Detection of Man-in-the-Middle (MitM) Cyber-Attacks in Oil and Gas Process Control Networks Using Machine Learning Algorithms
Abstract
:1. Introduction
- We inject values to the collated real-time dataset at a specific date and time to make a distinction between normal operation and anomalous conditions which may represent plant shutdown, equipment failure, process upset conditions, or cyber-attacks.
- We apply different machine learning algorithms on the dataset to determine the most effective algorithm in identifying anomalies.
- We perform a comparative study of the results from the different machine learning algorithms, to determine their application to anomaly detection,
- We perform a comparative review of the actualized results with results from other researchers to validate the achieved results.
- In addition to the real-time dataset, we demonstrated the superior performance of the bagged tree and coarse tree algorithms using three public datasets namely: WUSTL-2018, ORNL PowerGrid, and TON_IoT
2. Related Works
3. System Model, Threat Modeling Framework and Simulation Setup
3.1. Intrusion Detection Using Machine Learning Models
3.2. Threat Modeling Description
3.3. Simulation and Experimental Setup
4. Result Discussion and Performance Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APT | Advance Persistent Threats |
AUC | Area Under Curve |
CI | Critical Infrastructure |
DDoS | Distributed Denial-of-Service |
DoS | Denial-of-Service |
DMZ | Demilitarized Zone |
FAR | False Alarm Rates |
FDIA | False Data Injection Attacks |
FDR | False Discovery Rates |
FNR | False Negative Rates |
FPR | False Positive Rates |
HMI | Human Machine Interface |
ICS | Industrial Control Systems |
ICT | Information and Communication Technology |
IDS | Intrusion detection systems |
IIoT | Industrial Internet of Things |
IoT | Internet of Things |
IP | Internet Protocol |
IQR | Interquartile Range |
IT | Information Technology |
kNN | k-Nearest Neighbors |
LDR | Linear Discriminant Regression |
LOF | Local Outlier Factor |
LSTM | Long Short-Term Memory |
MATLAB | Matrix Laboratory |
MCE | Misclassification error |
MitM | Man-in-the-Middle |
MotS | Man-on-the-Side |
NSL-KDD | National Security Laboratory Knowledge Discovery in Databases |
ORNL | Oak Ridge National Laboratories |
OT | Operation Technology |
PCN | process control network |
PLC | Programmable Logic Controller |
PPV | Positive Predictive Values |
PyOD | Python Outlier detection |
ROC | Receiver Operator Characteristics |
SCADA | Supervisory Control and Data Acquisition |
SVM | Support Vector Machines |
TPR | True Positive Rates |
USB | Universal Serial Bus |
WUSTL | Washington University in St. Louis |
Xss | Cross-site Scripting Attack |
References
- Smurthwaite, M.; Bhattacharya, M. Convergence of IT and SCADA: Associated Security Threats and Vulnerabilities. IOP Conf. Ser. Mater. Sci. Eng. 2020, 790, 012041. [Google Scholar] [CrossRef]
- CISA; FBI. DarkSide Ransomware: Best Practices for Preventing Business Disruption from Ransomware Attacks. Cybersecur. Advis. 2021. Available online: https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-131a (accessed on 29 May 2023).
- Marchetti, M.; Pierazzi, F.; Guido, A.; Colajanni, M. Countering Advanced Persistent Threats through Security intelligence and big data analytics. In Proceedings of the 2016 8th International Conference on Cyber Conflict (CyCon), Tallinn, Estonia, 31 May–3 June 2016; pp. 243–261. [Google Scholar] [CrossRef]
- Kaspersky. APT trends report Q2 2022. Available online: https://securelist.com/apt-trends-report-q2-2022/106995/ (accessed on 29 May 2023).
- Kaspersky. APT trends report Q2 2019. Available online: https://securelist.com/apt-trends-report-q2-2019/91897/ (accessed on 29 May 2023).
