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Short Abstract 

This paper shows how a multiobjective problem is formulated and solved in order to size the components of 

a vehicle with a split hybrid transmission, such as a Toyota  Prius. The goal is to explore feasible design 

options and the trade-offs between fuel economy and vehicle cost. Eight input variables are provided for this 

optimization, including plant variables such as maximum power ratings for engine, motors, and battery; final 

drive ratio; and control variables that determine how the battery energy is utilized. Three constraints are used: 

achievement of the battery charge balance, ability to trace the drive cycle, and ability to achieve a zero to 60 

mph acceleration performance within 10 seconds. 

We describe a multiobjective optimization algorithm that we have implemented in Autonomie, a simulation 

tool developed at Argonne, and we demonstrate its ability to utilize parallel computing capabilities of Matlab. 

A parallel/distributed-computing infrastructure is used to simultaneously evaluate multiple combinations of 

input parameters, over multiple drive cycles, thereby reducing the overall time taken to perform the 

optimization and hence reduce the total solution time. The optimization produces several design choices, 

which form a Pareto front. The search algorithm ensures that as the number of iterations increases, more and 

more points are added on or near the Pareto front. All the points that form the front are relevant design 

choices, and the front characterizes the balance between conflicting goals such as fuel economy and 

performance. 

 

1 Introduction 

The multiobjective optimization problem 

described in this paper differs from regular 

optimization problems in several respects. 

Foremost, it involves minimizing two conflicting 

goals: that is, the input variables that help reduce 

one of the goals tends to increase the value of the 

other goal. In automotive design, such problems 

are prevalent, and few tools exist to assist in 

making good decisions. 

Besides the manufacturing cost, the two factors 

that most determine the commercial viability of a 

vehicle are fuel economy and acceleration 

performance. Some vehicles excel in only one of 

these factors, and these designs can be optimized 

with single-objective optimization exercises with 

appropriate design constraints. If the vehicle cost 
and desired acceleration performance are fixed, 

then optimization can be done with these design 

qualities as constraints and fuel economy as the 

single objective. Doing so, however, might result 

in overlooking many other attractive design 

choices. Perhaps one can get better acceleration for 

the same fuel economy at a lower cost, or can get 

significantly better fuel economy at a slight loss of 

performance, and slight increase in cost. In order 

to understand all the attractive optimum design 

choices, a multiobjective optimization exercise is 

necessary. 

This study seeks to find such optimal design 

choices for a mid-sized hybrid electric vehicle 

(HEV) when maximizing fuel economy and 

minimizing vehicle cost. Argonne National 

Laboratory has developed a simulation process for 

such a trade-off analysis. This process is integrated 

in the simulation framework Autonomie [1]. In this 

paper we explain the steps involved and 

demonstrate a specific test case on a hybrid vehicle 

like a Toyota Prius.  

World Electric Vehicle Journal Vol. 7 - ISSN 2032-6653 - ©2015 WEVA Page WEVJ7-0261

mailto:rvijayagopal@anl.gov


2 

The default vehicle in Autonomie gets over 50 mpg 

for the UDDS cycle and is considered fuel 

efficient. However this paper shows that a HEV 

component sizing is available that has better fuel 

economy, comparable acceleration performance, 

and lower cost.  

2 Optimization Problem 

We describe here the optimization problem and its 

implementation. We also explain the importance of 

using a multiobjective approach. 

2.1 Problem Description 

    In a hybrid vehicle, engine and motors can 

provide the propulsion power. The planetary gear 

set provides a unique way to combine the torque 

output from these prime movers. We also assume a 

final drive ratio between the planetary gears and 

the wheel.  

 

Figure 1. Schematic of the hybrid vehicle powertrain 

used for this study 

In this paper, we have identified two objective 

functions: fuel economy, calculated in terms of 

miles per gallon, and vehicle cost, calculated in 

terms of dollars. Autonomie has cost estimations 

for all component models (engine, motor, battery 

etc) which are scaled with the component size. 

Factors that usually contribute to a better fuel 

economy in a HEV, larger motor, larger battery etc 

will cost more. An improvement in fuel economy 

can involve a trade-off in cost. Other factors like 

final drive ratio or control parameters may not 

affect cost but could affect the acceleration 

performance and fuel economy.  

