, 785–793. [Google Scholar] [CrossRef]
- Woodruff-Pak, D.S.; Green, J.T.; Levin, S.I.; Meisler, M.H. Inactivation of sodium channel Scn8A (Na-sub(v)1.6) in Purkinje neurons impairs learning in Morris water maze and delay but not trace eyeblink classical conditioning. Behav. Neurosci. 2006, 120, 229–240. [Google Scholar] [CrossRef]
- Zaydman, M.A.; Silva, J.R.; Cui, J. Ion channel associated diseases: Overview of molecular mechanisms. Chem. Rev. 2012, 112, 6319–6333. [Google Scholar] [CrossRef]
- Liu, Y.; Schubert, J.; Sonnenberg, L.; Helbig, K.L.; Hoei-Hansen, C.E.; Koko, M.; Rannap, M.; Lauxmann, S.; Huq, M.; Schneider, M.C.; et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain 2019, 142, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Trump, N.; McTague, A.; Brittain, H.; Papandreou, A.; Meyer, E.; Ngoh, A.; Palmer, R.; Morrogh, D.; Boustred, C.; Hurst, J.A.; et al. Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J. Med. Genet. 2016, 53, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, A. Safety and efficacy of oxcarbazepine: Results of randomized, double-blind trials. Pharmacotherapy 2000, 20, 152S–158S. [Google Scholar] [CrossRef]
- Beydoun, A.; Sachdeo, R.C.; Rosenfeld, W.E.; Krauss, G.L.; Sessler, N.; Mesenbrink, P.; Kramer, L.; D’Souza, J. Oxcarbazepine monotherapy for partial-onset seizures: A multicenter, double-blind, clinical trial. Neurology 2000, 54, 2245–2251. [Google Scholar] [CrossRef]
- Huang, C.W.; Huang, C.C.; Lin, M.W.; Tsai, J.J.; Wu, S.N. The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108-15 neuronal cells and model neurons. Int. J. Neuropsychopharmacol. 2008, 11, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Lipkind, G.M.; Fozzard, H.A. Molecular model of anticonvulsant drug binding to the voltage-gated sodium channel inner pore. Mol. Pharmacol. 2010, 78, 631–638. [Google Scholar] [CrossRef]
- Wong, P.T.; Teo, W.L. The effect of phenytoin on glutamate and GABA transport. Neurochem. Res. 1986, 11, 1379–1382. [Google Scholar] [CrossRef]
- Cunningham, M.O.; Dhillon, A.; Wood, S.J.; Jones, R.S. Reciprocal modulation of glutamate and GABA release may underlie the anticonvulsant effect of phenytoin. Neuroscience 2000, 95, 343–351. [Google Scholar] [CrossRef]
- Griffith, W.H.; Taylor, L. Phenytoin reduces excitatory synaptic transmission and post-tetanic potentiation in the in vitro hippocampus. J. Pharmacol. Exp. Ther. 1988, 246, 851–858. [Google Scholar]
- Yu, F.H.; Mantegazza, M.; Westenbroek, R.E.; Robbins, C.A.; Kalume, F.; Burton, K.A.; Spain, W.J.; McKnight, G.S.; Scheuer, T.; Catterall, W.A. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 2006, 9, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.C.; D’Alessandro, G. The ion channel inverse problem: Neuroinformatics meets biophysics. PLoS Comput. Biol. 2006, 2, e91. [Google Scholar] [CrossRef]
- Heyne, H.O.; Baez-Nieto, D.; Iqbal, S.; Palmer, D.S.; Brunklaus, A.; May, P.; Epi, C.; Johannesen, K.M.; Lauxmann, S.; Lemke, J.R.; et al. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci. Transl. Med. 2020, 12, eaay6848. [Google Scholar] [CrossRef] [PubMed]