- Irmak, E.; Erkek, İ. An overview of cyber-attack vectors on SCADA systems. In Proceedings of the 2018 6th International Symposium on Digital Forensic and Security (ISDFS), Antalya, Turkey, 22–25 March 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Stergiopoulos, G.; Gritzalis, D.A.; Limnaios, E. Cyber-Attacks on the Oil & Gas Sector: A Survey on Incident Assessment and Attack Patterns. IEEE Access 2020, 8, 128440–128475. [Google Scholar] [CrossRef]
- Nwakanma, C.I.; Ahakonye, L.A.C.; Njoku, J.N.; Eze, J.; Kim, D.S. Effective Industrial Internet of Things Vulnerability Detection Using Machine Learning. In Proceedings of the 2022 5th Information Technology for Education and Development (ITED), Abuja, Nigeria, 1–3 November 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Ahakonye, L.A.C.; Nwakanma, C.I.; Lee, J.M.; Kim, D.S. Agnostic CH-DT Technique for SCADA Network High-Dimensional Data-Aware Intrusion Detection System. IEEE Internet Things J. 2023, 10, 10344–10356. [Google Scholar] [CrossRef]
- Ogu, R.E.; Achumba, I.E.; Okoronkwo, C.D.; Chukwudebe, G.A.; Chukwuchekwa, N. An IoT Solution for Air Quality Monitoring and Hazard Identification for Smart City Development. In Proceedings of the 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), Lagos, Nigeria, 5–7 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Ogu, R.E.; Chukwudebe, G.A.; Achumba, I.E.; Chukwuchekwa, N.; Ezenugu, I.A. A Robust IoT-based Air Quality Monitoring Node for Multi-Location Deployment. Int. J. Eng. Res. Technol. 2022, 11, 146–151. [Google Scholar]
- Ahakonye, L.A.C.; Nwakanma, C.I.; Lee, J.M.; Kim, D.S. SCADA intrusion detection scheme exploiting the fusion of modified decision tree and Chi-square feature selection. Internet Things 2023, 21, 100676. [Google Scholar] [CrossRef]
- Alves, T.; Das, R.; Morris, T. Embedding Encryption and Machine Learning Intrusion Prevention Systems on Programmable Logic Controllers. IEEE Embed. Syst. Lett. 2018, 10, 99–102. [Google Scholar] [CrossRef]
- Ramotsoela, D.; Hancke, G.; Abu-Mahfouz, A. Attack detection in water distribution systems using machine learning. Hum. Cent. Comput. Inf. Sci. 2019, 9, 1–22. [Google Scholar] [CrossRef]
- Zoppi, T.; Ceccarelli, A.; Bondavalli, A. Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application. IEEE Access 2021, 9, 90603–90615. [Google Scholar] [CrossRef]
- Pu, G.; Wang, L.; Shen, J.; Dong, F. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Sci. Technol. 2021, 26, 146–153. [Google Scholar] [CrossRef]
- Rosa, L.; Cruz, T.; de Freitas, M.B.; Quitério, P.; Henriques, J.; Caldeira, F.; Monteiro, E.; Simões, P. Intrusion and anomaly detection for the next-generation of industrial automation and control systems. Futur. Gener. Comput. Syst. 2021, 119, 50–67. [Google Scholar] [CrossRef]
- Ahakonye, L.A.C.; Nwakanma, C.I.; M., L.J.; Kim, D.S. Efficient Classification of Enciphered SCADA Network Traffic in Smart Factory Using Decision Tree Algorithm. IEEE Access 2021, 9, 154892–154901. [Google Scholar] [CrossRef]
- Melnick, J. Top 10 Most Common Types of Cyber Attacks. Available online: https://blog.netwrix.com/2018/05/15/top-10-most-common-types-of-cyber-attacks/ (accessed on 29 May 2023).
