Discrete Element Method-Based Analysis of Tire-Soil Mechanics for Electric Vehicle Traction on Unstructured Sandy Terrains
Abstract
1. Introduction
2. Wheel and Soil Contact Modeling
2.1. Wheel–Soil Interaction Modeling
2.2. Positive Stress Distribution Model
2.3. Modeling of Shear Stress Distribution
2.4. Theoretical Modeling of Traction Characteristics in Linear Conditions
3. Pavement Modeling
3.1. Simulation Principle
3.2. Particle Parameters
3.3. Contact Parameter Calibration
3.3.1. Angle of Repose Test
3.3.2. Path of Steepest Ascent Method
3.3.3. Box–Behnkens Test
3.3.4. Optimal Parameter Validation
3.4. Road Surface Simulation Model
4. Tire Modeling
5. Numerical Simulation
5.1. Simulation Setup
5.2. Simulation Variable Design
5.3. Data Acquisition
6. Simulation Results and Discussion
6.1. Simulation Results and Analysis of Smooth Tires
6.2. Comparison of Simulation Results of Different Tread Patterns
7. Discussion
7.1. Result Interpretation and Hypothesis Verification
7.2. Significance of Studying
7.3. Limitations and Future Research Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation | Full Name |
DEM | Discrete Element Method |
EV | Electric Vehicle |
FEM | Finite Element Method |
ANOVA | Analysis of Variance |
CV | Coefficient of Variation |
References
- Kim, J.T.; Choi, H.J.; Oh, J.W.; Park, Y.J. Optimization of grouser shape ratio for coastal terrain driving device using discrete element method. J. Terramech. 2023, 110, 27–37. [Google Scholar] [CrossRef]
- Sedara, A.M.; Abdeldayem, M.A.A.; Freitas, F.P.G.D.; Mehari, T.Z. Optimization of subsoiler design using similitude-based DEM simulation and soil bin testing on cohesive-frictional artificial soil. J. Terramech. 2025, 117, 101026. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Lai, Q.; Zhao, L.; Li, J.; Zeng, R.; Zhang, Z. Discrete element contact model and parameter calibration for clayey soil particles in the Southwest hill and mountain region. J. Terramech. 2024, 111, 73–87. [Google Scholar] [CrossRef]
- Guan, Z.; Jiang, D.; Zhang, M.; Jin, M.; Li, H.; Jiang, T. Effect of vertical load on track traction under different soil moisture content. J. Terramech. 2025, 118, 101044. [Google Scholar] [CrossRef]
- Jasoliya, D.; Untaroiu, A.; Untaroiu, C. A review of soil modeling for numerical simulations of soil-tire/agricultural tools interaction. J. Terramech. 2024, 111, 41–64. [Google Scholar] [CrossRef]
- Patidar, P.; Soni, P.; Jain, A.; Mahore, V. Modelling soil-rotor blade interaction of vertical axis rotary tiller using discrete element method (DEM). J. Terramech. 2024, 112, 59–68. [Google Scholar] [CrossRef]
- Zhang, J.M.; Yao, H.; Chen, L.; Zheng, E.; Zhu, Y.; Xue, J. Vibration characteristics analysis and suspension parameter optimization of tractor/implement system with front axle suspension under ploughing operation condition. J. Terramech. 2022, 102, 49–64. [Google Scholar] [CrossRef]
- Dong, X.; Jin, J.; Jia, Z.; Qi, Y.; Chen, T.; He, L.; Zou, M. Design and passability study of soil-plowing wheel facing soft terrain. J. Terramech. 2025, 117, 101002. [Google Scholar] [CrossRef]
