Waste from Electric Vehicle: A Bibliometric Analysis from 1995 to 2023
Abstract
:1. Introduction
- Which publications, institutions, countries, and authors have made the most significant contributions to research on electric vehicles and the waste they produce?
- How are the authors, organizations, and nations related to one another and work together in academic research?
- What are the current prominent research topics in this field, how are they evolving, and what will capture attention in the future?
2. Materials and Methods
2.1. Data Collection
2.2. Bibliometric: VOSviewer and R Tools
2.3. Literature Search
3. Results
3.1. Data Analysis
3.2. Annual Publications
3.3. Annual Citations
3.4. Highly Cited Papers
3.5. Most Relevant Sources
3.6. Corresponding Author’s Countries
3.7. Most Relevant Affiliations
3.8. Subject Categories
3.9. Object Categories
3.10. Most Relevant Authors’ and Production over Time
3.11. Most Frequent Words
3.12. Trending Topics
3.13. TreeMaps
3.14. Bibliometric VOSviewer
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siqi, Z.; Guangming, L.; Wenzhi, H.; Juwen, H.; Haochen, Z. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review. Waste Manag. Res. 2019, 37, 1142–1152. [Google Scholar] [CrossRef] [PubMed]
- EPA. Global Greenhouse Gas Emissions Data; EPA: Washington, DC, USA, 2022. [Google Scholar]
- Giannakis, E.; Serghides, D.; Dimitriou, S.; Zittis, G. Land transport CO2 emissions and climate change: Evidence from Cyprus. Int. J. Sustain. Energy 2020, 39, 634–647. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, G.; Sun, R.; Dubey, A.; Laszka, A.; Pugliese, P. A review and outlook of energy consumption estimation models for electric vehicles. arXiv 2020, arXiv:2003.12873. [Google Scholar]
- Verma, S.; Dwivedi, G.; Verma, P. Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: A review. Mater. Today Proc. 2021, 49, 217–222. [Google Scholar] [CrossRef]
- Viola, F. Electric vehicles and psychology. Sustainability 2021, 13, 719. [Google Scholar] [CrossRef]
- Elwert, T.; Goldmann, D.; Römer, F.; Buchert, M.; Merz, C.; Schueler, D.; Sutter, J. Current developments and challenges in the recycling of key components of (hybrid) electric vehicles. Recycling 2015, 1, 25–60. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Fan, F.; Yu, H.; Chu, J. Sustainable Plant Layout Design for End of Life Vehicle Recycling and Disassembly Industry Based on SLP Method, a Typical Case in China. IEEE Access 2021, 9, 81913–81925. [Google Scholar] [CrossRef]
- Blömeke, S.; Scheller, C.; Cerdas, F.; Thies, C.; Hachenberger, R.; Gonter, M.; Herrmann, C.; Spengler, T.S. Material and energy flow analysis for environmental and economic impact assessment of industrial recycling routes for lithium-ion traction batteries. J. Clean. Prod. 2022, 377, 134344. [Google Scholar] [CrossRef]
- Halepoto, H.; Gong, T.; Noor, S.; Memon, H. Bibliometric Analysis of Artificial Intelligence in Textiles. Materials 2022, 15, 2910. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Chàfer, M.; Mata, É. Comparative analysis of web of science and scopus on the energy efficiency and climate impact of buildings. Energies 2020, 13, 409. [Google Scholar] [CrossRef]
- Borri, E.; Tafone, A.; Zsembinszki, G.; Comodi, G.; Romagnoli, A.; Cabeza, L.F. Recent trends on liquid air energy storage: A bibliometric analysis. Appl. Sci. 2020, 10, 2773. [Google Scholar] [CrossRef]
- Choi, W.; Kim, J.; Lee, S.; Park, E. Smart home and internet of things: A bibliometric study. J. Clean. Prod. 2021, 301, 126908. [Google Scholar] [CrossRef]