- Mahrukh, M.; Thomas, M.S. Load Altering Attacks- a Review of Impact and Mitigation Strategies. In Proceedings of the 2023 International Conference on Recent Advances in Electrical, Electronics and Digital Healthcare Technologies (REEDCON), New Delhi, India, 1–3 May 2023; pp. 397–402. [Google Scholar]
- Tang, S.; Liu, Z.; Wang, L. Power System Reliability Analysis Considering External and Insider Attacks on the SCADA System. In Proceedings of the 2020 IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, USA, 12–15 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Hunga, M.O.; Adishi, E. Oil Theft, Illegal Bunkering and Pipeline Vandalism: It’s Impact on Nigeria Economy, 2015–2016. IIARD Int. J. Econ. Bus. Manag. 2017, 3, 47–65. [Google Scholar]
- Wilson, G. The Nigerian State and Oil Theft in the Niger Delta Region of Nigeria. J. Sustain. Dev. Afr. 2014, 16, 69–81. [Google Scholar]
- Mohammed, A.S.; Saxena, N.; Rana, O. Wheels on the Modbus - Attacking ModbusTCP Communications. In Proceedings of the WiSec ’22: Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Miami, FL, USA, 15–17 May 2022; pp. 288–289. [CrossRef]
- Jang-jaccard, J.; Nepal, S. A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 2014, 80, 973–993. [Google Scholar] [CrossRef]
- Amin, S.; Litrico, X.; Sastry, S.; Bayen, A. Cyber security of water SCADA systems- part II: Attack detection using enhanced hydrodynamic models. IEEE Trans. Control Syst. Technol. 2013, 21, 1679–1693. [Google Scholar] [CrossRef]
- Zoppi, T.; Ceccarelli, A.; Capecchi, T.; Bondavalli, A. Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape. ACM/IMS Trans. Data Sci. 2021, 2, 1–26. [Google Scholar] [CrossRef]
- Abrar, I.; Ayub, Z.; Masoodi, F.; Bamhdi, A.M. A Machine Learning Approach for Intrusion Detection System on NSL-KDD Dataset. In Proceedings of the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 18–20 September 2020; pp. 919–924. [Google Scholar] [CrossRef]
- Kulugh, V.E.; Mbanaso, U.M.; Chukwudebe, G.A. Cybersecurity Resilience Maturity Assessment Model for Critical National Information Infrastructure. SN Comput. Sci. 2022, 3, 217. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 1–21. [Google Scholar] [CrossRef]
- Zoppi, T.; Ceccarelli, A.; Salani, L.; Bondavalli, A. On the educated selection of unsupervised algorithms via attacks and anomaly classes. J. Inf. Secur. Appl. 2020, 52, 102474. [Google Scholar] [CrossRef]
- Khraisat, A.; Alazab, A.A. A critical review of intrusion detection systems in the internet of things: Techniques, deployment strategy, validation strategy, attacks, public datasets and challenges. Cybersecurity 2021, 4, 1–31. [Google Scholar] [CrossRef]
- Okafor, K.C.; Ndinechi, M.C.; Misra, S. Cyber-physical network architecture for data stream provisioning in complex ecosystems. Trans. Emerg. Telecommun. Technol. 2022, 33, 1–31. [Google Scholar] [CrossRef]
- Wakefield, K. A Guide to the Types of Machine Learning Algorithms: SAS UK; SAS Institute: London, UK, 2021. [Google Scholar]
- Teixeira, M.A.; Salman, T.; Zolanvari, M.; Jain, R.; Meskin, N.; Samaka, M. SCADA System Testbed for Cybersecurity Research Using Machine Learning Approach. Future Internet 2018, 10, 76. [Google Scholar] [CrossRef]
