# Research on Cooperative Braking Control Algorithm Based on Nonlinear Model Prediction

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Cooperative Braking Control Algorithm Based on NMPC

#### 2.1. Overview of NMPC

#### 2.2. The Implementation Method of NMPC

#### 2.3. Build Predictive Model

#### 2.4. Design Optimization Objective Function

#### 2.5. Design Constraints

## 3. Simulation Verification Based on Matlab/Simulink

#### 3.1. Build Simulation Model

#### 3.2. Simulation and Result Analysis Based on WLTC

#### 3.2.1. Select Driving Cycle

#### 3.2.2. Simulation and Result Analysis

#### 3.3. Simulation and Result Analysis Based on Single Braking Condition

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Conflicts of Interest

## References

- Line, C.; Manzie, C.; Good, M.C. Electromechanical Brake Modeling and Control: From PI to MPC. IEEE Trans. Control Syst. Technol.
**2008**, 16, 446–457. [Google Scholar] [CrossRef] - Satzger, C.; De Castro, R. Predictive Brake Control for Electric Vehicles. IEEE Trans. Veh. Technol.
**2017**, 67, 977–990. [Google Scholar] [CrossRef] - Lu, X.-Y.; Wang, J.; Li, S.E.; Zheng, Y. Multiple-Vehicle Longitudinal Collision Mitigation by Coordinated Brake Control. Math. Probl. Eng.
**2014**, 2014, 1–13. [Google Scholar] [CrossRef] - Tavernini, D.; Velenis, E.; Longo, S. Feedback brake distribution control for minimum pitch. Veh. Syst. Dyn.
**2017**, 55, 902–923. [Google Scholar] [CrossRef] [Green Version] - Cheng, S.; Li, L.; Guo, H.-Q.; Chen, Z.-G.; Song, P. Longitudinal Collision Avoidance and Lateral Stability Adaptive Control System Based on MPC of Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst.
**2019**, 21, 2376–2385. [Google Scholar] [CrossRef] - Sardarmehni, T.; Rahmani, H.; Menhaj, M.B. Robust control of wheel slip in anti-lock brake system of automobiles. Nonlinear Dyn.
**2013**, 76, 125–138. [Google Scholar] [CrossRef] - Nadeau, J.; Micheau, P.; Boisvert, M. Model-Based Predictive Control Applied to a Dual Regenerative and Hydraulic Brake System. In Proceedings of the 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Montreal, QC, Canada, 19–22 October 2015; pp. 1–5. [Google Scholar]
- Yao, M.; Miao, J.; Cao, S.; Chen, S.; Chai, H. The Structure Design and Optimization of Electromagnetic-Mechanical Wedge Brake System. IEEE Access
**2019**, 8, 3996–4004. [Google Scholar] [CrossRef] - Ma, K.; Wang, Z.; Liu, H.; Yu, H.; Wei, C. Numerical Investigation on Fuzzy Logic Control Energy Management Strategy of Parallel Hybrid Electric Vehicle. Energy Procedia
**2019**, 158, 2643–2648. [Google Scholar] [CrossRef] - Zhao, D.; Chu, L.; Xu, N.; Sun, C.; Xu, Y. Development of a Cooperative Braking System for Front-Wheel Drive Electric Vehicles. Energies
**2018**, 11, 378. [Google Scholar] [CrossRef] [Green Version] - Ma, H.; Chu, L.; Guo, J.; Wang, J.; Guo, C. Cooperative Adaptive Cruise Control Strategy Optimization for Electric Vehicles Based on SA-PSO With Model Predictive Control. IEEE Access
**2020**, 8, 225745–225756. [Google Scholar] [CrossRef] - Ma, Z.; Sun, D. Energy Recovery Strategy Based on Ideal Braking Force Distribution for Regenerative Braking System of a Four-Wheel Drive Electric Vehicle. IEEE Access
**2020**, 8, 136234–136242. [Google Scholar] [CrossRef] - Ji, F.; Pan, Y.; Zhou, Y.; Du, F.; Zhang, Q.; Li, G. Energy recovery based on pedal situation for regenerative braking system of electric vehicle. Veh. Syst. Dyn.
**2019**, 58, 144–173. [Google Scholar] [CrossRef] - Guo, J.; Li, W.; Wang, J.; Luo, Y.; Li, K. Safe and Energy-Efficient Car-Following Control Strategy for Intelligent Electric Vehicles Considering Regenerative Braking. IEEE Trans. Intell. Transp. Syst.
**2021**, 1–12. [Google Scholar] [CrossRef] - Tao, Y.; Xie, X.; Zhao, H.; Xu, W.; Chen, H. A regenerative braking system for electric vehicle with four in-wheel motors based on fuzzy control. In Proceedings of the 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 4288–4293. [Google Scholar]
- Bravo, R.R.S.; De Negri, V.J.; Oliveira, A.A.M. Design and analysis of a parallel hydraulic—Pneumatic regenerative braking system for heavy-duty hybrid vehicles. Appl. Energy
**2018**, 225, 60–77. [Google Scholar] [CrossRef] - Ning, X.; Shangguan, J.; Xiao, Y.; Fu, Z.; Xu, G.; He, A.; Li, B. Optimization of Energy Recovery Efficiency for Parallel Hydraulic Hybrid Power Systems Based on Dynamic Programming. Math. Probl. Eng.
**2019**, 2019, 1–11. [Google Scholar] [CrossRef] - Zhang, Y.; Zhao, C.; Li, Z. Electric Vehicle Regenerative Braking System Simulation based on Kalman Filter. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 2936–2941. [Google Scholar]
- Xiao, B.; Lu, H.; Wang, H.; Ruan, J.; Zhang, N. Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis. Energies
**2017**, 10, 1875. [Google Scholar] [CrossRef] [Green Version] - Xu, W.; Chen, H.; Zhao, H.; Ren, B. Torque optimization control for electric vehicles with four in-wheel motors equipped with regenerative braking system. Mechatronics
**2018**, 57, 95–108. [Google Scholar] [CrossRef] - Zhang, L.; Cai, X. Control strategy of regenerative braking system in electric vehicles. Energy Procedia
**2018**, 152, 496–501. [Google Scholar] [CrossRef] - Xu, L.; He, X.; Shen, X. Improving Energy Recovery Rate of the Regenerative Braking System by Optimization of Influencing Factors. Appl. Sci.
**2019**, 9, 3807. [Google Scholar] [CrossRef] [Green Version] - Dou, J.; Cui, G.; Li, S.; Zhao, X.; Lu, X.; Yu, Z. MPC-based cooperative braking control for rear-wheel-drive electric vehicle. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 4419–4424. [Google Scholar] [CrossRef]
- Li, S.; Guo, L.; Zhang, B.; Lu, X.; Cui, G.; Dou, J. MPC-based Slip Control System for In-wheel-motor Drive EV. IFAC-PapersOnLine
**2018**, 51, 578–582. [Google Scholar] [CrossRef] - Wagner, D.; Steinsträter, M.; Förth, M.; Stohwasser, M.; Hoffmann, J.; Lienkamp, M. Battery independent regenerative braking using model predictive control with auxiliary power consumers. Forsch. Ing.
**2019**, 83, 843–852. [Google Scholar] [CrossRef] - Chen, J.; Yu, J.; Zhang, K.; Ma, Y. Control of regenerative braking systems for four-wheel-independently-actuated electric vehicles. Mechatronics
**2018**, 50, 394–401. [Google Scholar] [CrossRef] - Hao, L.; Sun, B.; Li, G.; Guo, L. The Eco-Driving Considering Coordinated Control Strategy for the Intelligent Electric Vehicles. IEEE Access
**2021**, 9, 10686–10698. [Google Scholar] [CrossRef] - Farooqi, H.; Incremona, G.P.; Colaneri, P. Collaborative Eco-Drive of Railway Vehicles via Switched Nonlinear Model Predictive Control. IFAC-PapersOnLine
**2018**, 51, 626–631. [Google Scholar] [CrossRef] - Wang, Y.; Wang, X.; Sun, Y.; You, S. Model predictive control strategy for energy optimization of series-parallel hybrid electric vehicle. J. Clean. Prod.
**2018**, 199, 348–358. [Google Scholar] [CrossRef] - Zhang, Y.; Bai, Y.; Yang, H. A Universal Multiple-Vector-Based Model Predictive Control of Induction Motor Drives. IEEE Trans. Power Electron.
**2017**, 33, 6957–6969. [Google Scholar] [CrossRef]