- Tseng, M.-L.; Chang, C.-H.; Lin, C.-W.R.; Wu, K.-J.; Chen, Q.; Xia, L.; Xue, B. Future trends and guidance for the triple bottom line and sustainability: A data driven bibliometric analysis. Environ. Sci. Pollut. Res. 2020, 27, 33543–33567. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, H.; Zeeshan, H.M.; Ahmad, F.; Bukhari, S.N.A.; Anwar, N.; Alanazi, A.; Sadiq, A.; Junaid, K.; Atif, M.; Abosalif, K.O.A. Bibliometric analysis of publications on the omicron variant from 2020 to 2022 in the Scopus database using R and VOSviewer. Int. J. Environ. Res. Public Health 2022, 19, 12407. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Olivetti, E.A.; Ceder, G.; Gaustad, G.G.; Fu, X. Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals. Joule 2017, 1, 229–243. [Google Scholar] [CrossRef]
- Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.M.; Hussain, A.; Yusof, Y.; Ker, P.J. State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. IEEE Access 2018, 6, 19362–19378. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, Z.; Lin, X.; Zhang, Y.; He, Y.; Cao, H.; Sun, Z. A mini-review on metal recycling from spent lithium ion batteries. Engineering 2018, 4, 361–370. [Google Scholar] [CrossRef]
- Zackrisson, M.; Avellán, L.; Orlenius, J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles—Critical issues. J. Clean. Prod. 2010, 18, 1519–1529. [Google Scholar] [CrossRef]
- Liu, C.; Lin, J.; Cao, H.; Zhang, Y.; Sun, Z. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. J. Clean. Prod. 2019, 228, 801–813. [Google Scholar] [CrossRef]
- Miao, Y.; Hynan, P.; Von Jouanne, A.; Yokochi, A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019, 12, 1074. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J.; Shen, B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J. Hazard. Mater. 2015, 295, 112–118. [Google Scholar] [CrossRef]
- Ciez, R.E.; Whitacre, J. Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2019, 2, 148–156. [Google Scholar] [CrossRef]
- Armand, M.; Axmann, P.; Bresser, D.; Copley, M.; Edström, K.; Ekberg, C.; Guyomard, D.; Lestriez, B.; Novák, P.; Petranikova, M. Lithium-ion batteries—Current state of the art and anticipated developments. J. Power Sources 2020, 479, 228708. [Google Scholar] [CrossRef]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 2018, 129, 263–277. [Google Scholar] [CrossRef]
- Richa, K.; Babbitt, C.W.; Gaustad, G.; Wang, X. A future perspective on lithium-ion battery waste flows from electric vehicles. Resour. Conserv. Recycl. 2014, 83, 63–76. [Google Scholar] [CrossRef]
- Makuza, B.; Tian, Q.; Guo, X.; Chattopadhyay, K.; Yu, D. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. J. Power Sources 2021, 491, 229622. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J.; Liu, L. Solving spent lithium-ion battery problems in China: Opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 52, 1759–1767. [Google Scholar] [CrossRef]
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99. [Google Scholar] [CrossRef]
- Velázquez-Martínez, O.; Valio, J.; Santasalo-Aarnio, A.; Reuter, M.; Serna-Guerrero, R. A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 2019, 5, 68. [Google Scholar] [CrossRef]
- Baars, J.; Domenech, T.; Bleischwitz, R.; Melin, H.E.; Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 2021, 4, 71–79. [Google Scholar] [CrossRef]
- Işıldar, A.; van Hullebusch, E.D.; Lenz, M.; Du Laing, G.; Marra, A.; Cesaro, A.; Panda, S.; Akcil, A.; Kucuker, M.A.; Kuchta, K. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)—A review. J. Hazard. Mater. 2019, 362, 467–481. [Google Scholar] [CrossRef]
- Wang, Y.; An, N.; Wen, L.; Wang, L.; Jiang, X.; Hou, F.; Yin, Y.; Liang, J. Recent progress on the recycling technology of Li-ion batteries. J. Energy Chem. 2021, 55, 391–419. [Google Scholar] [CrossRef]