This example shows that the objectives considered 

in our study are in conflict with each other and that 

multiobjective optimization is clearly needed in 

order to characterize the nature of these conflicts.  

2.2 Implementation 

The implementation of the problem involves 

defining the input variables, objectives, and 

constraints.  The input parameters are summarized 

in Table 1. 

Table 1. Design variables for the optimization problem  

 

The components are scaled to meet the desired 

power or energy ratings. As part of this scaling, the 

cost of the components is also estimated. Table 2 

shows the scaling parameters used for estimating 

the new cost values. Typically the cost is computed 

as Cost = k*x + c, where c is a constant value and 

k is the scaling parameter. In the case of the battery, 

the maximum value from either the power or 

energy requirement is taken as the cost of the 

battery. 

Table 2. Design variables and their impact on cost 

 

Parameters such as the power rating of the engine, 

motor, and battery may not require much 

explanation, but the last two parameters in Table 1 

refer to control variables that determine the way the 

vehicle utilizes the hybrid powertrain. The vehicle 

controller estimates the power that is demanded 

from engine and motors. If the engine is required 

to be kept running, then a minimum power output 

is imposed in order to avoid idling, as well as very 

low power operations. This minimum power 

output is determined by the ‘minimum engine 

operating power’ parameter. If the estimated power 

demand from the wheels exceed a certain 

threshold, the engine is turned on by the vehicle 

controller. Typically this should not be higher than 

the maximum power the battery or motor can 

provide. This threshold value is called ‘maximum 

power for EV operation’ in this study and is used 

as a lookup table in the model because it varies 

with battery state of charge. This particular lookup 

table is scaled based on the value of this parameter. 

The minimum and maximum limits on the design 
variables are chosen based on the range of values 

available for such components. Estimated cost of 

Input Variables Unit Default Min Max

Engine Power kW 88 50 200

Final Drive Ratio 4 2 5

Motor2 Power kW 51 10 100

Motor Power kW 58 10 100

Battery Energy kWh 4 1 12

Battery Power kW 63 16 129

Min Engine operating power kW 1 0 30

Max power for EV operation kW 20 0 100

Cost scaling factors Unit k

Engine $/kW 6.2

Final Drive 0

Motor2 $/kW 13

Motor $/kW 13

Battery (Energy) $/kWh 120

Battery (Power) $/kW 22

Min Engine operating power kW 0

Max power for EV operation kW 0
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the vehicle can be computed based on the 

component sizes, even without running any 

simulation. But the other two metrics of interest, 

fuel economy and performance, are computed after 

running simulations. Autonomie has default 

procedures for measuring fuel economy and 

acceleration performance. The fuel economy is 

measured on a charge-sustaining run over a UDDS 

cycle. 

All the major component sizes need to be evaluated 

in order to obtain the optimal design choices. Since 

only two objectives are involved here, visualizing 

the output of this problem is easy. Specifically, a 

Pareto front can be developed as shown in Figure 

2, which indicates the trade-offs between fuel 

economy and vehicle manufacturing cost as 

achieved by the specific vehicle. The red points in 

Figure 2, indicate the design choices explored in 

search for better fuel economy and the blue points 

show the choices evaluated in an attempt to lower 

the vehicle cost. 

 

Figure 2. Example of a Pareto front for two conflicting 

objectives 

All the designs that fall on the green line are 

relevant Pareto optimal solutions; and based on 

what fuel economy or acceleration performance is 

needed, the best design that meets these criteria can 

be selected from this optimal set of designs. Any 

point in this set can be traced back to a list of valid 

input variables.  

2.3  Multiobjective Optimization 

In multiobjective optimization [2], one considers 

the optimization of multiple objectives 

simultaneously. Specifically, one seeks the set of 

Pareto optimal points. A point x is said to be 

Pareto optimal if no other point y is better in all of 
the objectives, that is, no y exists such that 

f(x)>f(y) for all i. Intuitively, for Pareto optimal 

points, one cannot improve an individual 

objective without worsening another. The Pareto 

front corresponds to the objective values of the set 

of solutions that are Pareto optimal. 