Parameter | Value | Unit |
---|---|---|

${m}_{sm}$ | 1928 | $\mathrm{kg}$ |

$l$ | 2675 | $\mathrm{mm}$ |

$a$ | 1263 | $\mathrm{mm}$ |

$b$ | 1412 | $\mathrm{mm}$ |

${h}_{g}$ | 530 | $\mathrm{mm}$ |

${J}_{wi}$ | 1.12 | $\mathrm{kg}\xb7{\mathrm{m}}^{2}$ |

${J}_{m}$ | 5.34 | $\mathrm{kg}\xb7{\mathrm{m}}^{2}$ |

${R}_{t}$ | 0.308 | $\mathrm{m}$ |

${i}_{t}$ | 8.28 | -- |

${\mathit{E}}_{\mathit{reg}\text{}}$ | ${\mathit{E}}_{\mathit{brk}\text{}}$ | ${\mathit{\eta}}_{\mathit{reg}\text{}}$ |
---|---|---|

3474 | 11,417 | 30.4% |

2401 | 11,395 | 21.1% |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chu, L.; Chang, C.; Zhao, D.; Xu, Y.
Research on Cooperative Braking Control Algorithm Based on Nonlinear Model Prediction. *World Electr. Veh. J.* **2021**, *12*, 173.
https://doi.org/10.3390/wevj12040173

**AMA Style**

Chu L, Chang C, Zhao D, Xu Y.
Research on Cooperative Braking Control Algorithm Based on Nonlinear Model Prediction. *World Electric Vehicle Journal*. 2021; 12(4):173.
https://doi.org/10.3390/wevj12040173

**Chicago/Turabian Style**

Chu, Liang, Cheng Chang, Di Zhao, and Yanwu Xu.
2021. "Research on Cooperative Braking Control Algorithm Based on Nonlinear Model Prediction" *World Electric Vehicle Journal* 12, no. 4: 173.
https://doi.org/10.3390/wevj12040173