High-Precision Low-Speed Measurement for Permanent Magnet Synchronous Motors Using an Improved Extended State Observer
Abstract
1. Introduction
2. Basis of Low-Speed Speed Measurement Problem
2.1. Speed Measurement Error Analysis in Low-Speed Operation
2.2. Direct Differentiation Method with Low-Pass Filter
3. Mathematical Model of Low-Speed Speed Measurement Method
3.1. Low-Speed Velocity Measurement Based on Integral-Type Phase-Locked Loop
3.2. ESO-Based Low-Speed Velocity Estimation Using Third-Order Observer
3.2.1. Speed Measurement Module Based on State Observer
3.2.2. Speed Measurement Module Based on Extended State Observer
3.2.3. Speed Measurement Module with Disturbance Observation Output
4. Simulation of Low-Speed Speed Measurement Method
5. Experiment of Low-Speed Speed Measurement Method
Experimental Setup for Low-Speed Motor Encoder Evaluation
6. Application Prospects
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| PLL | phase-locked loop |
| ESO | extended state observer |
| KF | Kalman filter |
| EKF | extended Kalman filter |
| PMSM | permanent magnetic synchronous motor |
| LPF | low-pass filter |
| MCU | micro control unit |
| Res | resolution |
| Id, Iq | dq-frame current |
| Ia, Ib, Ic | abc-frame currents |
| θe | angle error between reference and feedback |
| pn | pole pair |
| Uα, Uβ | αβ-frame voltage |
| nc | critical speed |
| Kt | torque constant |
| J | load inertia |
| B | viscous friction |
| Te | electrical torque |
| Tl | load torque |
References
- Pellegrino, G.; Vagati, A.; Guglielmi, P.; Boazzo, B. Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application. IEEE Trans. Ind. Electron. 2012, 59, 803–811. [Google Scholar] [CrossRef]
- Wang, G.; Fang, S. The Precision Improvement of Robot Integrated Joint Module Based on a New ADRC Algorithm. Machines 2024, 12, 712. [Google Scholar] [CrossRef]
- Wu, Z.; Yao, M.; Ma, H.; Jia, W. Improving Accuracy of the Vehicle Attitude Estimation for Low-Cost INS/GPS Integration Aided by the GPS-Measured Course Angle. IEEE Trans. Intell. Transp. Syst. 2013, 14, 553–564. [Google Scholar] [CrossRef]
- Sudhakar, M.; Vivekanand, K. Enhanced CNN based approach for IoT edge enabled smart car driving system for improving real time control and navigation. Sci. Rep. 2025, 15, 33932. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Liu, G.; Cui, X. A Disturbance Estimation Approach to Self-Calibration of Gimbal Resolver-to-Digital Conversion System. IEEE Trans. Ind. Electron. 2023, 70, 793–802. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J. Disturbance characteristics analysis of CMG due to imbalances and installation errors. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1017–1026. [Google Scholar] [CrossRef]
- Du, H.; Wang, L.; Chen, J.; Huang, H.; Feng, X. Integral Sliding-Mode Tracking Control for Heavy Vehicle Electrohydraulic Power Steering System. IEEE/ASME Trans. Mechatron. 2021, 26, 1455–1466. [Google Scholar] [CrossRef]
- Yang, C.; Fan, Y.; Zhang, Q. Speed Estimation from a Low-Resolution Encoder Using Adaptative Extend Kalman Observer in Low-Speed Range. In Proceedings of the 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE), Chengdu, China, 15–17 December 2021; pp. 1–7. [Google Scholar]
- Wang, S.; Zhang, H.; Bao, Y.; Varvolik, V.; Prystupa, D.; Buticchi, G.; Li, J.; Zhang, X. A High Precision Resolver-to-Digital Conversion Method with Pre-filtering DDSRF Used in Electric Vehicle. In Proceedings of the 2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Haining, China, 28–31 October 2022; pp. 1–6. [Google Scholar]
