# Method of Location and Capacity Determination of Intelligent Charging Pile Based on Recurrent Neural Network

## Abstract

**:**

## 1. Introduction

## 2. Related Works

## 3. Location and Capacity of Intelligent Charging Pile Based on RNN Algorithm

#### 3.1. Subsection

#### 3.2. Firefly Algorithm and Its Application Characteristics

#### 3.3. Firefly Algorithm and Its Application Characteristics

## 4. Model Simulation Experiment Results and Analysis

## 5. Conclusions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Xie, Z.; Ai, Y.; Chen, J.; Wang, F.; Zhang, W. Deep Recurrent Neural Network Architecture of High Order Indirect Integration Method. Neural Process. Lett.
**2022**, 54, 1233–1253. [Google Scholar] [CrossRef] - Selvaggio, A.Z.; Sousa, F.M.M.; da Silva, F.V.; Vianna, S.S. Application of long short-term memory recurrent neural networks for localisation of leak source using 3D computational fluid dynamics. Process Saf. Environ. Prot.
**2022**, 159, 757–767. [Google Scholar] [CrossRef] - Xu, M.; Liu, W.; Xu, J.; Xia, Y.; Mao, J.; Xu, C.; Hu, S.; Huang, D. Recurrent Neural Network Based Link Quality Prediction for Fluctuating Low Power Wireless Links. Sensors
**2022**, 22, 1212. [Google Scholar] [CrossRef] [PubMed] - Jeong, Y. A personalized lane keeping system for autonomous vehicles based on recurrent neural network with temporal dependencies. J. Mech. Sci. Technol.
**2022**, 36, 565–574. [Google Scholar] [CrossRef] - Zhu, J.; Jiang, Q.; Shen, Y.; Qian, C.; Xu, F.; Zhu, Q. Application of recurrent neural network to mechanical fault diagnosis: A review. J. Mech. Sci. Technol.
**2022**, 36, 527–542. [Google Scholar] [CrossRef] - Veeramsetty, V.; Chandra, D.R.; Grimaccia, F.; Mussetta, M. Short Term Electric Power Load Forecasting Using Principal Component Analysis and Recurrent Neural Networks. Forecasting
**2022**, 4, 149–164. [Google Scholar] [CrossRef] - Gonzalez, J.; Yu, W.; Telesca, L. Gated Recurrent Units Based Recurrent Neural Network for Forecasting the Characteristics of the Next Earthquake. Cybern. Syst.
**2021**, 53, 209–222. [Google Scholar] [CrossRef] - Zhang, X.; Sun, L.; Qi, L. Bayesian Regularization Algorithm Based Recurrent Neural Network Method and NSGA-II for the Optimal Design of the Reflector. Machines
**2022**, 10, 63. [Google Scholar] [CrossRef] - Gao, Y.; No, A. Age Estimation from fMRI data using recurrent neural network. Appl. Sci.
**2022**, 12, 749. [Google Scholar] [CrossRef] - Wang, G.; Hao, Z.; Zhang, B.; Jin, L. Convergence and robustness of bounded recurrent neural networks for solving dynamic Lyapunov equations. Inf. Sci.
**2021**, 588, 106–123. [Google Scholar] [CrossRef] - Tao, Y.; Huang, M.H.; Chen, Y.P.; Yang, L. Review of optimized layout of electric vehicle charging infrastructures. J. Cent. South Univ.
**2021**, 28, 3268–3278. [Google Scholar] [CrossRef] - Liu, W.; Tang, Y.; Yang, F.; Dou, Y.; Wang, J. A Multi-Objective Decision-Making Approach for the Optimal Location of Electric Vehicle Charging Facilities. Comput. Mater. Contin.
**2019**, 60, 813–834. [Google Scholar] [CrossRef] [Green Version] - Hosseini, S.; Sarder, M.D. Development of a Bayesian network model for optimal site selection of electric vehicle charging station. Int. J. Electr. Power Energy Syst.
**2018**, 105, 110–122. [Google Scholar] [CrossRef] - Rajani, B.; Kommula, B.N. An optimal energy management among the electric vehicle charging stations and electricity distribution system using GPC-RERNN approach. Energy
**2022**, 245, 12–78. [Google Scholar] [CrossRef] - Gao, J.; Wang, M.; Song, Z.; Zhuge, J.; Xing, S. Study on site selection of airport charging pile based ongenetic algorithm. Comput. Eng. Appl.