 

3 Optimization Logic 

The algorithm we employ is based on 

modifications to the random search (RS) of 

Nesterov [3].  This method has favourable 

convergence guarantees when the function being 

minimized is convex, including cases when it is 

nondifferentiable or contaminated by (stochastic) 

noise. We have also observed reasonable 

empirical behaviour on several nonconvex 

problems. In each iteration, RS generates a 

stochastic direction, estimates the associated 

directional derivative, and takes a step along the 

direction that is scaled by this derivative. These 

basic operations can be arranged so that the two 

function evaluations in each iteration are 

performed concurrently. Furthermore, the 

directional derivative estimates are improved by 

using the modifications in [4], which compute and 

employ an estimate of the noise (whether 

deterministic or stochastic) in an objective of 

interest [5], so that the expectation of the 

estimation error is minimized. 

 

Our approach to minimizing multiple objectives 

simultaneously is in part guided by our desire to 

exploit additional concurrency. In particular, we 

assume that the Pareto front is reasonably convex 

and hence can be recovered by solving a sequence 

of single-objective problems. Each single-

objective problem is a different linear (convex) 

combination/weighting of the multiple objectives, 

f = w1f1+w2f2+…wmfm. Given a batch of 

weights—selected and scaled based on knowledge 

about the multiple objective functions and about 

previous single-objective runs—one can solve the 

associated single-objective problems 

concurrently, with the number of concurrent 

problems dictated by the available computational 

resources. Simulations run in previous batches 

can be exploited (under the current weights) to 

warm-start individual RS runs. 

The overall logic of the algorithm comprises 

the following steps. 

1. Begin at the best point from previous 

runs, or pick a random point. 

x=[x1,x2,……,xn]. 

2. Add a small step to get [xµ] along a 
random direction. 

3. Try simulation with [x] and [xµ].  
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4. Get [f] & [fµ]. 

a. For multiple objectives f = 

w1f1+w2f2+……+wmfm.  

b. [x] and [xµ] can be evaluated in 

parallel. 

c. Different processes in each 

iteration can be run in parallel. 

d. Different set of weights “w” can 

be run in parallel. 

5. Compute the slope of “f” in the chosen 

direction. 

6. Make a step along the direction as scaled 

by the slope, to arrive at the next [x]. 

7. Repeat 2, until the maximum number of 

iteration is reached. 

 

4 Simulation Framework 

Autonomie is a simulation tool developed at 

Argonne that allows users to plug in their specific 

models, drive cycles, and processes. Autonomie is 

built on Matlab, Simulink & Stateflow and can 

interface with many other simulation tools. Figure 

3 shows the Simulink vehicle model built for this 

study. In addition to being a model-building 

platform, it provides a convenient framework to 

perform studies. Several optimization techniques, 

including the modified random search algorithm, 

are already integrated with Autonomie. The 

graphical user interface (GUI), makes it easy to 

define the optimization problem in Autonomie. 

 

Figure 3. Vehicle controller and vehicle architecture is 

built using Simulink and Stateflow 

 

The drive cycles over which this model should be 

simulated can be selected in Autonomie. This study 

uses two cycles: the UDDS and an acceleration test 

(0–60 mph). For each of these cycles, specific 

constraints and objectives are specified. Minimum 

fuel consumption is the goal, and SOC balance is a 

constraint for the UDDS cycle. The vehicle 

controller tried to enforce SOC balance, but this 

needs to be added as a constraint to ensure that the 

simulation results are valid. Similarly, the 

acceleration test has as a goal the minimum time 

taken to accelerate from 0 mph to 60 mph. All 

variables that are used in the vehicle or produced 

as output from the vehicle model are available 

through the GUI, which can be used to define the 

optimization problem. The constraints imposed on 

this study are listed below. 

1. SOC balance for UDDS cycle for fuel 

economy runs 

2. UDDS drive cycle trace, within +/- 

2mph tolerance at all times 

3. 0-60 mph acceleration, under 10 s 

After defining the objectives and constraints for 

each cycle (see Figure 4), all the input variables 

and the allowable range of inputs need to be 

provided (see Figure 5). 

