Polygenic Risk Scores and Coronary Artery Disease
Abstract
1. Introduction
2. Methods for Study Selection
3. What Are Polygenic Risk Scores?
4. Using PRS to Identify Individuals at Risk for Coronary Artery Disease
5. PRS and Coronary Artery Calcification
6. PRS Risk Stratification Among Young Patients
7. PRS and Risk Mitigation
8. PRS Across Diverse Populations
9. PRS Limitations
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearson-Stuttard, J.; Guzman-Castillo, M.; Penalvo, J.L.; Rehm, C.D.; Afshin, A.; Danaei, G.; Kypridemos, C.; Gaziano, T.; Mozaffarian, D.; Capewell, S.; et al. Modeling future cardiovascular disease mortality in the United States: National trends and racial and ethnic disparities. Circulation 2016, 133, 967–978. [Google Scholar] [CrossRef]
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk Factors for Coronary Artery Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sara, J.D.; Eleid, M.F.; Gulati, R.; Holmes, D.R., Jr. Sudden cardiac death from the perspective of coronary artery disease. Mayo Clin. Proc. 2014, 89, 1685–1698. [Google Scholar] [CrossRef]
- Budoff, M.J.; McClelland, R.L.; Nasir, K.; Greenland, P.; Kronmal, R.A.; Kondos, G.T.; Shea, S.; Lima, J.A.; Blumenthal, R.S. Cardiovascular events with absent or minimal coronary calcification: The Multi-Ethnic Study of Atherosclerosis (MESA). Am. Heart J. 2009, 158, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Khera, R.; Pandey, A.; Ayers, C.R.; Carnethon, M.R.; Greenland, P.; Ndumele, C.E.; Nambi, V.; Seliger, S.L.; Chaves, P.H.M.; Safford, M.M.; et al. Performance of the pooled cohort equations to estimate atherosclerotic cardiovascular disease risk by body mass index. JAMA Netw. Open 2020, 3, e2023242. [Google Scholar] [CrossRef] [PubMed]
- Gof, D.C., Jr.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2935–2959. [Google Scholar] [CrossRef]
- Abraham, G.; Rutten-Jacobs, L.; Inouye, M. Risk prediction using polygenic risk scores for prevention of stroke and other cardiovascular diseases. Stroke 2021, 52, 2983–2991. [Google Scholar] [CrossRef]
- Aragam, K.G.; Dobbyn, A.; Judy, R.; Chaffin, M.; Chaudhary, K.; Hindy, G.; Cagan, A.; Finneran, P.; Weng, L.-C.; Loos, R.J.; et al. Limitations of contemporary guidelines for managing patients at high genetic risk of coronary artery disease. J. Am. Coll. Cardiol. 2020, 75, 2769–2780. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Nam, B.H.; D’Agostino, R.B., Sr.; Levy, D.; Murabito, J.M.; Wang, T.J.; Wilson, P.W.; O’Donnell, C.J. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: A prospective study of parents and offspring. JAMA 2004, 291, 2204–2211. [Google Scholar] [CrossRef]
- Won, H.H.; Natarajan, P.; Dobbyn, A.; Jordan, D.M.; Roussos, P.; Lage, K.; Raychaudhuri, S.; Stahl, E.; Do, R. Disproportionate contributions of select genomic compartments and cell types to genetic risk for coronary artery disease. PLoS Genet. 2015, 11, e1005622. [Google Scholar] [CrossRef]
- Regalado, A. More Than 26 Million People Have Taken an at-Home Ancestry Test; MIT: Cambridge, MA, USA, 2019. [Google Scholar]
- Tada, H.; Melander, O.; Louie, J.Z.; Catanese, J.J.; Rowland, C.M.; Devlin, J.J.; Kathiresan, S.; Shiffman, D. Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur. Heart J. 2016, 37, 561–567. [Google Scholar] [CrossRef]
- Mega, J.L.; Stitziel, N.O.; Smith, J.G.; Chasman, D.I.; Caulfield, M.J.; Devlin, J.J.; Nordio, F.; Hyde, C.L.; Cannon, C.P.; Sacks, F.M.; et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: An analysis of primary and secondary prevention trials. Lancet 2015, 385, 2264–2271. [Google Scholar] [CrossRef]