**2019**, 54, 210–216. [Google Scholar] - Huang, Y.; Yu, J.; Leng, J.; Liu, B.; Yi, Z. Continuous Recurrent Neural Networks Based on Function Satlins. Neural Process. Lett.
**2022**, 54, 1–23. [Google Scholar] [CrossRef] - An, H.; Fang, X.; Liu, Z.; Li, Y. Research on a soft-measurement model of gasification temperature based on recurrent neural network. Clean Energy
**2021**, 6, 97–104. [Google Scholar] [CrossRef] - Mirzazadeh, Z.S.; Hassan, J.B.; Mansoori, A. Assignment model with multi-objective linear programming for allocating choice ranking using recurrent neural network. RAIRO-Oper. Res.
**2021**, 55, 3107–3119. [Google Scholar] [CrossRef] - Rai, A.K.; Senthilkumar, R.; Aruputharaj, K. Framed Recurrent Neural Network with Mutated Dragonfly Search Optimization (FRNN-MDSO) for hyperspectral image based face recognition in real time door locking applications. J. Intell. Fuzzy Syst.
**2021**, 41, 6589–6599. [Google Scholar] [CrossRef] - Es Saiydy, M.; Zitane, M. Dynamic behavior of a class of delayed lotka–volterra recurrent neural networks on time scales. Russ. Math.
**2021**, 65, 59–75. [Google Scholar] [CrossRef] - Liu, X.; Li, K.; Song, Q.; Yang, X. Quasi-Projective Synchronization of Distributed-Order Recurrent Neural Networks. Fractal Fract.
**2021**, 5, 260. [Google Scholar] [CrossRef] - Kang, I.; Pang, S.; Zhang, Q.; Fang, N.; Barbastathis, G. Recurrent neural network reveals transparent objects through scattering media. Optics Express
**2021**, 29, 5316–5326. [Google Scholar] [CrossRef] [PubMed] - Pan, S.; Yan, K.; Yang, H.; Bedal, J.; Qin, Z. A sparse spike deconvolution method based on Recurrent Neural Network like improved Iterative Shrinkage Thresholding Algorithm. Geophys. Prospect. Pet.
**2022**, 58, 533–540. [Google Scholar] - Kuang, B.; Nnabuife, S.G.; Sun, S.; Whidborne, J.F.; Rana, Z.A. Gas-liquid flow regimes identification using non-intrusive Doppler ultrasonic sensor and convolutional recurrent neural networks in an s-shaped riser. Digit. Chem. Eng.
**2022**, 2, 100012. [Google Scholar] [CrossRef] - Zhang, Q.-Q.; Wai, R.-J. Design of Adaptive Distributed Secondary Control Using Double-Hidden-Layer Recurrent-Neural-Network-Inherited Total-Sliding-Mode Scheme for Islanded Micro-Grid. IEEE Access.
**2022**, 99, 1. [Google Scholar] [CrossRef] - Saeed, A.; Li, C.; Gan, Z. Short-Term Wind Speed Interval Prediction using LUBE based Quasi-Recurrent Neural Network. J. Phys. Conf. Ser.
**2022**, 2189, 15–19. [Google Scholar] [CrossRef] - Yuan, Y.; Luo, Y.; Kang, L.; Ni, J.; Zhang, Q. Range Alignment in ISAR Imaging Based on Deep Recurrent Neural Network. IEEE Geosci. Remote Sens. Lett.
**2022**, 19, 27–34. [Google Scholar] [CrossRef] - Luo, C.; Zhao, X.; Sun, Y.; Li, X.; Ye, Y. PredRANN: The spatiotemporal attention Convolution Recurrent Neural Network for precipitation now casting. Knowl. Based Syst.
**2022**, 239, 107–109. [Google Scholar] [CrossRef] - Kaczmarek, T.; Będowska-Sójka, B.; Grobelny, P.; Perez, K. False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network. Res. Int. Bus. Financ.
**2022**, 60, 7–9. [Google Scholar] [CrossRef] - Caseri, A.N.; Santos, L.B.L.; Stephany, S. A convolutional recurrent neural network for strong convective rainfall now casting using weather radar data in Southeastern Brazil. Artif. Intell. Geosci.
**2022**, 3, 8–13. [Google Scholar] - Paraschiakos, S.; de Sá, C.R.; Okai, J.; Slagboom, P.E.; Beekman, M.; Knobbe, A. A recurrent neural network architecture to model physical activity energy expenditure in older people. Data Min. Knowl. Discov.
**2022**, 36, 1–36. [Google Scholar] [CrossRef] - Li, Y.; Zeng, C.; Li, B.; Hu, J. A One-Layer Recurrent Neural Network for Interval-Valued Optimization Problem with Linear Constraints. Neural Process. Lett.
**2022**, 54, 1–18. [Google Scholar] [CrossRef]

