Prevalence of Polymorphisms of Genes Responsible for Coagulation System and Folate Metabolism and Their Predictive Value for Thrombosis Development in MINOCA Patients: Immediate and Long-Term Prognoses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- (1)
- General diagnostic criteria for acute MI based on elevated troponin levels in combination with clinical criteria;
- (2)
- A performed coronary angiography demonstrated nonobstructive (coronary stenosis < 50%) coronary arteries (MINOCA) or obstructive CAD (stenosis ≥ 50%) with isolated stenosis of one coronary artery and subsequent revascularization (MIOCA + 1 stent).
2.2. Laboratory Diagnostics
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Uni- and Multivariate Logistic Regression Analysis
3.3. Uni- and Multivariate Cox Proportional Hazards Regression
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agewall, S.; Beltrame, J.F.; Reynolds, H.R.; Niessner, A.; Rosano, G.; Caforio, A.L.; De Caterina, R.; Zimarino, M.; Roffi, M.; Kjeldsen, K.; et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur. Heart J. 2017, 38, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, A.; Isaaz, K.; Faure, E.; Mourot, S.; Cerisier, A.; Lamaud, M. Clinical characteristics, aetiological factors and long-term prognosis of myocardial infarction with an absolutely normal coronary angiogram; a 3-year follow-up study of 91 patients. Eur. Heart J. 2001, 22, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Pasupathy, S.; Air, T.; Dreyer, R.P.; Tavella, R.; Beltrame, J.F. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries. Circulation 2015, 131, 861–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasupathy, S.; Rodgers, S.; Tavella, R.; McRae, S.; Beltrame, J.F. Risk of Thrombosis in Patients Presenting with Myocardial Infarction with Nonobstructive Coronary Arteries (MINOCA). TH Open 2018, 2, e167–e172. [Google Scholar] [CrossRef] [Green Version]
- Kardasz, I.; De Caterina, R. Myocardial infarction with normal coronary arteries: A conundrum with multiple aetiologies and variable prognosis: An update. J. Intern. Med. 2007, 261, 330–348. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, S.E.; Wong, A.; Gopal, R.D.; Dale, B.J.; Duncan, E.M.; McRae, S.J. Evaluation of pre-analytical variables in a commercial thrombin generation assay. Thromb. Res. 2014, 134, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Scalone, G.; Niccoli, G.; Crea, F. Editor’s Choice-Pathophysiology, diagnosis and management of MINOCA: An update. Eur. Heart J. Acute Cardiovasc. Care 2019, 8, 54–62. [Google Scholar] [CrossRef]
- Franchini, M.; Martinelli, I.; Mannucci, P.M. Uncertain thrombophilia markers. Thromb. Haemost. 2016, 115, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Wypasek, E.; Corral, J.; Alhenc-Gelas, M.; Sydor, W.; Iwaniec, T.; Celińska-Lowenhoff, M.; Potaczek, D.P.; Blecharczyk, A.; Zawilska, K.; Undas, J.; et al. Genetic characterization of antithrombin, protein C, and protein S deficiencies in Polish patients. Pol. Arch. Intern. Med. 2017, 127, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Bereczky, Z.; Balogh, L.; Bagoly, Z. Inherited thrombophilia and the risk of myocardial infarction: Current evidence and uncertainties. Kardiol. Pol. 2019, 77, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.J.; Ebrahim, S.; Davey Smith, G. Meta-analysis of MTHFR 677C->T polymorphism and coronary heart disease: Does totality of evidence support causal role for homocysteine and preventive potential of folate? BMJ 2005, 331, 1053. [Google Scholar] [CrossRef] [Green Version]
