# A Method for the Quantification of Powertrain Electrification Impacts on Driving Dynamics

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Quantification Method

#### 2.1. Solution Space Approximation

#### 2.2. Sensitivity Analysis

## 3. Experimental Set-Up

## 4. Study’s Outcome and Discussion

#### 4.1. Maximum Power or ${P}_{EM,max}$

#### 4.2. Continuous Power or ${P}_{EM,c}$

#### 4.3. Energy Content or ${E}_{max}$

#### 4.4. Sizing Variables within Each Topology

## 5. Conclusions

## Author Contributions

## Conflicts of Interest

## References

- Meier, T. Multikriterielle Optimierung Hybrider Antriebsstränge Mittels Statistischer Versuchsplanung. Ph.D. Dissertation, Technische Universität Darmstadt, Institut für Mechatronische Systeme im Maschinenbau, Darmstadt, Germany, 2013. [Google Scholar]
- Uwe, T. Systemorientierete Optimierung Integrierter Hybridmodule für Parallelhybridantriebe. Ph.D. Dissertation, Technische Universität Braunschweig, Fakultät für Maschinenbau, Braunschweig, Germany, 2009. [Google Scholar]
- Egthessad, M.; Meier, T.; Rinderknecht, S.; Kücükay, F. Antriebsstrangoptimierung von Elektrofahrzeugen. Automobiltech. Z.
**2015**, 117, 78–85. [Google Scholar] [CrossRef] - Hausberger, T.; Kraft, M. Verfahren und Vorrichtung zur Bestimmung einer Betriebsstrategie. Patent DE102,015,015,976, 8 November 2016. [Google Scholar]
- Siebertz, K.; van Bebber, D.; Hochkirchen, T. Sensitivitätsanalyse. In Statistische Versuchsplanung: Design of Experiments (DOE), 1st ed.; Springer: Berlin, Germany, 2010; pp. 247–260. [Google Scholar]
- Saltelli, A.; Tarantola, S.; Chan, K.P.-S. A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output. Technometrics
**1999**, 41, 39–56. [Google Scholar] [CrossRef] - Canavó, F. Sensitivity analysis for volcanic source modeling quality assessment and model selection. Comput. Geosci.
**2012**, 44, 52–59. [Google Scholar] [CrossRef] - Nürburgring-Nordschleife. Available online: www.nuerburgring.de/fans-info/rennstrecken/nordschleife.html (accessed on 19 January 2017).
- Saenger-Zetina, S.; Wagner, M. Hybride Antriebsstrukturen. In Kraftfahrzeug-Hybridantriebe; Reif, K., Noreikat, K., Borgeest, K., Eds.; Vieweg+Teubner Verlag: Wiesbaden, Germany, 2012; pp. 7–74. [Google Scholar]
- Tschech, M. Kosten- und Funktionsoptimierung von Lithium-Ionen Zellen unter Berücksichtigung des Anforderungskollektiv elektrifizierter Fahrzeugantriebe. In Proceedings of the Conference: 6. Expertenforum Elektrische Fahrzeugantriebe, Wolfsburg, Germnay, 15–16 May 2014; Volume 6. [Google Scholar]
- Hofmann, P. Hybridkomponenten. In Hybridfahrzeuge: Ein alternatives Antriebskonzept für die Zukunft, 1st ed.; Springer: Wien, Austria, 2009; pp. 101–205. [Google Scholar]

**Figure 6.**Lap time and mass impacts of each sizing variable in the areas of optimal design for the three defined hybrid powertrain topologies.

**Figure 7.**Normalized thermal load over distance for two different continuous power sizings of the optimal P4 design.

**Figure 8.**State of charge (SOC) over distance for two different energy content sizings of the optimal P4-TV design.

Sizable Variables | Constant Variables | ||
---|---|---|---|

${P}_{\mathrm{EM},\mathrm{max}}$ | $20-250\mathrm{kW}$ | ${M}_{\mathrm{EM},\mathrm{max}}$ | $350\mathrm{Nm}$ |

${P}_{\mathrm{EM},\mathrm{c}}$ | $\left(20-80\%\right)\cdot {P}_{\mathrm{EM},\mathrm{max}}$ | ${M}_{\mathrm{EM},\mathrm{c}}$ | $200\mathrm{Nm}$ |

${E}_{\mathrm{max}}$ | $0.2-20\mathrm{kWh}$ | ${n}_{\mathrm{EM},\mathrm{P}2,\mathrm{max}}$ | ${n}_{\mathrm{VM},\mathrm{max}}$= 6500 rpm |

${m}_{\mathrm{Bat}}$ | $f\left({P}_{\mathrm{EM},\mathrm{N}},E\right)$ | ${n}_{\mathrm{EM},\mathrm{P}4,\mathrm{max}}$ | $15,000\mathrm{rpm}$ |

${m}_{\mathrm{EM}}$ | $f\left({P}_{\mathrm{EM},\mathrm{N}},{M}_{\mathrm{EM},\mathrm{N}}\right)$ | ${t}_{\mathrm{max}}$ | $10\mathrm{s}$ |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kraft, M.; Rinderknecht, S.
A Method for the Quantification of Powertrain Electrification Impacts on Driving Dynamics. *World Electr. Veh. J.* **2018**, *9*, 18.
https://doi.org/10.3390/wevj9020018

**AMA Style**

Kraft M, Rinderknecht S.
A Method for the Quantification of Powertrain Electrification Impacts on Driving Dynamics. *World Electric Vehicle Journal*. 2018; 9(2):18.
https://doi.org/10.3390/wevj9020018

**Chicago/Turabian Style**

Kraft, Markus, and Stephan Rinderknecht.
2018. "A Method for the Quantification of Powertrain Electrification Impacts on Driving Dynamics" *World Electric Vehicle Journal* 9, no. 2: 18.
https://doi.org/10.3390/wevj9020018