- El Naqa, I.; Murphy, M.J. What Is Machine Learning? Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–11. [Google Scholar]
- Ndubuaku, M.U.; Anjum, A.; Liotta, A. Unsupervised anomaly thresholding from reconstruction errors. Lect. Notes Comput. Sci. 2019, 11874LNCS, 123–129. [Google Scholar] [CrossRef]
- Joloudari, J.H.; Haderbadi, M.; Mashmool, A.; Ghasemigol, M.; Band, S.S.; Mosavi, A. Early detection of the advanced persistent threat attack using performance analysis of deep learning. IEEE Access 2020, 8, 186125–186137. [Google Scholar] [CrossRef]
- Al-Abassi, A.; Karimipour, H.; Dehghantanha, A.; Parizi, R.M. An Ensemble deep learning-based cyber-attack detection in industrial control system. IEEE Access 2020, 8, 83965–83973. [Google Scholar] [CrossRef]
- Bierbrauer, D.A.; Chang, A.; Kritzer, W.; Bastian, N.D. Cybersecurity Anomaly Detection in Adversarial Environments. arXiv 2021, arXiv:2105.06742. [Google Scholar]
- Alhaidari, F.A.; AL-Dahasi, E.M. New Approach to Determine DDoS Attack Patterns on SCADA System Using Machine Learning. In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Aljouf, Saudi Arabia, 3–4 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Al-Rabiaah, S. The “Stuxnet” Virus of 2010 As an Example of A “APT” and Its “Recent” Variances. In Proceedings of the 2018 21st Saudi Computer Society National Computer Conference (NCC), Riyadh, Saudi Arabia, 25–26 April 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Maynard, P.; McLaughlin, K. Towards Understanding Man-on-the-Side Attacks (MotS) in SCADA Networks, Proceedings of the 17th International Joint Conference on e-Business and Telecommunications, ICETE 2020—Volume 2: SECRYPT, Lieusaint, Paris, France, 8–10 July 2020; Samarati, P., di Vimercati, S.D.C., Obaidat, M.S., Ben-Othman, J., Eds.; ScitePress: Setubal, Portugal, 2020; pp. 287–294. [Google Scholar] [CrossRef]
- Wilson, D.; Tang, Y.; Yan, J.; Lu, Z. Deep Learning-Aided Cyber-Attack Detection in Power Transmission Systems. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Husák, M.; Komárková, J.; Bou-Harb, E.; Čeleda, P. Survey of Attack Projection, Prediction, and Forecasting in Cyber Security. IEEE Commun. Surv. Tutor. 2019, 21, 640–660. [Google Scholar] [CrossRef]
- Morris, T. Industrial Control System (ICS) Cyber Attack Datasets. In Proceedings of the Center for Cybersecurity Research and Engineering (CCRE); The University of Alabama in Huntsville: Huntsville, AL, USA; Available online: https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets (accessed on 29 May 2023).
- Moustafa, N. ToN_IoT datasets. IEEE Dataport 2019. [Google Scholar] [CrossRef]
- Song, S.; Liu, X.; Li, C.; Li, Z.; Zhang, S.; Wu, W.; Shi, B.; Kang, Q.; Wu, H.; Gong, J. Dynamic Simulator for Three-Phase Gravity Separators in Oil Production Facilities. ACS Omega 2023, 8, 6078–6089. [Google Scholar] [CrossRef]
- Abdu Sabir, B.M.; Elamin, I.H.; Sadiq, H.R. Dynamic Modelling and Simulation of A Three-Phase Gravity Separator. J. Karary Univ. Eng. Sci. 2022, 11, 1–19. [Google Scholar] [CrossRef]
- Wu, F.; Huang, K.; Li, H.; Huang, C. Analysis and Research on the Automatic Control Systems of Oil-Water Baffles in Horizontal Three-Phase Separators. Processes 2022, 10, 1102. [Google Scholar] [CrossRef]