- Yun, L.; Linh, D.; Shui, L.; Peng, X.; Garg, A.; Le, M.L.P.; Asghari, S.; Sandoval, J. Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resour. Conserv. Recycl. 2018, 136, 198–208. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Bobba, S.; Ardente, F.; Cellura, M.; Di Persio, F. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J. Clean. Prod. 2019, 215, 634–649. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Li, M.; Chen, R.; Wu, F.; Amine, K.; Lu, J. The recycling of spent lithium-ion batteries: A review of current processes and technologies. Electrochem. Energy Rev. 2018, 1, 461–482. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y. An overview of recycling and treatment of spent LiFePO4 batteries in China. Resour. Conserv. Recycl. 2017, 127, 233–243. [Google Scholar] [CrossRef]
- Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G.P.; Zaghib, K. Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond. Materials 2020, 13, 801. [Google Scholar] [CrossRef] [PubMed]
- De Souza, L.L.P.; Lora, E.E.S.; Palacio, J.C.E.; Rocha, M.H.; Renó, M.L.G.; Venturini, O.J. Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. J. Clean. Prod. 2018, 203, 444–468. [Google Scholar] [CrossRef]
- Costa, C.M.; Barbosa, J.C.; Gonçalves, R.; Castro, H.; Del Campo, F.; Lanceros-Méndez, S. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Mater. 2021, 37, 433–465. [Google Scholar] [CrossRef]
- Thompson, D.L.; Hartley, J.M.; Lambert, S.M.; Shiref, M.; Harper, G.D.; Kendrick, E.; Anderson, P.; Ryder, K.S.; Gaines, L.; Abbott, A.P. The importance of design in lithium ion battery recycling—A critical review. Green Chem. 2020, 22, 7585–7603. [Google Scholar] [CrossRef]
- Richa, K.; Babbitt, C.W.; Gaustad, G. Eco-efficiency analysis of a lithium-ion battery waste hierarchy inspired by circular economy. J. Ind. Ecol. 2017, 21, 715–730. [Google Scholar] [CrossRef]
- Rothermel, S.; Evertz, M.; Kasnatscheew, J.; Qi, X.; Grützke, M.; Winter, M.; Nowak, S. Graphite recycling from spent lithium-ion batteries. ChemSusChem 2016, 9, 3473–3484. [Google Scholar] [CrossRef]
- Gaines, L.; Singh, M. Energy and Environmental Impacts of Electric Vehicle Battery Production and Recycling; Argonne National Lab. (ANL): Argonne, IL, USA, 1995. [Google Scholar]
- Biradar, S.; Patil, R.; Ullegaddi, M. Energy storage system in electric vehicle. In Proceedings of the Power Quality ‘98, Hyderabad, India, 18–18 June 1998; pp. 247–255. [Google Scholar]
- Gaines, L.; Cuenca, R. Life-cycle costs of lithium-ion vehicle batteries. J. Passeng. Cars Mech. Syst. J. 2000, 109, 1920–1931. [Google Scholar]
- Messagie, M.; Boureima, F.; Matheys, J.; Sergeant, N.; Timmermans, J.-M.; Macharis, C.; Van Mierlo, J. Environmental performance of a battery electric vehicle: A descriptive Life Cycle Assessment approach. World Electr. Veh. J. 2010, 4, 782–786. [Google Scholar] [CrossRef]
- Hoyer, C.; Kieckhäfer, K.; Spengler, T.S. A strategic framework for the design of recycling networks for lithium-ion batteries from electric vehicles. In Glocalized Solutions for Sustainability in Manufacturing, Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Braunschweig, Germany, 2–4 May 2011; Technische Universität Braunschweig: Braunschweig, Germany, 2011; pp. 79–84. [Google Scholar]
- Howes, J. Battery Recycling Interaction with Washington. SAE Int. J. Mater. Manuf. 2012, 5, 150–159. [Google Scholar] [CrossRef]
- Tytgat, J. The Recycling Efficiency of Li-ion EV batteries according to the European Commission Regulation, and the relation with the End-of-Life Vehicles Directive recycling rate. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–9. [Google Scholar]