Period | Trip End Probability | Period | Trip End Probability | Period | Trip End Probability | Period | Trip End Probability |
---|---|---|---|---|---|---|---|

1 | 0 | 7 | 0.1239 | 13 | 0.0612 | 19 | 0 |

2 | 0 | 8 | 0.4055 | 14 | 0.0199 | 20 | 0 |

3 | 0 | 9 | 0.1899 | 15 | 0 | 21 | 0 |

4 | 0 | 10 | 0.0742 | 16 | 0.0076 | 22 | 0 |

5 | 0 | 11 | 0.1910 | 17 | 0.0091 | 23 | 0.0086 |

6 | 0.0127 | 12 | 0.0231 | 18 | 0 | 24 | 0 |

Road Condition | Air Temperature (°C) | Air Conditioner | Battery Life (km) |
---|---|---|---|

Unmanned | 20 | Closure | 249 |

Smooth | 18 | Closure | 237 |

Stroll | 0 | Heating | 182 |

Morning peak | 27 | Closure | 154 |

Holiday peak | 39 | Refrigeration | 133 |

**Table 3.**The installation position, rated capacity, and cost of charging piles obtained from the model.

Charging Pile Code | $\mathbf{Rated}\text{}\mathbf{Capacity}\text{}\left(\mathbf{kw}\right)$ | Investment Cost (10,000 yuan/year) | Operating Cost (10,000 yuan/year) |
---|---|---|---|

1 | 600 | 137.12 | 29.12 |

2 | 500 | 101.33 | 23.12 |

3 | 400 | 88.42 | 19.88 |

4 | 300 | 78.19 | 18.76 |

5 | 200 | 60.78 | 15.42 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Su, S.
Method of Location and Capacity Determination of Intelligent Charging Pile Based on Recurrent Neural Network. *World Electr. Veh. J.* **2022**, *13*, 186.
https://doi.org/10.3390/wevj13100186

**AMA Style**

Su S.
Method of Location and Capacity Determination of Intelligent Charging Pile Based on Recurrent Neural Network. *World Electric Vehicle Journal*. 2022; 13(10):186.
https://doi.org/10.3390/wevj13100186

**Chicago/Turabian Style**

Su, Shangbin.
2022. "Method of Location and Capacity Determination of Intelligent Charging Pile Based on Recurrent Neural Network" *World Electric Vehicle Journal* 13, no. 10: 186.
https://doi.org/10.3390/wevj13100186