Active Disturbance Rejection Control for Flux Weakening in Interior Permanent Magnet Synchronous Motor Based on Full Speed Range
Abstract
:1. Introduction
2. Mathematical Model and Weak Magnetic Calculation of Interior PMSM
2.1. PMSM Model
2.2. Weak Magnetic Calculation of Interior PMSM
2.2.1. Constant Torque Region
2.2.2. Constant Power Region
2.2.3. Maximum Power Region
3. Speed Loop Active Disturbance Rejection Controller
Controller Design
4. Simulation Results
4.1. No-Load Condition
4.2. Load Condition
4.3. Sudden Load Condition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, B.; Xu, K.; Mi, Z.; Yang, Y.; Shen, C. Novel Flux-Weakening Control on Maximum Torque Control Frame for IPMSM Position Sensorless Control. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 2552–2556. [Google Scholar]
- Dhamo, L.; Spahiu, A. Simulation based analysis of two different control strategies for PMSM. Int. J. Eng. Trends Technol. 2013, 4, 596–602. [Google Scholar]
- Zhao, X.; Liang, H. Flux-weakening control of permanent magnet synchronous motor using in electric vehicles. In Proceedings of the 2009 IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China, 17–20 May 2009; pp. 1050–1054. [Google Scholar]
- Yang, N.; Luo, G.; Liu, W.; Wang, K. Interior permanent magnet synchronous motor control for electric vehicle using look-up table. In Proceedings of the 7th International Power Electronics and Motion Control Conference, Harbin, China, 2–5 June 2012; Volume 2, pp. 1015–1019. [Google Scholar]
- Xu, Q.; Cai, L. Developing an approach in calculating reference currents for field-weakening Control. IEEE Trans. Transp. Electrif. 2022, 9, 60–74. [Google Scholar] [CrossRef]
- Deng, T.; Su, Z.; Li, J.; Tang, P.; Chen, X.; Liu, P. Advanced angle field weakening control strategy of permanent magnet synchronous motor. IEEE Trans. Veh. Technol. 2019, 68, 3424–3435. [Google Scholar] [CrossRef]
- Wei, L.; Hui, L.; Chao, W. Study on flux-weakening control based on Single Current Regulator for PMSM. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–3. [Google Scholar]
- Wang, C.; Zhu, Z.Q.; Zhan, H. Adaptive voltage feedback controllers on nonsalient permanent magnet synchronous machine. IEEE Trans. Ind. Appl. 2019, 56, 1529–1542. [Google Scholar] [CrossRef]
- Stojan, D.; Drevensek, D.; Plantic, Ž.; Grcar, B.; Stumberger, G. Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control. IEEE Trans. Ind. Appl. 2012, 48, 2390–2401. [Google Scholar] [CrossRef]
- Han, J. From PID to active disturbance rejection control. IEEE trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Gao, Z.; Huang, Y.; Han, J. An alternative paradigm for control system design. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228), Orlando, FL, USA, 4–7 December 2001; Volume 5, pp. 4578–4585. [Google Scholar]
- Han, J. The structure of linear system and computation of feedback system. In Proceedings of the National Conference on Control Theory and Its Application; Academic Press: Cambridge, MA, USA, 1980; pp. 121–133. [Google Scholar]
- Kim, S.; Yoon, Y.D.; Sul, S.K.; Ide, K. Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation. IEEE Trans. Power Electron. 2012, 28, 488–497. [Google Scholar] [CrossRef]
- Sepulchre, L.; Fadel, M.; Pietrzak-David, M.; Porte, G. MTPV flux-weakening strategy for PMSM high speed drive. IEEE Trans. Ind. Appl. 2018, 54, 6081–6089. [Google Scholar] [CrossRef]
- Wang, C.; Yan, J.; Heng, P.; Shan, L.; Zhou, X. Enhanced LADRC for permanent magnet synchronous motor with compensation function observer. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 3424–3434. [Google Scholar] [CrossRef]
- Lin, P.; Wu, Z.; Liu, K.Z.; Sun, X.M. A class of linear–nonlinear switching active disturbance rejection speed and current controllers for PMSM. IEEE Trans. Power Electron. 2021, 36, 14366–14382. [Google Scholar] [CrossRef]