- Hoyer, C.; Kieckhäfer, K.; Spengler, T.S. Impact of mandatory rates on the recycling of lithium-ion batteries from electric vehicles in Germany. In Re-Engineering Manufacturing for Sustainability, Proceedings of the 20th CIRP International Conference on Life Cycle Engineering, Singapore, 17–19 April 2013; Springer Science & Business Media: Berlin, Germany, 2013; pp. 543–548. [Google Scholar]
- Ramoni, M.O.; Zhang, H.-C. End-of-life (EOL) issues and options for electric vehicle batteries. Clean Technol. Environ. Policy 2013, 15, 881–891. [Google Scholar] [CrossRef]
- Miedema, J.H.; Moll, H.C. Lithium availability in the EU27 for battery-driven vehicles: The impact of recycling and substitution on the confrontation between supply and demand until 2050. Resour. Policy 2013, 38, 204–211. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J. Spent rechargeable lithium batteries in e-waste: Composition and its implications. Front. Environ. Sci. Eng. 2014, 8, 792–796. [Google Scholar] [CrossRef]
- Hendrickson, T.P.; Kavvada, O.; Shah, N.; Sathre, R.; Scown, C.D. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California. Environ. Res. Lett. 2015, 10, 014011. [Google Scholar] [CrossRef]
- Träger, T.; Friedrich, B.; Weyhe, R. Recovery concept of value metals from automotive lithium-ion batteries. Chem. Ing. Tech. 2015, 87, 1550–1557. [Google Scholar] [CrossRef]
- Oliveira, L.; Messagie, M.; Rangaraju, S.; Sanfelix, J.; Rivas, M.H.; Van Mierlo, J. Key issues of lithium-ion batteries–from resource depletion to environmental performance indicators. J. Clean. Prod. 2015, 108, 354–362. [Google Scholar] [CrossRef]
- Qiao, Q.; Zhao, F.; Liu, Z.; Jiang, S.; Hao, H. Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China. Appl. Energy 2017, 204, 1399–1411. [Google Scholar] [CrossRef]
- Li, J.; Barwood, M.; Rahimifard, S. Robotic disassembly for increased recovery of strategically important materials from electrical vehicles. Robot. Comput. Integr. Manuf. 2018, 50, 203–212. [Google Scholar] [CrossRef]
- Bulach, W.; Schüler, D.; Sellin, G.; Elwert, T.; Schmid, D.; Goldmann, D.; Buchert, M.; Kammer, U. Electric vehicle recycling 2020: Key component power electronics. Waste Manag. Res. 2018, 36, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Diehl, O.; Schönfeldt, M.; Brouwer, E.; Dirks, A.; Rachut, K.; Gassmann, J.; Güth, K.; Buckow, A.; Gauß, R.; Stauber, R. Towards an alloy recycling of Nd–Fe–B permanent magnets in a circular economy. J. Sustain. Metall. 2018, 4, 163–175. [Google Scholar] [CrossRef]
- Han, X.; Liang, Y.; Ai, Y.; Li, J. Economic evaluation of a PV combined energy storage charging station based on cost estimation of second-use batteries. Energy 2018, 165, 326–339. [Google Scholar] [CrossRef]
- Lai, C.-M.; Li, Y.-H.; Cheng, Y.-H.; Teh, J. A high-gain reflex-based bidirectional DC charger with efficient energy recycling for low-voltage battery charging-discharging power control. Energies 2018, 11, 623. [Google Scholar] [CrossRef]
- Borregan-Alvarado, J.; Alvarez-Meaza, I.; Cilleruelo-Carrasco, E.; Garechana-Anacabe, G. A bibliometric analysis in industry 4.0 and advanced manufacturing: What about the sustainable supply chain? Sustainability 2020, 12, 7840. [Google Scholar] [CrossRef]
- Khan, M.A.; Pattnaik, D.; Ashraf, R.; Ali, I.; Kumar, S.; Donthu, N. Value of special issues in the journal of business research: A bibliometric analysis. J. Bus. Res. 2021, 125, 295–313. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Zhang, Z.; Gu, Z.; Zhong, H.; Zha, Q.; Yang, L.; Zhu, C.; Chen, E. A bibliometric analysis using VOSviewer of publications on COVID-19. Ann. Transl. Med. 2020, 8, 816. [Google Scholar] [CrossRef]
