# Cost-Effective Scheme for a Brushless Wound Rotor Synchronous Machine

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Concept of the Proposed Scheme

_{x}is the number of Wxyz winding turns, p is the number of pole pairs, and θ is the spatial angle. Although the additional three-phase winding Wxyz creates a two-pole rotating air gap flux, this flux has a different relative speed of rotation with respect to the rotor. It is illustrated in Figure 4 that the phase sequence changing of Wxyz will induce a six-pole flux linkage with the harmonic winding on the rotor.

## 3. Electromagnetic Performance

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Ayub, M.; Hussain, A.; Jawad, G.; Kwon, B. Brushless Operation of a Wound-Field Synchronous Machine Using a Novel Winding Scheme. IEEE Trans. Magn.
**2019**, 55, 8201104. [Google Scholar] [CrossRef] - Chakraborty, C.; Basak, S.; Rao, Y.T. Synchronous Generator with Embedded Brushless Synchronous Exciter. IEEE Trans. Energy Convers.
**2019**, 34, 1242–1254. [Google Scholar] [CrossRef] - Bukhari, S.S.H.; Memon, A.A.; Madanzadeh, S.; Sirewal, G.J.; Gandoy, J.D.; Ro, J.-S. Novel Single Inverter-Controlled Brushless Wound Field Synchronous Machine Topology. Mathematics
**2021**, 9, 1739. [Google Scholar] [CrossRef] - Bukhari, S.S.H.; Ali, Q.; Gandoy, J.D.; Ro, J.-S. High-Efficient Brushless Wound Rotor Synchronous Machine Topology Based on Sub-Harmonic Field-Excitation Technique. Energies
**2021**, 14, 4427. [Google Scholar] [CrossRef] - Ayub, M.; Bukhari, S.S.H.; Sirewal, G.J.; Arif, A.; Kwon, B.-I. Utilization of Reluctance Torque for Improvement of the Starting and Average Torques of a Brushless Wound Field Synchronous Machine. Electr. Eng.
**2021**, 103, 2327–2333. [Google Scholar] [CrossRef] - Bukhari, S.S.H.; Ahmad, H.; Chachar, F.A.; Ro, J.-S. Brushless Field-Excitation Method for Wound-Rotor Synchronous Machines. Int. Trans. Electr. Energy Syst.
**2021**, 31, e12961. [Google Scholar] [CrossRef] - Yao, F.; Sun, D.; Sun, L.; Lipo, T.A. Dual Third-Harmonic-Current Excitation Principle of a Brushless Synchronous Machine Based on Double Three-Phase Armature Windings. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–4. [Google Scholar]
- Ali, Q.; Lipo, T.A.; Kwon, B.I. Design and analysis of a novel brushless wound rotor synchronous machine. IEEE Trans. Magn.
**2015**, 51, 8109804. [Google Scholar] [CrossRef] - Jawad, G.; Ali, Q.; Lipo, T.A.; Kwon, B.I. Novel brushless wound rotor synchronous machine with zero-sequence third-harmonic field excitation. IEEE Trans. Magn.
**2016**, 52, 8106104. [Google Scholar] [CrossRef] - Pötter, J.; Pfost, M.; Schullerus, G. A Novel Brushless Excitation System for Synchronous Machines with a Rotating Power Converter. In Proceedings of the 2019 CPE-POWERENG, Sonderborg, Denmark, 23–25 April 2019; pp. 1–6. [Google Scholar]
- Pötter, J.; Pfost, M.; Schullerus, G. Design Aspects of a Novel Brushless Excitation System for Synchronous Machines; IEMDC: San Diego, CA, USA, 2019; pp. 1228–1233. [Google Scholar]
- Rebollo, E.; Blanquez, F.R.; Platero, C.A.; Blazquez, F.; Redondo, M. Improved high-speed de-excitation system for brushless synchronous machines tested on a 20 MVA hydro-generator. IET Electr. Power Appl.
**2015**, 9, 405–411. [Google Scholar] [CrossRef] [Green Version] - Bukhari, S.S.H.; Sirewal, G.J.; Ayub, M.; Ro, J.-S. A New Small-Scale Self-Excited Wound Rotor Synchronous Motor Topology. IEEE Trans. Magn.
**2021**, 57, 8200205. [Google Scholar] [CrossRef] - Jiao, N.; Liu, W.; Zhang, Z.; Meng, T.; Peng, J.; Jiang, Y. Field Current Estimation for Wound-Rotor Synchronous Starter–Generator with Asynchronous Brushless Exciters. IEEE Trans. Energy Convers.
**2017**, 32, 1554–1561. [Google Scholar] [CrossRef] - Lipo, T.A. Magnetic Circuits. In Introduction to AC Machine Design; John Wiley & Sons: New York, NY, USA, 2017; pp. 1–50. [Google Scholar]

**Figure 4.**Illustration of the fundamental MMF, harmonic MMF, and the induced harmonics in the machine.

Parameters | Unit | Value |
---|---|---|

Rated speed | rpm | 1800 |

Rated current | A-peak | 10 |

Stator outer diameter | mm | 177 |

Rotor outer diameter | mm | 99 |

Air-gap length | mm | 0.5 |

Shaft diameter | mm | 24 |

Stack length | mm | 65 |

Number of armature winding poles | - | 4 |

Number of stator slots | - | 18 |

Number of harmonic winding poles | - | 6 |

Armature (ABC) winding turns | - | 300 |

Harmonic (XYZ) winding turns | - | 150 |

Field winding turns | - | 200 |

Harmonic winding turns | - | 50 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sirewal, G.J.; Bukhari, S.S.H.
Cost-Effective Scheme for a Brushless Wound Rotor Synchronous Machine. *World Electr. Veh. J.* **2021**, *12*, 194.
https://doi.org/10.3390/wevj12040194

**AMA Style**

Sirewal GJ, Bukhari SSH.
Cost-Effective Scheme for a Brushless Wound Rotor Synchronous Machine. *World Electric Vehicle Journal*. 2021; 12(4):194.
https://doi.org/10.3390/wevj12040194

**Chicago/Turabian Style**

Sirewal, Ghulam Jawad, and Syed Sabir Hussain Bukhari.
2021. "Cost-Effective Scheme for a Brushless Wound Rotor Synchronous Machine" *World Electric Vehicle Journal* 12, no. 4: 194.
https://doi.org/10.3390/wevj12040194