- Jonach, T.; Jordan, C.; Haddadi, B.; Harasek, M. Modelling and Simulation of 3-Phase Separators in the Oil and Gas Industry with Emphasis on Water Quality. Chem. Eng. Trans. 2022, 94, 1009–1014. [Google Scholar] [CrossRef]
- Nasr, P.M.; Varjani, A.Y. Petri net model of insider attacks in SCADA system. In Proceedings of the 2014 11th International ISC Conference on Information Security and Cryptology, Tehran, Iran, 3–4 September 2014; pp. 55–60. [Google Scholar] [CrossRef]
- Nasr, P.M.; Varjani, A.Y. Alarm based anomaly detection of insider attacks in SCADA system. In Proceedings of the 2014 Smart Grid Conference (SGC), Tehran, Iran, 9–10 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Gönen, S.; Sayan, H.H.; Yılmaz, E.N.; Üstünsoy, F.; Karacayılmaz, G. False data injection attacks and the insider threat in smart systems. Comput. Secur. 2020, 97, 101955. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Dalamagkas, C.; Lagkas, T.; Zafeiropoulou, M.; Atanasova, M.; Zlatev, P.; Boulogeorgos, A.A.A.; Argyriou, V.; Markakis, E.K.; Moscholios, I.; et al. False Data Injection Attacks against Low Voltage Distribution Systems. In Proceedings of the GLOBECOM 2022–2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 1856–1861. [Google Scholar] [CrossRef]
Reference | Major Findings | Limitations |
---|---|---|
Pu et al. [16] | Unsupervised clustering-based anomaly detection method to minimize false positives | i. Identical and repeated NSL-KDD datasets which affect the learning ability of the algorithm and the final output ii. possibility of generating lots of false positives which could deceive real network traffics |
Rosa et al. [17] | Integration of different techniques and algorithms for networking monitoring | i. Integration of the complex solution will require prolonged network downtime. |
Zoppi et al. [27] | Quantitative comparison of 17 Unsupervised anomaly detection algorithms | i. High rate of misclassification of unknown attacks ii. High computational complexity, |
Abrar et al. [28] | Machine learning approach using different algorithms to solve intrusion detection problems (supervised learning) | i. The model could not detect zero-day attacks. ii. Not enough details in the public dataset, iii. Computational complex programs |
Joloudari et al. [38] | Deep learning and decision tree algorithms for advanced persistent threat attack detection | i. Could not extract important features from the NSL-KDD dataset. ii. The dataset did not reflect the real scenario of the target idea. |
Al-Abassi et al. [39] | Generalized ensemble deep learning for cyber-attack detection in industrial control system | i. Could not distinguish between system downtime and actual real-time attacks. |
Algorithm | Accuracy (%) | Training Time (ms) | MCE | Prediction Speed (obs/s) |
---|---|---|---|---|
Decision Trees | ||||
Fine Tree (FT) | 100 | 1.1708 | 0 | 1,200,000 |
Medium Tree (MT) | 100 | 1.0781 | 0 | 1,300,000 |
Coarse Tree (CT) | 100 | 0.45488 | 0 | 1,000,000 |
Optimizable Tree | 100 | 21.323 | 0 | 1,300,000 |
Discriminant Analysis | ||||
Linear Discriminant (LDR) | 100 | 1.843 | 24 | 1,100,000 |
Quadratic Discriminant (QDR) | 99.2 | 1.1597 | 518 | 1,600,000 |
Optimizable Discriminant | 100 | 25.029 | 24 | 1,600,000 |