Description | Results |
---|---|
MAIN INFORMATION ABOUT DATA | |
Timespan | 1995:2023 |
Sources (Journals, Books, etc.) | 234 |
Documents | 593 |
Annual Growth Rate % | 17.71 |
Document Average Age | 2.89 |
Average citations per doc | 32.86 |
References | 20,626 |
DOCUMENT CONTENTS | |
Keywords Plus (ID) | 4191 |
Author’s Keywords (DE) | 1351 |
AUTHORS | |
Authors | 1944 |
Authors of single-authored docs | 15 |
AUTHORS COLLABORATION | |
Single-authored docs | 17 |
Co-Authors per Doc | 4.67 |
International co-authorships % | 23.95 |
DOCUMENT TYPES | |
Article | 363 |
Book | 1 |
book chapter | 14 |
conference paper | 116 |
conference review | 3 |
Note | 1 |
Review | 95 |
No. | Document Title | Journal | Publisher | Year | Citation | Authors |
---|---|---|---|---|---|---|
1 | Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals | Joule | Cell Press | 2017 | 782 | [18] |
2 | Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects | Chemical Reviews | American Chemical Society | 2020 | 718 | [19] |
3 | State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations | IEEE Access | Institute of Electrical and Electronics Engineers Inc. | 2018 | 493 | [20] |
4 | Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries | Joule | Cell Press | 2019 | 431 | [21] |
5 | A Mini-Review on Metal Recycling from Spent Lithium-Ion Batteries | Engineering | Elsevier Ltd. | 2018 | 408 | [22] |
6 | Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-Critical issues | Journal of Cleaner Production | Elsevier Ltd. | 2010 | 393 | [23] |
7 | Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review | Journal of Cleaner Production | Elsevier Ltd. | 2019 | 392 | [24] |
8 | Current li-ion battery technologies in electric vehicles and opportunities for advancements | Energies | MDPI AG | 2019 | 388 | [25] |
9 | Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid | Journal of Hazardous Materials | Elsevier | 2015 | 368 | [26] |
10 | Examining different recycling processes for lithium-ion batteries | Nature Sustainability | Nature Publishing Group | 2019 | 360 | [27] |
11 | Lithium-ion batteries—Current state of the art and anticipated developments | Journal of Power Sources | Elsevier B.V. | 2020 | 322 | [28] |
12 | A review on the growing concern and potential management strategies of waste lithium-ion batteries | Resources, Conservation and Recycling | Elsevier B.V. | 2018 | 287 | [29] |
13 | A future perspective on lithium-ion battery waste flows from electric vehicles | Resources, Conservation and Recycling | 2014 | 285 | [30] | |
14 | Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review | Journal of Power Sources | Elsevier B.V. | 2021 | 254 | [31] |
15 | Solving spent lithium-ion battery problems in China: Opportunities and challenges | Renewable and Sustainable Energy Reviews | Elsevier Ltd. | 2015 | 247 | [32] |
16 | Future material demand for automotive lithium-based batteries | Communications Materials | Springer Nature | 2020 | 246 | [33] |
17 | A critical review of lithium-ion battery recycling processes from a circular economy perspective | Batteries | MDPI | 2019 | 227 | [34] |
18 | Circular economy strategies for electric vehicle batteries reduce reliance on raw materials | Nature Sustainability | Nature Research | 2021 | 180 | [35] |
19 | Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)—A review | Journal of Hazardous Materials | Elsevier B.V. | 2019 | 174 | [36] |
20 | Recent progress on the recycling technology of Li-ion batteries | Journal of Energy Chemistry | Elsevier B.V. | 2020 | 166 | [37] |
21 | Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles | Resources, Conservation and Recycling | Elsevier B.V. | 2018 | 162 | [38] |
