DataStream XES Extension: Embedding IoT Sensor Data into Extensible Event Stream Logs
Abstract
:1. Introduction
- Provide a well-defined set of named XES attributes to describe individual (sensor) events.
- Utilize well-established XES concepts such as lists to group the named attributes for simplified analysis.
- Establish a set of named XES attributes to store many (sensor) events per process event.
- Describe how to store large quantities of (sensor) events, which might occur between the start/end of a process event or a process instance (i.e., establishing a new XES BPAF lifecycle transition).
- Establish a set of named XES attributes to connect (sensor) events to groups of process tasks.
2. Foundations and Related Work
2.1. IoT
2.2. BPM and IoT
2.3. Process Mining
Listing 1. Sample XES (XML serialization) with Trace, Events and Attributes. |
1 <log xes.version="1.0" 2 xmlns="http://www.xes-standard.org" 3 xes.creator="cpee.org" 4 xes.features="nested-attributes"> 5 <extension name="Concept" prefix="concept" uri="http://www.xes-standard.org/concept. xesext"/> 6 <extension name="Lifecycle" prefix="lifecycle" uri="http://www.xes-standard.org/lifecycle .xesext"/> 7 <extension name="Identity" prefix="identifier" uri="http://www.xes-standard.org/identity. xesext"/> 8 <extension name="Time" prefix="time" uri="http://www.xes-standard.org/time.xesext"/> 9 <global scope="trace"> 10 <string key="concept:name" value="name"/> 11 </global> 12 <global scope="event"> 13 <string key="concept:name" value="name"/> 14 <string key="lifecycle:transition" value="start"/> 15 <date key="time:timestamp" value="1970-01-01T00:00:00.000+00:00"/> 16 </global> 17 <string key="lifecycle:model" value="standard"/> 18 <string key="creator" value="cpee.org"/> 19 <string key="library" value="cpee.org"/> 20 <trace> 21 <string key="concept:name" value="Process 1"/> 22 <event> 23 <string key="concept:name" value="Task 1"/> 24 <string key="lifecycle:transition" value="start"/> 25 <date key="time:timestamp" value="1970-01-01T00:00:00.000+00:00"/> 26 <string key="name" value="Juergen"/> 27 </event> 28 <event> 29 <string key="concept:name" value="Task 2"/> 30 <string key="lifecycle:transition" value="start"/> 31 <date key="time:timestamp" value="1970-01-01T00:00:00.000+00:00"/> 32 <string key="name" value="Juergen"/> 33 /event> 34 </trace> 35 </log> |
2.4. Data Analysis for BPM and IoT
3. An XES-Extension for IoT-Enriched Event Logs
“Log, trace, and event objects contain no information themselves. They only define the structure of the document. All information in an event log is stored in attributes. Attributes describe their parent element (log, trace, etc.). All attributes have a string-based key.”
- “Single Activity” Context: A time-series of sensor readings from at least one sensor is connected to a single activity, e.g., when the activity represents the machining of a part, collected sensor data might describe various aspects, such as the throughput of coolant while machining, a discrete series of vibration readings, or a function (continuous data) describing the noise generation (volume). All sensor data can be assigned to a particular activity, being the data relevant between the start and the completion of the activity.
- “Group of Activities” Context: A time-series of sensor readings from at least one sensor is connected to a set of activities. This is especially relevant for environmental sensors, which for example span a multitude of production steps. For instance, temperature changes during several process activities might give insights into certain quality properties of a finished product but cannot be clearly attributed to a single step (e.g., significance of the difference between temperatures measured at the start of activity 1, and at the end of activity n).
- “Trace” Context: A time-series of sensor readings from at least one sensor is connected to a whole trace. This case is analogous to the “Group of Activities” case. This is for instance necessary when the sensor readings from a period before and/or after individual activities may be relevant for the process analysis. e.g., when enacting a chemical reaction, the characteristics of a warm-up phase might be important for the outcome but might not be explicitly part of the process model, which only starts with adding ingredients.
- id: uniquely identifies the sensor, e.g., if a gyro-sensor delivers orientation and angular velocity changes separately, the identifiers can be gyro/velocity and gyro/angular_velocity. On the other hand, if the sensor delivers a value pair, the identifier can be gyro.