- Zhou, L.; Gao, J.; Hu, C.; Li, Q. Numerical simulation and testing verification of the interaction between track and sandy ground based on discrete element method. J. Terramech. 2021, 95, 73–88. [Google Scholar] [CrossRef]
- Alkhalifa, N.; Tekeste, M.Z.; Jjagwe, P.; Way, T.R. Effects of vertical load and inflation pressure on tire-soil interaction on artificial soil. J. Terramech. 2024, 112, 19–34. [Google Scholar] [CrossRef]
- Pacejka, H.B. Tire and Vehicle Dynamics; Butterworth Heinemann: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Jelinek, B.; Card, A.; Mason, G.L.; Grebner, K.; Dickerson, A.; Skorupa, T.; Cole, M.; Priddy, J.D. Tractive performance of rigid wheel in granular media using coarse-scale DEM models. J. Terramech. 2025, 117, 101016. [Google Scholar] [CrossRef]
- Shinone, H.; Nakashima, H.; Takatsu, Y.; Kasetani, T.; Matsukawa, H.; Shimizu, H.; Miyasaka, J.; Ohdoi, K. Experimental Analysis of Tread Pattern Effects on Tire Tractive Performance on Sand using an Indoor Traction Measurement System with Forced-slip Mechanism. Eng. Agric. Environ. Food 2010, 3, 61–66. [Google Scholar] [CrossRef]
- Ding, L.; Gao, H.; Deng, Z.; Nagatani, K.; Yoshida, K. Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil. J. Terramech. 2011, 48, 27–45. [Google Scholar] [CrossRef]
- Bekker, M.G. Off-the-Road Locomotion: Research and Development in Terramechanics; University of Michigan Press: Ann Arbor, MI, USA, 1960. [Google Scholar]
- Wong, J.Y.; Reece, A.R. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses part I. Performance of driven rigid wheels. J. Terramech. 1967, 4, 81–98. [Google Scholar] [CrossRef]
- Janosi, Z. Analysis and presentation of soil-vehicle mechanics data. J. Terramech. 1965, 2, 69–79. [Google Scholar] [CrossRef]
- Ding, L.; Deng, Z.; Gao, H.; Tao, J.; Iagnemma, K.D.; Liu, G. Interaction Mechanics Model for Rigid Driving Wheels of Planetary Rovers Moving on Sandy Terrain with Consideration of Multiple Physical Effects. J. Field Robot. 2015, 32, 827–859. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1980, 30, 331–336. [Google Scholar] [CrossRef]
- Keer, L.M.; Kim, S.H.; Eberhardt, A.W.; Vithoontien, V. Compliance of coated elastic bodies in contact. Int. J. Solids Struct. 1991, 27, 681–698. [Google Scholar] [CrossRef]
- Hertz, H. Ueber die Berührung Fester Elastischer Körper. 1882. Available online: https://www.degruyterbrill.com/document/doi/10.1515/crll.1882.92.0/html (accessed on 27 September 2025).
- Lanier, J.; Calvetti, F. Mechanics of Granular Materials: An Introduction; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar] [CrossRef]
- Ucgul, M.; Fielke, J.M.; Saunders, C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil. Biosyst. Eng. 2014, 121, 105–117. [Google Scholar] [CrossRef]
Particle Radius (mm) | Material Density (kg/m3) | Young’s Modulus (Pa) | Poisson’s Ratio |
---|---|---|---|
2 | 2650 | 2 × 108 | 0.21 |
No. | Parameter A | Parameter B | Parameter C | Repose Angle/(°) | Relative Error/% |