- Hamedani, A.G.; Cole, J.W.; Mitchell, B.D.; Kittner, S.J. Meta-analysis of factor V Leiden and ischemic stroke in young adults: The importance of case ascertainment. Stroke 2010, 41, 1599–1603. [Google Scholar] [CrossRef] [Green Version]
- Sticchi, E.; Magi, A.; Kamstrup, P.R.; Marcucci, R.; Prisco, D.; Martinelli, I.; Mannucci, P.M.; Abbate, R.; Giusti, B. Apolipoprotein(a) Kringle-IV Type 2 Copy Number Variation Is Associated with Venous Thromboembolism. PLoS ONE 2016, 11, e0149427. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Reynolds, K.; Holder, K.N.; He, J. Effect of folic acid supplementation on risk of cardiovascular diseases: A meta-analysis of randomized controlled trials. JAMA 2006, 296, 2720–2726. [Google Scholar] [CrossRef]
- Dragoni, F.; Chiarotti, F.; Rosano, G.; Simioni, P.; Tormene, D.; Mazzucconi, M.G.; Cafolla, A.; Avvisati, G. Thrombophilic screening in young patients (<40 years) with idiopathic ischemic stroke: A controlled study. Thromb. Res. 2011, 127, 85–90. [Google Scholar] [CrossRef]
- Chen, L.; Liu, L.; Hong, K.; Hu, J.; Cheng, X. Three genetic polymorphisms of homocysteine-metabolizing enzymes and risk of coronary heart disease: A meta-analysis based on 23 case-control studies. DNA Cell Biol. 2012, 31, 238–249. [Google Scholar] [CrossRef]
- Herm, J.; Hoppe, B.; Kasabov, R.; Malzahn, U.; Endres, M.; Koscielny, J.; Jungehulsing, G.J.; Haeusler, K.G. Thrombophilia screening in young patients with cryptogenic stroke. Prevalence of gene polymorphisms compared to healthy blood donors and impact on secondary stroke prevention. Hamostaseologie 2012, 32, 147–152. [Google Scholar] [CrossRef]
- ISTH Steering Committee for World Thrombosis Day. Thrombosis: A major contributor to the global disease burden. J. Thromb. Haemost. 2014, 12, 1580–1590. [Google Scholar] [CrossRef]
- Tanis, B.; Algra, A.; van der Graaf, Y.; Helmerhorst, F.; Rosendaal, F. Procoagulant factors and the risk of myocardial infarction in young women. Eur. J. Haematol. 2006, 77, 67–73. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Irastorza, G.; Cuadrado, M.J.; Ruiz-Arruza, I.; Brey, R.; Crowther, M.; Derksen, R.; Erkan, D.; Krilis, S.; Machin, S.; Pengo, V.; et al. Evidence-based recommendations for the prevention and long-term management of thrombosis in antiphospholipid antibody-positive patients: Report of a task force at the 13th International Congress on antiphospholipid antibodies. Lupus 2011, 20, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Weng, L.; Han, B.; Dai, Y.; Cha, L.; Yan, S.; Jin, E. Association of folate metabolism gene polymorphisms and haplotype combination with pulmonary embolism risk in Chinese Han population. Mamm. Genome 2017, 28, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Bozok Çetintaş, V.; Gündüz, C. Association between polymorphism of MTHFR c.677C>T and risk of cardiovascular disease in Turkish population: A meta-analysis for 2.780 cases and 3.022 controls. Mol. Biol. Rep. 2014, 41, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Kamphuisen, P.W.; Eikenboom, J.C.; Rosendaal, F.R.; Koster, T.; Blann, A.D.; Vos, H.L.; Bertina, R.M. High factor VIII antigen levels increase the risk of venous thrombosis but are not associated with polymorphisms in the von Willebrand factor and factor VIII gene. Br. J. Haematol. 