# Operating Point Adaptation for NVH-Optimization of Induction Machines

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Background

## 3. Acoustic Measurements

## 4. Calculation of the Operating Points

#### 4.1. Operating Points for Best Efficiency

#### 4.2. Operating Points for Best NVH-Behavior

## 5. Validation of the Optimization

## 6. Conclusions

## 7. Patents

## Author Contributions

## Conflicts of Interest

## References

- Le Besnerais, J. Reduction of Magnetic Noise in PWM-Supplied Induction Machines-Low-Noise Design Rules and Multi-Objective Optimization. Ph.D. Dissertation, Ecole Centrale de Lille, Laboratoire d’Eletcricité et d’Electronique de Puissance, Lille, France, 2008. [Google Scholar]
- Bischof, W.M.; Hennen, M.D.; Kennel, R.M. Synthesized Magnetic Flux Density in Three-Phase Cage Induction Machines with MATLAB & Simulink. In Proceedings of the 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya City, Thailand, 25–28 October 2015. [Google Scholar]
- Bischof, W.M.; Chatterjee, B.; Boesing, M.; Hennen, M.D.; Kennel, R.M. Modeling Radial Air-Gap Forces of Three-Phase Cage Induction Machines in Spatial Frequency Domain. In Proceedings of the 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan, 13–16 November 2016. [Google Scholar]
- Bischof, W.M.; Chatterjee, B.; Boesing, M.; Hennen, M.D.; Kennel, R.M. Modeling Inverter-Fed Three-Phase Squirrel-Cage Induction Machines including Spatial and Temporal Harmonics. In Proceedings of the International Electric Machines and Drives Conference (IEMDC), Miami, Florida, USA, 21–24 May 2017. [Google Scholar]
- Kotter, P.; Koepf, C.; Bischof, W.M.; Wegener, K. Efficient Noise-Vibration-Harshness-modeling for squirrel-cage induction drives in EV applications. In Proceedings of 17. Internationales Stuttgarter Symposium; Springer: Wiesbaden, Germany, 2017. [Google Scholar]
- Kotter, P.; Callan-Bartkiw, B.; Boesing, M.; Wegener, K.; Berkemer, J.; Zirn, O. Noise-Vibration-Harshness simulation of ultralight vehicle traction drives based on a universal modelling approach. In Proceedings of the 8th International Conference on Power Electronics, Machines and Drives, PEMD, Glasgow, UK, 19–21 April 2016. [Google Scholar]
- Müller, G.; Ponick, B. Theorie Elektrischer Maschinen; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009. [Google Scholar]
- Bösing, M. Acoustic Modeling of Electrical Drives. Dissertation, Institut für Stromrichtertechnik und Elektrische Antriebe, RWTH Aachen, Aachen, Germany, 2013. [Google Scholar]
- De Doncker, R.; Pulle, D.W.; Veltman, A. Advanced Electrical Drives—Analysis, Modeling, Control, 1st ed.; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Müller, G.; Vogt, K.; Ponick, B. Berechnung Elektrischer Maschinen; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. [Google Scholar]
- Von Pfingsten, G.; Steentjes, S.; Hameyer, K. Transient approach to model operating point dependent losses in saturated induction machines. In Proceedings of the XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 4–7 September 2016. [Google Scholar]
- Andersson, A. Electric Machine Control for Energy Efficient Electric Drive Systems. Dissertation, Chalmers University of Technology Goeteburg, Department of Energy and Environment, Göteborg, Sweden, 2015. [Google Scholar]

**Figure 2.**Mmfs for (

**a**) reference, (

**b**) minimum and (

**c**) maximum stator d-axis current at 60 Nm of torque.

**Figure 3.**Schematic diagrams for (

**a**) reference, (

**b**) minimum and (

**c**) maximum stator d-axis current at 60 Nm of torque.

**Figure 4.**Radial force spectrum for (

**a**) reference, (

**b**) minimum and (

**c**) maximum stator d-axis current at 60 Nm of torque.

**Figure 6.**Structural transfer function for the 0th spatial force mode at one spatial point on the surface.

**Figure 7.**Surface velocity spectrum for (

**a**) reference, (

**b**) minimum and (

**c**) maximum stator d-axis current at 20 Nm of torque.

**Figure 8.**Surface velocity levels for speed run-ups at (

**a**) 20 Nm, (

**b**) 60 Nm and (

**c**) 100 Nm of torque.

**Figure 9.**Surface velocity spectrum for (

**a**) reference, (

**b**) minimum and (

**c**) maximum stator d-axis current at 60 Nm of torque.

**Figure 10.**Surface velocity spectrum for (

**a**) reference, (

**b**) minimum and (

**c**) maximum stator d-axis current at 100 Nm of torque.

**Figure 11.**Maximum of velocity level difference for different stator d-axis current at (

**a**) 20 Nm, (

**b**) 60 Nm and (

**c**) 100 Nm of torque.

**Figure 12.**Optimized (

**a**) stator d-currents changing with torque reference and (

**b**) operating points at the fundamental speed range.

**Figure 13.**Stator d-axis current for noise optimized operating at (

**a**) 20 Nm, (

**b**) 40 Nm, (

**c**) 60 Nm, (

**d**) 80 Nm, (

**e**) 100 Nm and (

**f**) 120 Nm of torque.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bischof, W.M.; Draeger, F.; Hennen, M.D.; Kennel, R.M.
Operating Point Adaptation for NVH-Optimization of Induction Machines. *World Electr. Veh. J.* **2018**, *9*, 10.
https://doi.org/10.3390/wevj9010010

**AMA Style**

Bischof WM, Draeger F, Hennen MD, Kennel RM.
Operating Point Adaptation for NVH-Optimization of Induction Machines. *World Electric Vehicle Journal*. 2018; 9(1):10.
https://doi.org/10.3390/wevj9010010

**Chicago/Turabian Style**

Bischof, Wolfgang M., Florian Draeger, Martin D. Hennen, and Ralph M. Kennel.
2018. "Operating Point Adaptation for NVH-Optimization of Induction Machines" *World Electric Vehicle Journal* 9, no. 1: 10.
https://doi.org/10.3390/wevj9010010