---|---|---|---|---|---|
1 | 0.15 | 0.44 | 0.05 | 9.41 | 70.2 |
2 | 0.27 | 0.852 | 0.1 | 12.05 | 61.84 |
3 | 0.39 | 1.264 | 0.15 | 17.45 | 44.74 |
4 | 0.51 | 1.676 | 0.2 | 23.17 | 26.63 |
5 | 0.63 | 2.088 | 0.25 | 29.85 | 5.5 |
6 | 0.75 | 2.5 | 0.3 | 34.1 | 7.98 |
No. | Parameter A | Parameter B | Parameter C | Repose Angle/(°) |
---|---|---|---|---|
1 | −1 (0.51) | −1 (1.676) | 0 (0.25) | 26.81 |
2 | 1 (0.75) | −1 | 0 | 25.41 |
3 | −1 | 1 (2.5) | 0 | 22.43 |
4 | 1 | 1 | 0 | 26.84 |
5 | −1 | 0 (2.088) | −1 (0.2) | 21.82 |
6 | 1 | 0 | −1 | 20.38 |
7 | −1 | 0 | 1 (0.3) | 27.02 |
8 | 1 | 0 | 1 | 34.17 |
9 | 0 (0.63) | −1 | −1 | 20.46 |
10 | 0 | 1 | −1 | 20.23 |
11 | 0 | −1 | 1 | 31.15 |
12 | 0 | 1 | 1 | 31.78 |
13 | 0 | 0 | 0 | 28.37 |
14 | 0 | 0 | 0 | 28.63 |
15 | 0 | 0 | 0 | 29.13 |
16 | 0 | 0 | 0 | 28.74 |
17 | 0 | 0 | 0 | 29.77 |
Error Source | Mean Square | Freedom | Quadratic Sum | p Value |
---|---|---|---|---|
Model | 31.91 | 9 | 287.15 | <0.0001 |
A | 9.50 | 1 | 9.50 | 0.0075 |
B | 0.8128 | 1 | 0.8128 | 0.3132 |
C | 212.49 | 1 | 212.49 | <0.0001 |
AB | 8.44 | 1 | 8.44 | 0.0100 |
AC | 18.45 | 1 | 18.45 | 0.0013 |
BC | 0.1849 | 1 | 0.1849 | 0.6203 |
A2 | 13.74 | 1 | 13.74 | 0.0029 |
B2 | 12.88 | 1 | 12.88 | 0.0035 |
C2 | 6.83 | 1 | 6.83 | 0.0161 |
Residual error | 0.6885 | 7 | 4.812 | |
Lack of fit | 1.21 | 3 | 3.63 | 0.1036 |
Pure error | 0.2963 | 4 | 1.19 | |
Total | 16 | 291.97 | ||
R2 = 0.9835; R2adj = 09623; CV = 3.11%; Adeq Precision = 22.9452 |
Intrinsic Parameter | Contact Parameter | |||||
---|---|---|---|---|---|---|
Particle Radius (mm) | Material Density (kg/m3) | Young’s Modulus (Pa) | Poisson’s Ratio | Coefficient of Restitution | Coefficient of Static Friction | Coefficient of Kinetic Friction |
2 | 2650 | 2 × 108 | 0.21 | 0.638 | 1.89 | 0.283 |
Material Type | Material Density (kg/m3) | Young’s Modulus (Pa) | Poisson’s Ratio |
---|---|---|---|
Steel | 7800 | 7 × 1010 | 0.3 |
Caoutchouc | 1800 | 2 × 106 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Li, B.; Bei, S.; Gu, J. Discrete Element Method-Based Analysis of Tire-Soil Mechanics for Electric Vehicle Traction on Unstructured Sandy Terrains. World Electr. Veh. J. 2025, 16, 569. https://doi.org/10.3390/wevj16100569
Hu C, Li B, Bei S, Gu J. Discrete Element Method-Based Analysis of Tire-Soil Mechanics for Electric Vehicle Traction on Unstructured Sandy Terrains. World Electric Vehicle Journal. 2025; 16(10):569. https://doi.org/10.3390/wevj16100569
Chicago/Turabian StyleHu, Chenyu, Bo Li, Shaoyi Bei, and Jingyi Gu. 2025. "Discrete Element Method-Based Analysis of Tire-Soil Mechanics for Electric Vehicle Traction on Unstructured Sandy Terrains" World Electric Vehicle Journal 16, no. 10: 569. https://doi.org/10.3390/wevj16100569
APA StyleHu, C., Li, B., Bei, S., & Gu, J. (2025). Discrete Element Method-Based Analysis of Tire-Soil Mechanics for Electric Vehicle Traction on Unstructured Sandy Terrains. World Electric Vehicle Journal, 16(10), 569. https://doi.org/10.3390/wevj16100569