Next Article in Journal
Electromechanical Components and its Energy Saving Design Strategy in PHEV Powertrain
Previous Article in Journal
Analysis of the Fault Tolerance of a Switched Reluctance Machine with Distributed Inverter
World Electric Vehicle Journal is published by MDPI from Volume 9 issue 1 (2018). Articles in this Issue were published by The World Electric Vehicle Association (WEVA) and its member the European Association for e-Mobility (AVERE), the Electric Drive Transportation Association (EDTA), and the Electric Vehicle Association of Asia Pacific (EVAAP). They are hosted by MDPI on as a courtesy and upon agreement with AVERE.
Open AccessArticle

Efficiency Improvement of Regenerative Energy for an EV

Shibaura Institute of Technology
National Traffic Safety and Environment Laboratory
Author to whom correspondence should be addressed.
World Electr. Veh. J. 2012, 5(2), 494-500;
Published: 29 June 2012
PDF [2153 KB, uploaded 17 May 2018]


Electric Vehicles (EVs) and various Hybrid Electric Vehicles (HEVs) have been attracting a lot of attention for environmental issues and energy crisis. One of advantages of using foregoing vehicles is charging energy by the regenerative brake. The running distance by one electric charge is increased a lot by the regenerative brake. However, the absorbed capacity of the regenerative energy is limited because of the motor capacity and the current limit of the battery. As a result not only the regenerative electric brake but also the mechanical brake must be used. This becomes serious issue in the heavy weight vehicle such as the bus and the truck, the effectiveness of EV/HEV is not obtained. To increase the regenerative energy, the large motor and the battery are requested, however, it is very difficult because of the cost and the limit of the inverter capacity. In this paper, it is verified that the regenerative energy is increased by improving a braking method, averaging the deceleration, without changing the power train system. The proposed method is experimentally evaluated by i-MiEV on the dynamo system, and increases the regenerative energy to 18%.
Keywords: EV (electric vehicle); HEV (hybrid electric vehicle); regenerative brake EV (electric vehicle); HEV (hybrid electric vehicle); regenerative brake
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Yabe, T.; Akatsu, K.; Okui, N.; Niikuni, T.; Kawai, T. Efficiency Improvement of Regenerative Energy for an EV. World Electr. Veh. J. 2012, 5, 494-500.

Show more citation formats Show less citations formats

Article Metrics

Article Access Statistics



[Return to top]
World Electr. Veh. J. EISSN 2032-6653 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top