Logistic Regression (LR) | 100 | 3.205 | N/A | 1,100,000 |
Naive Bayes | ||||
Gaussian Naive Bayes (GNB) | 99.2 | 1.4947 | 518 | 1,400,000 |
Kernel Naive Bayes (KNB) | 100 | 65.633 | 8 | 4500 |
Optimizable NB | 100 | 918.96 | 8 | 3800 |
Support Vector Machines (SVM) | ||||
Linear SVM | 100 | 7.3065 | 25 | 780,000 |
Quadratic SVM | 100 | 383.79 | 17 | 1,500,000 |
Cubic SVM | 80.2 | 1657.3 | 13,588 | 930,000 |
Fine Gaussian SVM | 100 | 7.433 | 5 | 610,000 |
Medium Gaussian SVM | 100 | 5.3155 | 1 | 760,000 |
Coarse Gaussian SVM | 100 | 5.1452 | 20 | 1,100,000 |
Optimized SVM | 100 | 7490.9 | 25 | 1,100,000 |
Nearest Neighbors | ||||
Fine KNN | 100 | 3.6447 | 0 | 820,000 |
Medium KNN | 100 | 2.0989 | 5 | 460,000 |
Coarse KNN | 99.9 | 3.5228 | 35 | 130,000 |
Cosine KNN | 99.9 | 17.422 | 35 | 17,000 |
Cubic KNN | 100 | 2.3157 | 5 | 380,000 |
Weighted KNN | 100 | 2.1524 | 0 | 450,000 |
Ensemble Learning (EL) | ||||
Boosted Trees | 99.9 | 5.0025 | 35 | 1,200,000 |
Bagged Tree | 100 | 8.5874 | 0 | 320,000 |
Subspace Discriminant | 100 | 4.5421 | 24 | 260,000 |
Subspace KNN | 100 | 12.777 | 0 | 93,000 |
RUS-Boosted Tree | 100 | 2.4396 | 20 | 960,000 |
Optimized Ensemble | 100 | 232.87 | 0 | 530,000 |
Datasets /Algorithm | Accuracy (%) | Training Time (ms) | FAR | Prediction Speed (obs/s) |
---|---|---|---|---|
SCADA Pressure Dataset | ||||
Coarse Tree | 100 | 0.4549 | 0 | 1,000,000 |
Cubic SVM | 80.2 | 1657.3 | 13,588 | 930,000 |
WUSTL-SCADA-2018 Dataset [35] | ||||
Medium Tree | 100 | 5.6605 | 412 | 4,100,000 |
Subspace Discriminant | 93.1 | 101.64 | 72,009 | 110,000 |
ORNL POWER GRID Dataset [46] | ||||
Bagged Tree | 95.1 | 4.8021 | 241 | 2500 |
Quadratic Discriminant | 52.4 | 1.6364 | 2339 | 120,000 |
TON_IoT DATASET [47] | ||||
Bagged Tree | 100 | 1789.5 | 9 | 61,000 |
Coarse Tree | 82.4 | 94.643 | 81,043 | 1,000,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obonna, U.O.; Opara, F.K.; Mbaocha, C.C.; Obichere, J.-K.C.; Akwukwaegbu, I.O.; Amaefule, M.M.; Nwakanma, C.I. Detection of Man-in-the-Middle (MitM) Cyber-Attacks in Oil and Gas Process Control Networks Using Machine Learning Algorithms. Future Internet 2023, 15, 280. https://doi.org/10.3390/fi15080280
Obonna UO, Opara FK, Mbaocha CC, Obichere J-KC, Akwukwaegbu IO, Amaefule MM, Nwakanma CI. Detection of Man-in-the-Middle (MitM) Cyber-Attacks in Oil and Gas Process Control Networks Using Machine Learning Algorithms. Future Internet. 2023; 15(8):280. https://doi.org/10.3390/fi15080280
Chicago/Turabian StyleObonna, Ugochukwu Onyekachi, Felix Kelechi Opara, Christian Chidiebere Mbaocha, Jude-Kennedy Chibuzo Obichere, Isdore Onyema Akwukwaegbu, Miriam Mmesoma Amaefule, and Cosmas Ifeanyi Nwakanma. 2023. "Detection of Man-in-the-Middle (MitM) Cyber-Attacks in Oil and Gas Process Control Networks Using Machine Learning Algorithms" Future Internet 15, no. 8: 280. https://doi.org/10.3390/fi15080280
APA StyleObonna, U. O., Opara, F. K., Mbaocha, C. C., Obichere, J. -K. C., Akwukwaegbu, I. O., Amaefule, M. M., & Nwakanma, C. I. (2023). Detection of Man-in-the-Middle (MitM) Cyber-Attacks in Oil and Gas Process Control Networks Using Machine Learning Algorithms. Future Internet, 15(8), 280. https://doi.org/10.3390/fi15080280