If the variables are defined within Autonomie, then 

the editor shows the lower and upper limits that can 

be selected.  
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Figure 4. Defining constraints and objectives through the GUI 

 

Figure 5. Defining all the input variables for the optimisation problem 

5 Running the Simulations 

     The optimization routine can initiate parallel 

evaluations of different cycles. If the user has a 

multi core machine, parallel matlab sessions can be 

run locally in user’s machine itself. If a license for 

the Matlab parallel computing toolbox and access 

to a distributed-computing cluster are available, 

then the simulations can be executed by using these 

resources. For this study, the simulations were run 

on a distributed-computing cluster. This study used 

a Windows-based system but the implementation 

was tested on linux based clusters too. Figure 6 

shows the overview of how this parallel 

evaluations are achieved. The shared disc space 

should be accessible from both the distributed-

computing cluster and the user’s machine. The path 

for the common locations and files is defined for 

Windows and UNIX operating systems by using 

XML files.  
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Figure 6. Overview of the distributed computing 

capability 

The user’s machine runs the optimization routine, 

which sends multiple simulation commands to the 

distributed-computing cluster through a Matlab job 

manager or a job scheduler used in the distributed- 

computing cluster. The simulation runs are carried 

out by the worker machines as scheduled by the job 

manager. When these simulations are completed, 

the results are written out to the shared disc space. 

The user’s machine can read these results from the 

shared disk space, process the results, and specify 

with new simulation commands.  

Our multiobjective optimization algorithm 

evaluates different weighted combinations of the 

various objectives. For any given weight, a single 

cost function is formed as  

F = w*F1 + (1-w)*F2. The weight, ‘w’ can be 

between 0 and 1, with the first objective given a 

weight w and the second objective given the weight 

(1-w). Each objective is then minimized by using 

our single-objective algorithm; see Figure 7. 

 

  

Figure 7. Multiobjective problem split into many single-

objective problems with different weights that can be 

solved concurrently 

Each of these weighted combinations can be 

treated as independent optimization runs. Each 

separate weight will initiate a separate Matlab 

session in the user’s machine and two worker 

machines on the distributed-computing cluster. In 

our test case, the distributed-computing cluster 

provided 12 workers, to concurrently evaluate six 

weighted combinations of the two objectives.  

6 Results 

The optimization runs using the hybrid vehicle 

model show interesting behaviour. The 

optimization algorithm provided component sizes 

that are better suited for the operation of the vehicle 

over the UDDS cycle. In Figure 8, we plot the 

percentage change in both fuel consumption and 

vehicle cost on the x and y axes, respectively. The 

(0,0) point refers to the baseline vehicle. Any point 

that has positive x and positive y coordinates is 

worse than the default vehicle, as it has a higher 

fuel consumption and cost. All the other outputs 

present a design choice that has some advantage 

over the default vehicle. 

The points that fall on the dotted black line 

correspond to the final relevant design choices. 

These choices illustrate the trade-off available 

between fuel economy and cost.  For example, for 

a higher vehicle cost, an option exists for obtaining 

15% better fuel consumption than the default 

vehicle; this option is represented by the point at (-

15, 4). Similarly, for the same fuel economy as the 

default vehicle, one can obtain about 4% lower 

cost. There are also points such as (-15,-2.5), which 

offer lower fuel consumption as well as lower cost. 

 

Figure 8. Interpreting the results shown in a Pareto 

diagram 

In Figure 8, we have used three weights [0 0.5 1]. 

For each of these weights, the RS algorithm 

employed is run multiple times, with 20 iterations 

in each. If no improvement in the weighted 

objective function is noticed over the past 10 

consecutive iterations, that particular run is 

terminated. The best point observed during that run 
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is marked with a green “x” in the plot. Then the 

algorithm looks at all the previous results for the 

best point to start a new run. While evaluating test 

cases for a particular w, say 1, where all weightage 

is given to minimizing fuel consumption, the 

randomness in the RS algorithm may produce an 

indeterminate design point that could end up as a 

very good point for a 0.5 weight (where fuel 

economy and cost are given equal weights). If the 

algorithm is looking to start a new set of runs for 

the w = 0.5, then it will begin from the previous 

point that was actually produced by a parallel run. 

This sharing of information between parallel runs 

helps reduce the number of iterations and time 

taken for each rerun, and hence the total time. 

Figure 8 shows more improvement on fuel 

consumption side than on the cost. More 

evaluations of weights closer to zero will explore 

the possible improvements in cost as well. The 

Pareto front is represented by the dotted block line 

in Figure 8. Several hundred more iterations are 

needed to obtain a more accurate Pareto front. The 

exact shape of the front will also depend on the 

behaviour of the vehicle model.  