- Cummins, T.R.; Dib-Hajj, S.D.; Herzog, R.I.; Waxman, S.G. Nav1.6 channels generate resurgent sodium currents in spinal sensory neurons. FEBS Lett. 2005, 579, 2166–2170. [Google Scholar] [CrossRef]
- Do, M.T.; Bean, B.P. Sodium currents in subthalamic nucleus neurons from Nav1.6-null mice. J. Neurophysiol. 2004, 92, 726–733. [Google Scholar] [CrossRef]
- Raman, I.M.; Sprunger, L.K.; Meisler, M.H.; Bean, B.P. Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 1997, 19, 881–891. [Google Scholar] [CrossRef]
Case | Position | PM | Gender | Onset Age | SZ | IT | SF | DD | ID | WA | AEDs | PHT | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | V216D | GOF | F | 7 mo | + | + | − | + | + | − | + | NE | [12] |
2 | R223G | GOF/LOF | F | 6 mo | + | + | − | + | + | − | + | NE | [13] |
3 | F260S | NA | F | 4 mo | + | + | − | + | + | − | + | E | [14] |
4 | T767I | GOF | M | 0 | + | + | − | + | + | NA | + | NE | [15] |
5 | F864S | NA | M | 0 | + | + | + | + | − | + | E | [12] | |
6 | N984K | GOF | M | 6 wk | + | + | + | + | + | − | + | E | [14] |
7 | I1327V | GOF | M | 0 | + | + | − | + | + | − | + | E | [16] |
8 | G1451S | LOF | M | 18 mo | − | − | − | + | + | + | NA | NA | [12] |
9 | N1466K | NA | M | 3 d | + | + | − | + | + | − | + | E | [12] |
10 | N1466T | NA | M | 4 mo | + | + | − | + | + | + | + | E | [12] |
11 | S1596C | NA | M | 5 mo | + | + | + | + | + | NA | + | E | [14] |
12 | R1617Q | GOF | F | 3 mo | + | + | − | + | + | − | + | NE | [12] |
13 | R1617Q | GOF | F | NA | NA | NA | NA | + | + | NA | NA | NA | [17] |
14 | A1650T | NA | M | 3.5 mo | + | + | − | + | + | − | + | NE | [12] |
15 | P1719R | NA | M | 0 | − | − | − | + | + | − | NA | NA | [18] |
16 | N1768D | GOF | F | 0 | + | + | NA | + | + | + | NA | NA | [19] |
17 | R1872W | GOF | F | 3 mo | + | + | + | + | + | − | + | NE | [14] |
18 | R1872W | GOF | F | 4 mo | + | + | − | + | + | − | + | NE | [12] |
19 | R1872W | GOF | F | 7 mo | + | + | − | + | + | + | NA | NA | [20] |
20 | R1872W | GOF | F | 4 mo | + | + | − | + | + | NA | + | E | [20] |
21 | R1872W | GOF | M | 4 mo | + | + | − | + | + | NA | + | E | [20] |
22 | R1872W | GOF | M | 4 mo | + | + | − | + | + | + | + | NE | [20] |
23 | R1872W | GOF | F | 3 mo | + | + | − | + | + | − | + | E | [20] |
24 | R1872W | GOF | M | 4 mo | + | − | − | − | − | − | + | NE | [20] |
25 | E1870D | NA | M | 3.5 mo | + | + | − | + | + | NA | + | E | [20] |
26 | L1865P | NA | F | 5 mo | + | + | + | + | + | − | + | E | Fan et al. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.-C.; Lee, H.-F.; Chi, C.-S. SCN8A Encephalopathy: Case Report and Literature Review. Neurol. Int. 2021, 13, 143-150. https://doi.org/10.3390/neurolint13020014
Fan H-C, Lee H-F, Chi C-S. SCN8A Encephalopathy: Case Report and Literature Review. Neurology International. 2021; 13(2):143-150. https://doi.org/10.3390/neurolint13020014
Chicago/Turabian StyleFan, Hueng-Chuen, Hsiu-Fen Lee, and Ching-Shiang Chi. 2021. "SCN8A Encephalopathy: Case Report and Literature Review" Neurology International 13, no. 2: 143-150. https://doi.org/10.3390/neurolint13020014
APA StyleFan, H.-C., Lee, H.-F., & Chi, C.-S. (2021). SCN8A Encephalopathy: Case Report and Literature Review. Neurology International, 13(2), 143-150. https://doi.org/10.3390/neurolint13020014