- Yin, X.; Guo, Y.; Na, J.; Fan, J. Incremental Optical Encoder Error Modeling and Compensation for Accurate Speed Acquisition in Non-Stationary Conditions. IEEE Trans. Ind. Electron. 2025, 72, 1033–1042. [Google Scholar] [CrossRef]
- Dalboni, M.; Soldati, A. Absolute Two-Tracked Optical Rotary Encoders Based on Vernier Method. IEEE Trans. Instrum. Meas. 2023, 72, 9501412. [Google Scholar] [CrossRef]
- Benevieri, A.; Marchesoni, M.; Passalacqua, M.; Vaccaro, L. Experimental Low-Speed Performance Evaluation and Comparison of Sensorless Passive Algorithms for SPMSM. IEEE Trans. Energy Convers. 2022, 37, 654–664. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, P.; Jatskevich, J.; Zhang, C. Torque-Ripple Reduction of Permanent Magnet Synchronous Machine Drives Based on Novel Speed Harmonic Control at Low-Speed Operation. IEEE Trans. Ind. Electron. 2023, 70, 7683–7694. [Google Scholar] [CrossRef]
- Bai, Y.; Tang, X.; Chen, J.; Peng, F. Research on Ultra-low speed control of PMSM in servo system. In Proceedings of the 2008 7th World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; pp. 2381–2386. [Google Scholar]
- Yan, Y.; Zhang, X.; Xia, C.; Ji, B.; Wang, Z. Speed measurement algorithm for low-speed permanent magnet synchronous motor based on overlapped measurement regions. In Proceedings of the 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 8–10 June 2016; pp. 204–209. [Google Scholar]
- He, C. The digital filter method designing of angular rate of the servo control system in low speed. In Proceedings of the International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, 12–14 August 2011; pp. 4890–4893. [Google Scholar]
- Wang, Y.; Zhang, H.; Liu, K.; Hu, M.; Wu, Z.; Zhang, C.; Hua, W. A Forward Compensation Method to Eliminate DC Phase Error in SRF-PLL. IEEE Trans. Power Electron. 2022, 37, 6280–6284. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, J.; Liu, W.; Lee, C.H.T. A Linear Control Approach to Design Digital Speed Control System for PMSMs. IEEE Trans. Power Electron. 2022, 37, 8596–8610. [Google Scholar] [CrossRef]
- Wang, C.; Wu, W.; Li, G.; Yang, G.; Zhang, C.; Pan, J. Design of Full-Order State Observer for Motor Drive Systems Based on the Fixed Gain Filter. IEEE Access 2021, 9, 13488–13498. [Google Scholar] [CrossRef]
- Shi, T.; Wang, Z.; Xia, C. Speed Measurement Error Suppression for PMSM Control System Using Self-Adaption Kalman Observer. IEEE Trans. Ind. Electron. 2015, 62, 2753–2763. [Google Scholar] [CrossRef]
- Thielemans, Y.; Kayedpour, N.; Coene, A.; Crevecoeur, G.; De Kooning, J.D.M. Speed and Position Measurement of Rotating Machinery with a Triangular Pattern Vision Encoder. IEEE Trans. Instrum. Meas. 2025, 74, 5029913. [Google Scholar] [CrossRef]
- Hou, Q.; Xu, S.; Zuo, Y.; Wang, H.; Sun, J.; Lee, C.H.T.; Ding, S. Enhanced Active Disturbance Rejection Control with Measurement Noise Suppression for PMSM Drives via Augmented Nonlinear Extended State Observer. IEEE Trans. Energy Convers. 2024, 39, 287–299. [Google Scholar] [CrossRef]
- Li, T.; Zhao, Y.; Hou, L. Adaptive Sliding Mode Control with Disturbance Observer for Speed Regulation System of Permanent Magnet Synchronous Motor. IEEE Access 2023, 11, 17021–17030. [Google Scholar] [CrossRef]
- Hamida, M.A.; Leon, J.D.; Glumineau, A.; Boisliveau, R. An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification. IEEE Trans. Ind. Electron. 2013, 60, 739–748. [Google Scholar] [CrossRef]