2001, 115, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M.; Franchini, M. Classic thrombophilic gene variants. Thromb. Haemost. 2015, 114, 885–889. [Google Scholar] [CrossRef] [Green Version]
- Dinavahi, R.; Falkner, B. Relationship of homocysteine with cardiovascular disease and blood pressure. J. Clin. Hypertens. 2004, 6, 494–498. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Fan, S.; Zhi, X.; Wang, Y.; Wang, Y.; Zheng, Q.; Sun, G. Prevalence of hyperhomocysteinemia in China: A systematic review and meta-analysis. Nutrients 2014, 7, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Pasupathy, S.; Rodgers, S.; Tavella, R.; Pope, S.; McRae, S.; Beltrame, J. Risk of Thrombosis in Myocardial Infarction with Non Obstructive Coronary Arteries (MINOCA). Heart Lung Circ. 2016, 25, S64. [Google Scholar] [CrossRef] [Green Version]
- Martí-Carvajal, A.J.; Solà, I.; Lathyris, D.; Dayer, M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst. Rev. 2017, 8, CD006612. [Google Scholar] [CrossRef]
- Stanger, O.; Herrmann, W.; Pietrzik, K.; Fowler, B.; Geisel, J.; Dierkes, J.; Weger, M. Clinical use and rational management of homocysteine, folic acid, and B vitamins in cardiovascular and thrombotic diseases. Z. Kardiol. 2004, 93, 439–453. [Google Scholar] [CrossRef]
- Chrysant, S.G.; Chrysant, G.S. The current status of homocysteine as a risk factor for cardiovascular disease: A mini review. Expert Rev. Cardiovasc. Ther. 2018, 16, 559–565. [Google Scholar] [CrossRef]
- Debreceni, B.; Debreceni, L. Why do homocysteine-lowering B vitamin and antioxidant E vitamin supplementations appear to be ineffective in the prevention of cardiovascular diseases? Cardiovasc. Ther. 2012, 30, 227–233. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Wang, G.; Wang, J.; Wang, L.; Du, Y. MTHFR A1298C gene polymorphism on stroke risk: An updated meta-analysis. Genes Environ. 2021, 43, 40. [Google Scholar] [CrossRef]
- Arsenault, B.J.; Boekholdt, M.; Dubé, M.-P.; Rhéaume, E.; Wareham, N.J.; Khaw, K.-T.; Sandhu, M.S.; Tardif, J.-C. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: A prospective Mendelian randomization study and replication in a case-control cohort. Circ. Cardiovasc. Genet. 2014, 7, 304–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debreceni, B.; Debreceni, L. The Role of Homocysteine-Lowering B-Vitamins in the Primary Prevention of Cardiovascular Disease. Cardiovasc. Ther. 2014, 32, 130–138. [Google Scholar] [CrossRef]
- Beheshtian, A.; Shitole, S.; Segal, A.Z.; Leifer, D.; Tracy, R.P.; Rader, D.J.; Devereux, R.B.; Kizer, J.R. Lipoprotein (a) level, apolipoprotein (a) size, and risk of unexplained ischemic stroke in young and middle-aged adults. Atherosclerosis 2016, 253, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Burzotta, F.; Paciaroni, K.; De Stefano, V.; Chiusolo, P.; Manzoli, A.; Casorelli, I.; Leone, A.M.; Rossi, E.; Leone, G.; Maseri, A.; et al. Increased prevalence of the G20210A prothrombin gene variant in acute coronary syndromes without metabolic or acquired risk factors or with limited extent of disease. Eur. Heart J. 2002, 23, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Kamstrup, P.R.; Nordestgaard, B.G. Elevated Lipoprotein(a) Levels, LPA Risk Genotypes, and Increased Risk of Heart Failure in the General Population. JACC Heart Fail. 2016, 4, 78–87. [Google Scholar] [CrossRef]