- Inouye, M.; Abraham, G.; Nelson, C.P.; Wood, A.M.; Sweeting, M.J.; Dudbridge, F.; Lai, F.Y.; Kaptoge, S.; Brozynska, M.; Wang, T.; et al. Genomic risk prediction of coronary artery disease in 480,000 adults: Implications for primary prevention. J. Am. Coll. Cardiol. 2018, 72, 1883–1893. [Google Scholar] [CrossRef]
- Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.; et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 2018, 50, 1219–1224. [Google Scholar] [CrossRef]
- Marston, N.A.; Pirruccello, J.P.; Melloni, G.E.; Koyama, S.; Kamanu, F.K.; Weng, L.C.; Roselli, C.; Kamatani, Y.; Komuro, I.; Aragam, K.G.; et al. Predictive utility of a coronary artery disease polygenic risk score in primary prevention. JAMA Cardiol. 2023, 8, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Sugrue, L.P.; Desikan, R.S. What are polygenic scores and why are they important? JAMA 2019, 321, 1820–1821. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.W.; Raghavan, S.; Marquez-Luna, C.; Luzum, J.A.; Damrauer, S.M.; Ashley, E.A.; O’dOnnell, C.J.; Willer, C.J.; Natarajan, P.; Cardiology, C.O.C.; et al. Polygenic risk scores for cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2022, 146, e93–e118. [Google Scholar] [CrossRef] [PubMed]
- Aragam, K.G.; Natarajan, P. Polygenic scores to assess atherosclerotic cardiovascular disease risk: Clinical perspectives and basic implications. Circ. Res. 2020, 126, 1159–1177. [Google Scholar] [CrossRef]
- Stein, R.; Ferrari, F.; García-Giustiniani, D. Polygenic Risk Scores: The Next Step for Improved Risk Stratification in Coronary Artery Disease? Arq. Bras. De Cardiol. 2024, 121, e20240252. [Google Scholar] [CrossRef]
- Paquette, M.; Baass, A. Polygenic risk scores for cardiovascular disease prediction in the clinical practice: Are we there? Atherosclerosis 2022, 340, 46–47. [Google Scholar] [CrossRef]
- Hadley, T.D.; Agha, A.M.; Ballantyne, C.M. How do we incorporate polygenic risk scores in cardiovascular disease risk assessment and management? Curr. Atheroscler. Rep. 2021, 23, 28. [Google Scholar] [CrossRef]
- Ho, D.S.W.; Schierding, W.; Wake, M.; Saffery, R.; O’Sullivan, J. Machine learning SNP based prediction for precision medicine. Front. Genet. 2019, 10, 267. [Google Scholar] [CrossRef]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Mak, T.S.H.; O’Reilly, P.F. Tutorial: A guide to performing polygenic risk score analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef] [PubMed]
- Collister, J.A.; Liu, X.; Clifton, L. Calculating polygenic risk scores (PRS) in UK Biobank: A practical guide for epidemiologists. Front. Genet. 2022, 13, 818574. [Google Scholar] [CrossRef] [PubMed]
- Page, M.L.; Vance, E.L.; Cloward, M.E.; Ringger, E.; Dayton, L.; Ebbert, M.T.; The Alzheimer’s Disease Neuroimaging Initiative; Miller, J.B.; Kauwe, J.S.K. The Polygenic Risk Score Knowledge Base offers a centralized online repository for calculating and contextualizing polygenic risk scores. Commun. Biol. 2022, 5, 899. [Google Scholar] [CrossRef]
- Baker, E.; Escott-Price, V. Polygenic risk scores in Alzheimer’s disease: Current applications and future directions. Front. Digit. Health 2020, 2, 14. [Google Scholar] [CrossRef]
- Kathiresan, S.; Melander, O.; Anevski, D.; Guiducci, C.; Burtt, N.P.; Roos, C.; Hirschhorn, J.N.; Berglund, G.; Hedblad, B.; Groop, L.; et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N. Engl. J. Med. 2008, 358, 1240–1249. [Google Scholar] [CrossRef]