- Wang, W.; Ye, Y.; Chen, X.; Yuan, Y. Adaptive High-Order Sliding-Mode Low-speed Control with RBF Neural Network Nonlinear Disturbance Observer for PMSM Drive System. IEEE Trans. Power Electron. 2025, 40, 10865–10876. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.; Le, Y. Torque Ripple Minimization of Low-Speed Gimbal Servo System Using Parameter-Optimized ESO. IEEE J. Emerg. Sel. Topics Power Electron. 2023, 11, 2094–2103. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, H.; Che, Z.; Wang, Y.; Zeng, C. Extended State Observer-Based Predictive Speed Control for Permanent Magnet Linear Synchronous Motor. Processes 2019, 7, 618. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, W.; Zhao, Y.; Lin, X.; Dong, D.; Jiang, W.; Zhao, Y.; Wu, X. Robust Speed Control of Electrical Drives with Reduced Ripple Using Adaptive Switching High-Order Extended State Observer. IEEE Trans. Power Electron. 2022, 37, 2009–2020. [Google Scholar] [CrossRef]























| Encoder Resolution | Quantization Error | Rotor Critical Speed |
|---|---|---|
| 12 bit | 0.0879° | 146.5 rpm |
| 16 bit | 0.0055° | 9.17 rpm |
| 20 bit | 0.00034° | 0.567 rpm |
| 26 bit | 0.00000536° | 0.0089 rpm |
| Parameters | Values |
|---|---|
| Pole Pairs | 24 |
| Phase Resistance (Ω) | 5 |
| Phase inductance (mH) | 10 |
| Rated Current (A) | 4 |
| Rated Voltage (V) | 38 |
| Load Inertia (kg·m2) | 1.4 |
| Torque Constant (Nm/A) | 1.41 |
| Reference Speed | Encoder Resolution | Differential Method | PLL Method | Original ESO Method | Improved ESO Method |
|---|---|---|---|---|---|
| 10°/s | 16 bit | 2.679°/s | 0.422°/s | 0.403°/s | 0.311°/s |
| 20 bit | 0.132°/s | 0.065°/s | 0.039°/s | 0.018°/s | |
| 26 bit | 0.009°/s | 0.302°/s | 0.021°/s | 0.005°/s | |
| 6°/s | 16 bit | 2.642°/s | 0.617°/s | 0.325°/s | 0.247°/s |
| 20 bit | 0.218°/s | 0.081°/s | 0.055°/s | 0.047°/s | |
| 26 bit | 0.009°/s | 0.024°/s | 0.015°/s | 0.003°/s | |
| 2°/s | 16 bit | 3.736°/s | 0.675°/s | 0.597°/s | 0.601°/s |
| 20 bit | 0.161°/s | 0.056°/s | 0.032°/s | 0.030°/s | |
| 26 bit | 0.010°/s | 0.011°/s | 0.008°/s | 0.004°/s |
| Comparison Items | Reference Speed | Differential Method | PLL Method | Original ESO Method | Improved ESO Method |
|---|---|---|---|---|---|
| Transient time | 10°/s | 0.0532 s | 0.3320 s | 0.0514 s | 0.0465 s |
| 6°/s | 0.0885 s | 0.3539 s | 0.0861 s | 0.0361 s | |
| 2°/s | 0.1514 s | 0.0760 s | 0.1251 s | 0.0656 s | |
| Speed fluctuation in steady state | 10°/s | 0.0817°/s | 0.0294°/s | 0.0325°/s | 0.0322°/s |
| 6°/s | 0.0737°/s | 0.0207°/s | 0.0248°/s | 0.0207°/s | |
| 2°/s | 0.0345°/s | 0.0141°/s | 0.0059°/s | 0.0034°/s |
| Method | Steady-State Fluctuation | Transient Response | Robustness Disturbances |
|---|---|---|---|
| Proposed Improved ESO | Very Low | Fast | Excellent |
| Standard ESO | Low | Moderate | Good |
| PLL | Medium | Slow | Moderate |
| Differentiation + Filter | High | Fast | Poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, R.; Liu, K.; Wang, Y.; Sohel, R.M. High-Precision Low-Speed Measurement for Permanent Magnet Synchronous Motors Using an Improved Extended State Observer. World Electr. Veh. J. 2025, 16, 595. https://doi.org/10.3390/wevj16110595
Ji R, Liu K, Wang Y, Sohel RM. High-Precision Low-Speed Measurement for Permanent Magnet Synchronous Motors Using an Improved Extended State Observer. World Electric Vehicle Journal. 2025; 16(11):595. https://doi.org/10.3390/wevj16110595
Chicago/Turabian StyleJi, Runze, Kai Liu, Yingsong Wang, and Rana Md Sohel. 2025. "High-Precision Low-Speed Measurement for Permanent Magnet Synchronous Motors Using an Improved Extended State Observer" World Electric Vehicle Journal 16, no. 11: 595. https://doi.org/10.3390/wevj16110595
APA StyleJi, R., Liu, K., Wang, Y., & Sohel, R. M. (2025). High-Precision Low-Speed Measurement for Permanent Magnet Synchronous Motors Using an Improved Extended State Observer. World Electric Vehicle Journal, 16(11), 595. https://doi.org/10.3390/wevj16110595