- Kamstrup, P.R.; Benn, M.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: The Copenhagen City Heart Study. Circulation 2008, 117, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Clarke, R.; Peden, J.F.; Hopewell, J.C.; Kyriakou, T.; Goel, A.; Heath, S.; Parish, S.; Barlera, S.; Franzosi, M.G.; Rust, S.; et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 2009, 361, 2518–2528. [Google Scholar] [CrossRef] [Green Version]
- Emerging Risk Factors Collaboration; Erqou, S.; Kaptoge, S.; Perry, P.L.; Di Angelantonio, E.; Thompson, A.; White, I.R. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 2009, 302, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordestgaard, B.G.; Langsted, A. Lipoprotein (a) as a cause of cardiovascular disease: Insights from epidemiology, genetics, and biology. J. Lipid Res. 2016, 57, 1953–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamstrup, P.R.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. J. Am. Coll. Cardiol. 2014, 63, 470–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehrie, E.R.; Reynolds, H.R.; Chen, A.Y.; Neelon, B.H.; Roe, M.T.; Gibler, W.B.; Ohman, E.M.; Newby, L.K.; Peterson, E.D.; Hochman, J.S. Characterization and outcomes of women and men with non-ST-segment elevation myocardial infarction and nonobstructive coronary artery disease: Results from the Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes with Early Implementation of the ACC/AHA Guidelines (CRUSADE) quality improvement initiative. Am. Heart J. 2009, 158, 688–694. [Google Scholar] [CrossRef]
Parameters | MIOCA n = 155 | MINOCA n = 114 | p |
---|---|---|---|
Clinical data | |||
Age, years | 54 (45;66) | 48 (42;54) | <0.001 * |
Male gender, % | 50.3 | 38.6 | 0.056 |
BMI, kg/m2 | 28.2 (26;31) | 28.6 (25.8;31) | 0.862 |
Prior MI, % | 17.4 | 16.7 | 0.871 |
Family history of IHD, % | 49 | 45.6 | 0.579 |
Prior stroke, % | 3.2 | 7 | 0.153 |
Hypertension, % | 72.3 | 73.7 | 0.795 |
Hypercholesterolemia, % | 23.2 | 21.9 | 0.802 |
PAD, % | 14.8 | 17.5 | 0.550 |
CHF NYHA class II–IV, % | 61.3 | 57.9 | 0.575 |
Diabetes, % | 11.6 | 11.4 | 0.957 |
Smoking, % | 51.6 | 48.3 | 0.585 |
Hospitalization data | |||
Pain syndrome (or its equivalent), % | 83.2 | 83.3 | 0.981 |
Classes of AHF | 1 (1;3) | 1 (1;1) | 0.002 * |
AF, % | 16 | 1.7 | <0.001 * |
ST Elevates, % | 28.4 | 33.3 | 0.384 |
LVEF, % | 55 (45;55) | 55 (52;55) | 0.018 * |
LA volume, mL3 | 40 (37;42) | 39 (37;41) | 0.212 |
LVESD, mm | 50 (47;54) | 50 (47;54) | 0.439 |
Thrombolytic therapy, % | 20 | 21.9 | 0.700 |
The effectiveness of thrombolysis, % | 15.5 | 15.8 | 0.945 |
PCI, % | 100 | 0 | <0.001 * |
Parameters | MIOCA n = 155 | MINOCA n = 114 | p |
---|---|---|---|
Laboratory data | |||
MTHFR 677 C>T (rs1801133), % | 14.8 | 14.9 | 0.987 |
MTHFR 1298 A>C (rs1801131), % | 10.3 | 8.8 | 0.671 |
MTR 2756 A>G (rs1805087), % | 20.7 | 22.8 | 0.670 |
MTRR 66 A>G (rs1801394), % | 32.9 | 33.3 | 0.941 |