- source: identify the source of a sensor value, e.g., a drilling machine is the source of many different sensor readings at all times. The source attribute allows grouping these values into groups that may belong together and, thus, make sense to be analyzed together. The source is optional.
- timestamp: A timestamp when the reading was taken. The timestamp is intended to be in ISO 8601 format, including milliseconds (YYYY-MM-DDTHH:mm:ss.sssZ) or microseconds (YYYY-MM-DDTHH:mm:ss.ssssssZ).
- value: The value delivered by the sensor. As sensors can deliver single values (float, int, strings) or complex data (pairs, triplets, deeply structured data, …), we always assume this is stored as some serialized string representation.
- meta: A straightforward extension point, which allows us to specify an additional list of attributes, which might be important for custom data analysis purposes. Meta is optional.
3.1. Context, Grouping, and Nesting: Stream:Datacontext, Stream:Datastream, Stream:Point
Listing 2. Sample XES (XML serialization) stream:datastream Nesting. |
1 <trace> 2 <string key="concept:name" value="Process 1"/> 3 <list key="stream:datacontext"> 4 <list key="stream:datastream"> 5 <list key="stream:point"> 6 <date key="stream:timestamp" value="2021-11-04T15:22:19.367+01:00"/> 7 <string key="stream:id" value="humidity"/> 8 <string key="stream:value" value="62.5"/> 9 </list> 10 </list> 11 […] 12 <list key="stream:datacontext"> 13 <list key="stream:datastream"> 14 <list key="stream:point"> 15 <date key="stream:timestamp" value="2021-11-04T15:22:22.369+01:00"/> 16 <string key="stream:id" value="pressure"/> 17 <int string key="stream:value" value="19"/> 18 </list> 19 […] 20 </list> 21 <event>[…]</event> 22 <event>[…]</event> 23 […] 24 </list> 25 <list key="stream:datacontext"> 26 <list key="stream:datastream"> 27 <list key="stream:point"> 28 <date key="stream:timestamp" value="2021-11-04T15:22:28.369+01:00"/> 29 <string key="stream:id" value="temperature"/> 30 <int string key="stream:value" value="75.3"/> 31 </list> 32 […] 33 </list> 34 <event>[…]</event> 35 <event>[…]</event> 36 […] 37 </list> 38 </list> 39 </trace> 40 </log> |
3.2. Task Lifecycle Extension: Stream/Data
Listing 3. Sample XES (XML serialization) stream/data. |
1 <trace> 2 <string key="concept:name" value="Process 1"/> 3 <event> 4 <string key="lifecycle:transition" value="start"/> 5 … 6 <event> 7 <event> 8 <string key="lifecycle:transition" value="stream/data"/> 9 <list key="stream:datastream"> 10 … 11 </list> 12 … 13 <event> 14 … 15 <event> 16 <string key="lifecycle:transition" value="complete"/> 17 … 18 <event> 19 … 20 </trace> 21 </log> |
3.3. Convenience and Size: Stream:Multipoint
Listing 4. Sample XES (XML serialization) stream:multipoint. |
1 <trace> 2 <string key="concept:name" value="Process 1"/> 3 <event> 4 <string key="concept:name" value="Task 1"/> 5 <string key="lifecycle:transition" value="complete"/> 6 <date key="time:timestamp" value="1970-01-01T00:00:00.000+00:00"/> 7 <string key="name" value="Juergen"/> 8 <list key="stream:datastream"> 9 <string key="stream:name" value="Temperature"/> 10 <list key="stream:multipoint"> 11 <string key="stream:id" value="keyence/mesurement"/> 12 <string key="stream:source" value="keyence"/> 13 <list key="stream:point"> 14 <date key="stream:timestamp" value="2021-11-04T15:22:19.367+01:00"/> 15 <string key="stream:value" value="18"/> 16 </list> 17 <list key="stream:point"> 18 <date key="stream:timestamp" value="2021-11-04T15:22:20.369+01:00"/> 19 <int string key="stream:value" value="19"/> 20 </list> 21 </list> 22 </list> 23 </event> 24 </trace> 25 </log> |
