Next Article in Journal
Effective public policies for EV-dissemination
Previous Article in Journal
Safety Design of CHAdeMO Quick Charging System
Article Menu

Article Versions

Export Article

World Electric Vehicle Journal is published by MDPI from Volume 9 issue 1 (2018). Articles in this Issue were published by The World Electric Vehicle Association (WEVA) and its member the European Association for e-Mobility (AVERE), the Electric Drive Transportation Association (EDTA), and the Electric Vehicle Association of Asia Pacific (EVAAP). They are hosted by MDPI on mdpi.com as a courtesy and upon agreement with AVERE.
Open AccessArticle

Using multiobjective optimization for automotive component sizing

Argonne National Laboratory, Argonne, IL, USA
*
Author to whom correspondence should be addressed.
World Electr. Veh. J. 2015, 7(2), 261-269; https://doi.org/10.3390/wevj7020261
Published: 26 June 2015
PDF [731 KB, uploaded 18 May 2018]

Abstract

This paper shows how a multiobjective problem is formulated and solved in order to size the components of a vehicle with a split hybrid transmission, such as a Toyota Prius. The goal is to explore feasible design options and the trade-offs between fuel economy and vehicle cost. Eight input variables are provided for this optimization, including plant variables such as maximum power ratings for engine, motors, and battery; final drive ratio; and control variables that determine how the battery energy is utilized. Three constraints are used: achievement of the battery charge balance, ability to trace the drive cycle, and ability to achieve a zero to 60 mph acceleration performance within 10 seconds. We describe a multiobjective optimization algorithm that we have implemented in Autonomie, a simulation tool developed at Argonne, and we demonstrate its ability to utilize parallel computing capabilities of Matlab. A parallel/distributed-computing infrastructure is used to simultaneously evaluate multiple combinations of input parameters, over multiple drive cycles, thereby reducing the overall time taken to perform the optimization and hence reduce the total solution time. The optimization produces several design choices, which form a Pareto front. The search algorithm ensures that as the number of iterations increases, more and more points are added on or near the Pareto front. All the points that form the front are relevant design choices, and the front characterizes the balance between conflicting goals such as fuel economy and performance.
Keywords: n.a. n.a.
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Vijayagopal, R.; Chen, R.; Sharer, P.; Wild, S.; Rousseau, A. Using multiobjective optimization for automotive component sizing. World Electr. Veh. J. 2015, 7, 261-269.

Show more citation formats Show less citations formats

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
World Electr. Veh. J. EISSN 2032-6653 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top