A Pareto front generated with Random Search 

algorithm may not show the globally optimal 

results, but this can provide certain feasible design 

points which will meet the design constraints. For 

example, every point on the black dotted line that 

is marked with a green ‘x’ in Figure 9 presents a 

point in the design space that provide some trade-

off between vehicle cost and fuel consumption. 

There are design choices that can provide both cost 

savings and fuel savings too. Analysing the 

variation in input parameters for three sample 

points marked with large blue dots in the figure 

below can also shows us the trends. They represent 

the best points observed for the weights we used in 

this study, [0, 0.5, 1].  

 

Figure 9. Viable design choices picked from the 

approximate Pareto front 

These three points presents very different design 

choices. When looking for maximum fuel 

economy, the optimization logic will not try to save 

cost. Similarly in an effort to find the lowest cost, 

a single objective optimization algorithm will not 

explore options to avoid wasting of fuel. The 

results presenting tradeoffs between these two 

extreme positions would avoid unnecessary cost 

and fuel usage. 

 

Figure 10. Variation in component powers during the 

fuel economy vs cost trade-off 

On the left extreme of Figure 10, we have the 

design inputs for a low cost hybrid (w=0). The 

hybrid powertrain size is close to the minimum 

limits, but sized large enough to meet the 

performance requirement of reaching 60mph in 

under 10s. The middle of the plot, presents a 

balance of fuel economy and cost (w=0.5). We see 

larger sized motors and battery. As part of the 

effort to reduce cost, the engine power is scaled 

down to the minimum limit. Finally, when we 

focus just on improving fuel economy, (w=1) we 

get a solution with very large battery and motors.  

Parameters such as battery energy and final drive 

ratio remained almost the same for these solutions. 

While battery energy affects cost, it is 

overshadowed by the cost imposed by battery 

power. Hence these two factors remain at values 

that yield better fuel economy. 

The control variables however show interesting 

response to varying component sizes. On the left 

extreme of Figure 11, where fuel economy was not 

a factor, we see that the minimum power demanded 

from the engine is not a critical factor. However as 

soon as we move to a region where fuel economy 

is given a positive weightage, the minimum engine 

operating power drops to about 2 kW.  

 

The maximum power up to which the vehicle can 
operate in EV mode determines the power 

threshold at which engine will be turned on to 

provide propulsion power. This value is seen to 
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increase as the motor power and battery power 

increases. This brings out a relation between the 

control variable and component size. For 

maximum fuel economy the engine is turned on 

only if the power demanded by the wheels is 

greater than 50kW. While this may not result in the 

globally maximal fuel economy, the trends we see 

these design variables will be useful. 

 

Figure 11. Variation in control parameters during the 

fuel economy vs cost trade-off 

For better fuel economy, we see that the 

optimisation logic picked a higher degree of 

hybridization. In contrast, to reduce cost, the 

algorithm picked minimum values for the 

component sizes needed to achieve the 

performance requirements. In the actual vehicle, 

Engine power may not be reduced to such a low 

value because there are other performance 

considerations like ability to climb extended 

grades, or being able to operate with a faulty 

battery. The drive cycles and performance 

requirements we imposed on this study do not 

demand a big engine. In this study, performance 

requirement was provided as a constraint rather 

than an objective. With a different problem 

definition and imposition of more realistic 

operational constraints, one can size vehicles that 

trade-off all three objectives, fuel economy, 

performance and cost. 

7 Conclusion 

This paper shows how a multiobjective 

optimization problem is solved by using modern 

computational techniques and tools. Sizing of the 

hybrid vehicle to meet the fuel economy, cost and 

performance constraints is a complex task. Recent 

advances made in software, as well as the 

availability of multicore desktops and distributed 

computing facilities, make this study possible. 

Autonomie functions as a simulation framework 

that does model building and initiates simulations. 

It also handles the communication between the 

user’s machine and the job manager/scheduler of 

the distributed-computing cluster.  

This exercise resulted in obtaining three design 

choices that are better than the default vehicle in 

different aspects. To keep the visualizations 

simple, we considered just fuel economy and cost 

as objectives, but more objectives can easily be 

added.  
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