F13 (163 G>T) rs5985, % | 23.9 | 21.1 | 0.586 |
F1 (−455 G>A) rs1800790, % | 11 | 11.4 | 0.910 |
GP IIb–IIIa (1565 T>C) rs5918, % | 22 | 24.6 | 0.613 |
PAI-I (−675 5G>4G) rs1799889, % | 23.2 | 25.4 | 0.675 |
LDL, mmoL/L | 2.4 (1.7;3.7) | 2.7 (1.9;4) | 0.159 |
LP (a), mg/dL | 45 (9;106) | 45 (11;108) | 0.525 |
LP (a) > 30 mg/dL, % | 58 | 64 | 0.322 |
CRP, mg/L | 14 (10;32) | 14 (10;32) | 0.635 |
Factor V Leiden, % | 25.8 | 19.3 | 0.211 |
Protein C deficiency, % | 41.9 | 39.5 | 0.685 |
Protein S deficiency, % | 43.2 | 40.4 | 0.637 |
Deficiency of antithrombin III, % | 11.6 | 8.8 | 0.452 |
Factor VIII > 150%, % | 12.9 | 10.5 | 0.553 |
Hyperhomocysteinemia, % | 32.3 | 38.6 | 0.282 |
Hospital outcomes | |||
Hospital mortality, % | 11.6 | 7 | 0.208 |
Bleeding, % | 0.65 | 5.3 | 0.018 * |
Stroke, % | 5.8 | 2.6 | 0.213 |
Mechanical complications, % | 1.3 | 7 | 0.014 * |
Parameters | Univariate Logistic Regression Analysis OR (95% CI) | p | Multivariate Logistic Regression Analysis OR (95% CI) | p |
---|---|---|---|---|
Prior stroke | 5.55 (0.92–33.6) | 0.062 | - | |
PAD | 10.1 (2.2–46.8) | 0.003 * | 14.1 (1.6–126.9) | 0.018 * |
Hypercholesterolemia | 4.05 (0.94–17.5) | 0.061 | - | |
Pain syndrome | 0.15 (0.03–0.73) | 0.023 * | 0.16 (0.02–1.4) | 0.095 |
Classes of AHF | 2.76 (1.53–4.97) | <0.001 * | 2.96 (1.25–7.0) | 0.014 * |
AF | 15 (0.856–266) | 0.095 | - | |
LVEF | 0.87 (0.79–0.96) | 0.006 * | - | |
MTHFR 677 C>T (rs1801133) | - | - | ||
MTHFR 1298 A>C (rs1801131) | 8.5 (1.67–43.1) | 0.018 * | - | |
MTR 2756 A>G (rs1805087) | - | - | ||
MTRR 66 A>G (rs1801394) | - | - | ||
F13 (163 G>T) rs5985 | - | - | ||
F1 (−455 G>A) rs1800790 | 5.8 (1.1–27.8) | 0.043 * | - | |
GP IIb–IIIa (1565 T>C) rs5918 | - | - | ||
PAI-I (−675 5G>4G) rs1799889 | - | - | ||
LP (a) | 1.01 (1.0–1.02) | 0.034 * | - | |
CRP | 1.02 (0.99–1.05) | 0.107 | - | |
Factor V Leiden | - | - | ||
Protein C deficiency | - | - | ||
Protein S deficiency | - | - | ||
Deficiency of antithrombin III | - | - | ||
Factor VIII > 150% | - | - | ||
Hyperhomocysteinemia | 13 (1.54–110.2) | 0.003 * | 8.7(0.7–106) | 0.089 |
Parameters | Univariate Logistic Regression Analysis OR (95% CI) | p | Multivariate Logistic Regression Analysis OR (95% CI) | p |
---|---|---|---|---|
PAD | 3.5 (1.2–10.6) | 0.034 * | 12.7 (1.4–115) | 0.024 * |
Hypercholesterolemia | 3.1 (1.13–8.6) | 0.033 * | - | |
Family history of IHD | 4.2 (1.3–13.5) | 0.008 * | - | |
Classes of AHF | 2.26(1.49–3.4) | <0.001 * | - | |
LVEF | 0.85 (0.79–0.9) | <0.001 * | 0.86 (0.78–0.95) | 0.005 * |
MTHFR 677 C>T (rs1801133) | - | - | ||
MTHFR 1298 A>C (rs1801131) | 9.1 (2.8–28.9) | <0.001 * | - | |
MTR 2756 A>G (rs1805087) | - | - | ||
MTRR 66 A>G (rs1801394) | - | - | ||
F13 (163 G>T) rs5985 | - | - | ||
F1 (−455 G>A) rs1800790 | 11.4 (3.6–35.9) | <0.001 * | - | |
GP IIb–IIIa (1565 T>C) rs5918 | 10.5 (3.5–30.8) | <0.001 * | - | |
PAI-I (−675 5G>4G) rs1799889 | 12.9 (4.2–39.7) | <0.001 * | 922 (12.2–69718) | 0.002 * |
LP (a) | 1.01 (1.0–1.03) | <0.001 * | - | |
CRP | 1.04 (1.02–1.07) | <0.001 * | 1.04 (0.99–1.1) | 0.065 |
Factor V Leiden | - | - | ||
Protein C deficiency | - | - | ||
Protein S deficiency | - | - | ||
Deficiency of antithrombin III | - | - | ||
Factor VIII > 150% | - | - | ||