- Abraham, G.; Havulinna, A.S.; Bhalala, O.G.; Byars, S.G.; De Livera, A.M.; Yetukuri, L.; Tikkanen, E.; Perola, M.; Schunkert, H.; Sijbrands, E.J.; et al. Genomic prediction of coronary heart disease. Eur. Heart J. 2016, 37, 3267–3278. [Google Scholar] [CrossRef]
- Madhavan, M.V.; Tarigopula, M.; Mintz, G.S.; Maehara, A.; Stone, G.W.; Généreux, P. Coronary artery calcification: Pathogenesis and prognostic implications. J. Am. Coll. Cardiol. 2014, 63, 1703–1714. [Google Scholar] [CrossRef]
- Thanassoulis, G.; Peloso, G.M.; Pencina, M.J.; Hoffmann, U.; Fox, C.S.; Cupples, L.A.; Levy, D.; D’Agostino, R.B.; Hwang, S.J.; O’Donnell, C.J. A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: The Framingham Heart Study. Circ. Cardiovasc. Genet. 2012, 5, 113–121. [Google Scholar] [CrossRef]
- Severance, L.M.; Contijoch, F.J.; Carter, H.; Fan, C.C.; Seibert, T.M.; Dale, A.M.; McVeigh, E.R. Using a genetic risk score to calculate the optimal age for an individual to undergo coronary artery calcium screening. J. Cardiovasc. Comput. Tomogr. 2019, 13, 203–210. [Google Scholar] [CrossRef]
- Khan, S.S.; Post, W.S.; Guo, X.; Tan, J.; Zhu, F.; Bos, D.; Sedaghati-Khayat, B.; van Rooij, J.; Aday, A.; Allen, N.B.; et al. Coronary artery calcium score and polygenic risk score for the prediction of coronary heart disease events. JAMA 2023, 329, 1768–1777. [Google Scholar] [CrossRef]
- Polygenic Risk Score Task Force of the International Common Disease Alliance. Responsible use of polygenic risk scores in the clinic: Potential benefits, risks and gaps. Nat. Med. 2021, 27, 1876–1884. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Emdin, C.A.; Drake, I.; Natarajan, P.; Bick, A.G.; Cook, N.R.; Chasman, D.I.; Baber, U.; Mehran, R.; Rader, D.J.; et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 2016, 375, 2349–2358. [Google Scholar] [CrossRef] [PubMed]
- Dikilitas, O.; Schaid, D.J.; Kosel, M.L.; Carroll, R.J.; Chute, C.G.; Denny, J.C.; Fedotov, A.; Feng, Q.; Hakonarson, H.; Jarvik, G.P.; et al. Predictive utility of polygenic risk scores for coronary heart disease in three major racial and ethnic groups. Am. J. Hum. Genet. 2020, 106, 707–716. [Google Scholar] [CrossRef]
- Dikilitas, O.; Schaid, D.J.; Tcheandjieu, C.; Clarke, S.L.; Assimes, T.L.; Kullo, I.J. Use of polygenic risk scores for coronary heart disease in ancestrally diverse populations. Curr. Cardiol. Rep. 2022, 24, 1169–1177. [Google Scholar] [CrossRef]
- Ratman, D.; Tshiaba, P.; Levin, M.; Sun, J.; Tunstall, T.; Maier, R.; Shah, P.; Rabinowitz, M.; Rader, D.J.; Kumar, A.; et al. Polygenic risk scores improve CAD risk prediction in individuals at borderline and intermediate clinical risk. npj Cardiovasc. Health 2025, 2, 13. [Google Scholar] [CrossRef]
- Smith, J.L.; Tcheandjieu, C.; Dikilitas, O.; Iyer, K.; Miyazawa, K.; Hilliard, A.; Lynch, J.; Rotter, J.I.; Chen, Y.-D.I.; Sheu, W.H.-H.; et al. Multi-ancestry polygenic risk score for coronary heart disease based on an ancestrally diverse genome-wide association study and population-specific optimization. Circ. Genom. Precis. Med. 2024, 17, e004272. [Google Scholar] [CrossRef]
- Schwarzerova, J.; Hurta, M.; Barton, V.; Lexa, M.; Walther, D.; Provaznik, V.; Weckwerth, W. A perspective on genetic and polygenic risk scores—advances and limitations and overview of associated tools. Brief. Bioinform. 2024, 25, bbae240. [Google Scholar] [CrossRef]