- Jiao, L.; Luo, Y.; Jia, H.; Cao, N.; Yu, B.; Wang, Y.; Liu, Y.; Zhang, X. Vector control strategy of PMSM servo system based on auto-disturbances rejection controller. In Proceedings of the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 December 2017; pp. 1332–1336. [Google Scholar]
- Chen, P.; Gan, H.; Liu, Y.; Luo, Y. Different Model-Based ADRCs Satisfying Performance Independent Control for PMSM Speed Servo System. IEEE Trans. Ind. Electron. 2024, 1–12. [Google Scholar] [CrossRef]
- Liu, C.; Luo, G.; Tu, W.; Wan, H. Servo systems with closed-loops based on active disturbance rejection controllers. Proc. CSEE 2017, 37, 7032–7039. [Google Scholar]
- Nguyen, T.A.; Iqbal, J.; Tran, T.T.H.; Hoang, T.B. Application of hybrid control algorithm on the vehicle active suspension system to reduce vibrations. Adv. Mech. Eng. 2024, 16, 16878132241239816. [Google Scholar] [CrossRef]
- Pan, H. Research on a new active disturbance rejection control algorithm. Control. Eng. China 2020, 27, 728–732. [Google Scholar]
- Ahmad, E.; Iqbal, J.; Arshad Khan, M.; Liang, W.; Youn, I. Predictive control using active aerodynamic surfaces to improve ride quality of a vehicle. Electronics 2020, 9, 1463. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; He, R.; Chen, Z. Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster. SAE Tech. Pap. 2019. [Google Scholar] [CrossRef]
- Ge, H.; Miao, Y.; Bilgin, B.; Nahid-Mobarakeh, B.; Emadi, A. Speed range extended maximum torque per ampere control for PM drives considering inverter and motor nonlinearities. IEEE Trans. Power Electron. 2016, 32, 7151–7159. [Google Scholar] [CrossRef]
- Patil, R.S.; Jadhav, S.P.; Patil, M.D. Review of Intelligent and Nature-Inspired Algorithms-Based Methods for Tuning PID Controllers in Industrial Applications. J. Robot. Control. 2024, 5, 336–358. [Google Scholar]
- Iqbal, U.; Samad, A.; Nissa, Z.; Iqbal, J. Embedded control system for AUTAREP-A novel autonomous articulated robotic educational platform. Teh. Vjesn. Tech. Gaz. 2014, 21, 1255–1261. [Google Scholar]
- Han, J. Active Disturbance Rejection Control Technique-The Technique for Estimating and Compensating the Uncertainties; National Defense Industry Press: Beijing, China, 2008; pp. 197–270. [Google Scholar]
- Zhou, C.; Wang, B.; Liu, K.; Ren, K. Active Disturbance Rejection Control of Permanent Magnet Synchronous Motor Based on RPLESO. Energies 2024, 17, 3025. [Google Scholar] [CrossRef]
- Hongwei, W.; Heping, W. A comparison study of advanced tracking differentiator design techniques. Procedia Eng. 2015, 99, 1005–1013. [Google Scholar] [CrossRef]
- Gao, Z. Scaling and bandwidth-parameterization based controller tuning. Acc 2003, 4, 989–994. [Google Scholar]
Parameter | Values |
---|---|
Rated Voltage | 270 V |
Rated Power | 21 Kw |
Stator Resistance | 25 mΩ |
d-Axis Inductance | 0.2 mH |
q-Axis Inductance | 0.47 mH |
Permanent Magnet Flux Linkage | 0.062 Wb |
Rated Speed | 8000 r/min |
Rated Torque | 25 Nm |
Number of Pole Pairs | 4 |
Parameter | Values |
---|---|
1000 | |
10,000 | |
2000 | |
2 | |
0.001 | |
0 | |
20 | |
0.4 | |
0 | |
20 | |
0.2 | |
0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yuan, R. Active Disturbance Rejection Control for Flux Weakening in Interior Permanent Magnet Synchronous Motor Based on Full Speed Range. World Electr. Veh. J. 2024, 15, 496. https://doi.org/10.3390/wevj15110496
Chen Y, Yuan R. Active Disturbance Rejection Control for Flux Weakening in Interior Permanent Magnet Synchronous Motor Based on Full Speed Range. World Electric Vehicle Journal. 2024; 15(11):496. https://doi.org/10.3390/wevj15110496
Chicago/Turabian StyleChen, Yong, and Ruodan Yuan. 2024. "Active Disturbance Rejection Control for Flux Weakening in Interior Permanent Magnet Synchronous Motor Based on Full Speed Range" World Electric Vehicle Journal 15, no. 11: 496. https://doi.org/10.3390/wevj15110496
APA StyleChen, Y., & Yuan, R. (2024). Active Disturbance Rejection Control for Flux Weakening in Interior Permanent Magnet Synchronous Motor Based on Full Speed Range. World Electric Vehicle Journal, 15(11), 496. https://doi.org/10.3390/wevj15110496