Hyperhomocysteinemia | 24.2 (5.3–110.8) | <0.001 * | 8.7 (0.69–109) | 0.094 |
Parameters | Univariate Cox Proportional Hazards Regression HR (95% CI) | p | Multivariate Cox Proportional Hazards Regression HR (95% CI) | p |
---|---|---|---|---|
Mortality | ||||
Protein C deficiency | 3.9 (1.02–15) | 0.036 * | - | |
MI | ||||
LP (a) > 30 mg/dL | 8.7 (1.2–66.2) | 0.005 * | - | |
Protein C deficiency | 4.3 (1.4–13.8) | 0.008 * | 6.6 (2.03–21.2) | 0.002 * |
Hyperhomocysteinemia | 5.0 (1.6–15.9) | 0.004 * | 7.4 (2.3–23.9) | <0.001 * |
Stroke | ||||
LP (a) > 30 mg/dL | 8.5 (1.1–64.8) | 0.005 * | - | |
Protein C deficiency | 2.9 (1.0–8.7) | 0.045 * | 4.3 (1.43–12.9) | 0.009 * |
Hyperhomocysteinemia | 3.5 (1.2–11.4) | 0.021 * | 3.7 (1.24–11.2) | 0.019 * |
Parameters | Univariate Cox Proportional Hazards Regression HR (95% CI) | p | Multivariate Cox ProportionalHazards Regression HR (95% CI) | p |
---|---|---|---|---|
Mortality | ||||
CHF NYHA class II-IV | 5.5 (1.3–23.9) | 0.006 * | 5.3 (1.23–23.2) | 0.026 * |
MTHFR 1298 A>C (rs1801131) | 4.5 (1.3–15.5) | 0.007 * | - | |
F1 (−455 G>A) rs1800790 | 3.4 (0.96–11.6) | 0.097 | - | |
LP (a) > 30 mg/dL | 3.4 (0.96–11.6) | 0.097 | - | |
Protein C deficiency | 4.6 (1.5–14.1) | 0.003 * | 4.5 (1.47–13.7) | 0.008 * |
MI | ||||
LP (a) > 30 mg/dL | 10.1 (2.4–42.8) | <0.001 * | - | |
Protein C deficiency | 9.6 (2.8–32.4) | <0.001 * | 9.5 (2.8–31.9) | <0.001 * |
Hyperhomocysteinemia | 3.8 (1.7–8.8) | 0.002 * | 3.7 (1.6–8.6) | 0.002 * |
Stroke | ||||
PAD | 4.2 (1.3–13.9) | 0.035 * | - | |
Hypertension | 0.11 (0.03–0.42) | <0.001 * | 0.09 (0.03–0.33) | <0.001 * |
LP (a) > 30 mg/dL | 4.6 (1.01–20.8) | 0.023 * | 6.3 (1.4–28.8) | 0.017 * |
Hyperhomocysteinemia | 3.03 (0.9–9.4) | 0.060 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruchinova, S.; Shvartz, V.; Namitokov, A.; Gendugova, M.; Karibova, M.; Kosmacheva, E. Prevalence of Polymorphisms of Genes Responsible for Coagulation System and Folate Metabolism and Their Predictive Value for Thrombosis Development in MINOCA Patients: Immediate and Long-Term Prognoses. Cardiogenetics 2023, 13, 47-60. https://doi.org/10.3390/cardiogenetics13020006
Kruchinova S, Shvartz V, Namitokov A, Gendugova M, Karibova M, Kosmacheva E. Prevalence of Polymorphisms of Genes Responsible for Coagulation System and Folate Metabolism and Their Predictive Value for Thrombosis Development in MINOCA Patients: Immediate and Long-Term Prognoses. Cardiogenetics. 2023; 13(2):47-60. https://doi.org/10.3390/cardiogenetics13020006
Chicago/Turabian StyleKruchinova, Sofia, Vladimir Shvartz, Alim Namitokov, Milana Gendugova, Maria Karibova, and Elena Kosmacheva. 2023. "Prevalence of Polymorphisms of Genes Responsible for Coagulation System and Folate Metabolism and Their Predictive Value for Thrombosis Development in MINOCA Patients: Immediate and Long-Term Prognoses" Cardiogenetics 13, no. 2: 47-60. https://doi.org/10.3390/cardiogenetics13020006
APA StyleKruchinova, S., Shvartz, V., Namitokov, A., Gendugova, M., Karibova, M., & Kosmacheva, E. (2023). Prevalence of Polymorphisms of Genes Responsible for Coagulation System and Folate Metabolism and Their Predictive Value for Thrombosis Development in MINOCA Patients: Immediate and Long-Term Prognoses. Cardiogenetics, 13(2), 47-60. https://doi.org/10.3390/cardiogenetics13020006