- Wang, Y.; Tsuo, K.; Kanai, M.; Neale, B.M.; Martin, A.R. Challenges and opportunities for developing more generalizable polygenic risk scores. Annu. Rev. Biomed. Data Sci. 2022, 5, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Duncan, L.; Shen, H.; Gelaye, B.; Meijsen, J.; Ressler, K.; Feldman, M.; Peterson, R.; Domingue, B. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 2019, 10, 3328. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Pividori, M.; Manichaikul, A.; Palmer, A.A.; Cox, N.J.; Wheeler, H.E.; Im, H.K. Polygenic transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across ancestries. Genome Biol. 2022, 23, 23. [Google Scholar] [CrossRef] [PubMed]
- Abramowitz, S.A.; Boulier, K.; Keat, K.; Cardone, K.M.; Shivakumar, M.; DePaolo, J.; Judy, R.; Bermudez, F.; Mimouni, N.; Neylan, C.; et al. Evaluating performance and agreement of coronary heart disease polygenic risk scores. JAMA 2025, 333, 60–70. [Google Scholar] [CrossRef]
- Schunkert, H.; Di Angelantonio, E.; Inouye, M.; Patel, R.S.; Ripatti, S.; Widen, E.; Sanderson, S.C.; Kaski, J.P.; McEvoy, J.W.; Vardas, P.; et al. Clinical utility and implementation of polygenic risk scores for predicting cardiovascular disease: A clinical consensus statement of the ESC Council on Cardiovascular Genomics, the ESC Cardiovascular Risk Collaboration, and the European Association of Preventive Cardiology. Eur. Heart J. 2025, 46, 1372–1383. [Google Scholar]
- Lewis, A.C.; Perez, E.F.; Prince, A.E.; Flaxman, H.R.; Gomez, L.; Brockman, D.G.; Chandler, P.D.; Kerman, B.J.; Lebo, M.S.; Smoller, J.W.; et al. Patient and provider perspectives on polygenic risk scores: Implications for clinical reporting and utilization. Genome Med. 2022, 14, 114. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Cohort/Sample Size | Ancestry | PRS Method | Key Results | Limitations |
---|---|---|---|---|---|
Tada et al. (2016) [12] | Malmö Diet and Cancer Study, ~24,000 | European | 50-SNP weighted PRS | Higher PRS associated with increased CAD risk independent of traditional risk factors | Small SNP panel; limited to Europeans |
Mega et al. (2015) [13] | JUPITER & ASCOT, ~48,000 | European | 27-SNP PRS | Statins reduced CAD events most in high-PRS individuals; greatest absolute risk reduction in top PRS group | Small SNP set; European-only |
Inouye et al. (2018) [14] | UK Biobank, ~500,000 | European | Genome-wide PRS (~1.7 M SNPs) | Top 20% PRS had ~3-fold higher CAD risk vs. bottom 20%; PRS improved reclassification beyond PCE | No non-European validation |
Khera et al. (2018) [15] | UK Biobank, ~400,000 | Predominantly European; small South Asian & African subsets | Genome-wide PRS (~6.6 M SNPs) | Top 1% PRS ≈ 5-fold higher CAD risk; comparable to monogenic FH | Attenuated prediction in non-Europeans; healthy volunteer bias |
Marston et al. (2023) [16] | UK Biobank + external cohorts (~500,000) | European; smaller African ancestry subset | Genome-wide PRS integrated with PCE | Improved prediction in younger adults; weaker discrimination in African ancestry (C-statistic drop 0.78 → 0.62) | Few non-European participants; uncertain clinical translation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, S.; Lakshmanan, S.; Budoff, M.J. Polygenic Risk Scores and Coronary Artery Disease. Cardiogenetics 2025, 15, 27. https://doi.org/10.3390/cardiogenetics15040027
Ansari S, Lakshmanan S, Budoff MJ. Polygenic Risk Scores and Coronary Artery Disease. Cardiogenetics. 2025; 15(4):27. https://doi.org/10.3390/cardiogenetics15040027
Chicago/Turabian StyleAnsari, Salman, Suvasini Lakshmanan, and Matthew J. Budoff. 2025. "Polygenic Risk Scores and Coronary Artery Disease" Cardiogenetics 15, no. 4: 27. https://doi.org/10.3390/cardiogenetics15040027
APA StyleAnsari, S., Lakshmanan, S., & Budoff, M. J. (2025). Polygenic Risk Scores and Coronary Artery Disease. Cardiogenetics, 15(4), 27. https://doi.org/10.3390/cardiogenetics15040027