22 | Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles | Journal of Cleaner Production | Elsevier Ltd. | 2019 | 158 | [39] |
23 | The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies | Electrochemical Energy Reviews | 2018 | 156 | [40] | |
24 | An overview of recycling and treatment of spent LiFePO4 batteries in China | Resources, Conservation and Recycling | Elsevier B.V. | 2017 | 147 | [41] |
25 | Progress and status of hydrometallurgical and direct recycling of Li-Ion batteries and beyond | Materials | MDPI | 2020 | 146 | [42] |
26 | Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil | Journal of Cleaner Production | Elsevier Ltd. | 2018 | 146 | [43] |
27 | Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities | Energy Storage Materials | Elsevier | 2021 | 143 | [44] |
28 | The importance of design in lithium-ion battery recycling-a critical review | Green Chemistry | Royal Society of Chemistry | 2020 | 124 | [45] |
29 | Eco-Efficiency Analysis of a Lithium-Ion Battery Waste Hierarchy Inspired by Circular Economy | Journal of Industrial Ecology | Blackwell Publishing | 2017 | 137 | [46] |
30 | Graphite Recycling from Spent Lithium-Ion Batteries | ChemSusChem | Wiley-VCH Verlag | 2016 | 136 | [47] |
No. | Name of Journal | Number of Publications | Impact Factor | Rate (%) |
---|---|---|---|---|
1 | Resources Conservation and Recycling | 45 | 13.716 | 7.63% |
2 | Journal of Cleaner Production | 30 | 11.072 | 5.08% |
3 | Journal of Energy Storage | 23 | 8.907 | 3.90% |
4 | Energies | 17 | 3.2 | 2.88% |
5 | Procedia CIRP | 16 | 2.17 | 2.71% |
6 | Waste Management | 14 | 8.816 | 2.37% |
7 | SAE Technical Papers | 13 | 0.638 | 2.20% |
8 | ACS Sustainable Chemistry and Engineering | 12 | 9.224 | 2.03% |
9 | Others | 420 | 71.19% |
No | Battery | Charging | Power Electronics | Permanent Magnet | Authors |
---|---|---|---|---|---|
1 | ✔ | [18,19,23,26,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63] | |||
2 | ✔ | ✔ | [63] | ||
3 | ✔ | [64] | |||
4 | ✔ | [65] | |||
5 | ✔ | [66,67] |
Years | Frequent Word | Term Frequency |
---|---|---|
2010 | Vehicle Technology | 4 |
2014 | Integrated Approach | 4 |
Regenerative Braking | 4 | |
Recycling Rate | 5 | |
2015 | Hybrid Energy Storage Systems (Hess) | 3 |
Leaching Solution | 3 | |
Lithium Alloys | 7 | |
2016 | Nickel Metal Hydride | 4 |
Policy Makers | 4 | |
2017 | Plug-in Hybrid Vehicles | 15 |
Recovery | 18 | |
Electric Batteries | 32 | |
2018 | Nickel Metal Hydride Batteries | 12 |
Hybrid Vehicles | 23 | |
Vehicles | 28 | |
2019 | Electrodes | 29 |
Electric Vehicles (EVS) | 45 | |
Secondary Batteries | 118 | |
2020 | Battery Management Systems | 46 |
Waste Management | 54 | |
Automotive Batteries | 63 | |
2021 | Lithium-ion Batteries | 381 |
Electronic Waste | 603 | |
Recycling | 678 | |
2022 | Spent Lithium-ion Batteries | 90 |
Cathodes | 104 | |
Battery Recycling | 113 | |
2023 | Industrial Ecology | 6 |
Recycled Materials | 6 | |
Closed-Loop | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurdini, A.; Nurcahyo, R.; Prabuwono, A.S. Waste from Electric Vehicle: A Bibliometric Analysis from 1995 to 2023. World Electr. Veh. J. 2023, 14, 300. https://doi.org/10.3390/wevj14110300
Nurdini A, Nurcahyo R, Prabuwono AS. Waste from Electric Vehicle: A Bibliometric Analysis from 1995 to 2023. World Electric Vehicle Journal. 2023; 14(11):300. https://doi.org/10.3390/wevj14110300
Chicago/Turabian StyleNurdini, Arief, Rahmat Nurcahyo, and Anton Satria Prabuwono. 2023. "Waste from Electric Vehicle: A Bibliometric Analysis from 1995 to 2023" World Electric Vehicle Journal 14, no. 11: 300. https://doi.org/10.3390/wevj14110300