Listing 5. Sample XES (XML serialization) stream:multipoint. |
1 <trace> 2 <string key="concept:name" value="Process 1"/> 3 <event> 4 <string key="concept:name" value="Task 1"/> 5 <string key="lifecycle:transition" value="complete"/> 6 <date key="time:timestamp" value="1970-01-01T00:00:00.000+00:00"/> 7 <string key="name" value="Juergen"/> 8 <list key="stream:datastream"> 9 <string key="stream:name" value="Temperature"/> 10 <list key="stream:multipoint"> 11 <date key="stream:timestamp" value="2021-11-04T15:22:19.367+01:00"/> 12 <list key="stream:point"> 13 <string key="stream:id" value="temperature"/> 14 <string key="stream:value" value="48.5371"/> 15 </list> 16 <list key="stream:point"> 17 <string key="stream:id" value="pressure"/> 18 <string key="stream:value" value="12:30-1,12:31-2,3,4,5"/> 19 </list> 20 </list> 21 </list> 22 </event> 23 </trace> 24 </log> |
4. Application Scenarios for IoT-Enriched Event Logs in Smart Manufacturing and Public Transportation
4.1. Monitoring Public Transportation Delays Alongside Weather and Traffic Data in Vienna
Listing 6. Public Transportation Weather Data. |
1 event: 2 concept:instance: 8968 3 concept:name: Get Weather 4 […] 5 stream:datastream: 6 - stream:point: 7 stream:id: temperature 8 stream:value: 4.95 9 stream:timestamp: 2022-12-06 17:17:01.403889247 +01:00 10 stream:source: openweathermap 11 - stream:point: 12 stream:id: feels_like 13 stream:value: 0.56 14 stream:timestamp: 2022-12-06 17:17:01.403972224 +01:00 15 stream:source: openweathermap 16 - stream:point: 17 stream:id: pressure 18 stream:value: 1017 19 stream:timestamp: 2022-12-06 17:17:01.404046393 +01:00 20 stream:source: openweathermap 21 […] |
Listing 7. Public Transportation Traffic Data. |
1 event: 2 concept:instance: 8968 3 concept:name: Get Traffic status 4 […] 5 stream:datastream: 6 - stream:name: traffic 7 - stream:source: tomtom 8 - stream:datastream: 9 - stream:name: stop 10 - stream:id: ’5’ 11 - stream:source: tomtom 12 - stream:meta: 13 station: Börse 14 - stream:point: 15 stream:id: trafic 16 stream:value: 0.6394647901326838 17 stream:timestamp: 2022-12-06 17:16:40.142570851 +01:00 18 stream:source: tomtom 19 stream:meta: 20 intersections_in_proximity: 71 21 - stream:datastream: 22 - stream:name: stop 23 - stream:id: ’46’ 24 - stream:source: tomtom 25 - stream:meta: 26 station: Schottentor U 27 - stream:point: 28 stream:id: trafic 29 stream:value: 0.5571382984201959 30 stream:timestamp: 2022-12-06 17:16:40.142576922 +01:00 31 stream:source: tomtom 32 stream:meta: 33 intersections_in_proximity: 94 34 […] |
4.2. Manufacturing and Measuring of a Chess Piece at Pilotfabrik TU Wien
Listing 8. Chess Piece Machining Data. |
1 event: 2 concept:instance: 4129 3 concept:name: Fetch 4 […] 5 stream:datastream: 6 - stream:name: MaxxTurn45 7 - stream:source: machine 8 - stream:point: 9 stream:id: State/progStatus 10 stream:value: 3 11 stream:timestamp: ’2022-12-16T18:01:17.000+01:00’ 12 stream:source: 13 proto: opcua 14 host: opc.tcp://192.168.10.59:4840 15 access: ns=2;s=/Channel/State/progStatus 16 […] 17 - stream:point: 18 stream:id: Axes/Z/aaLeadP 19 stream:value: 405.5 20 stream:timestamp: ’2022-12-16T18:01:18.000+01:00’ 21 stream:source: 22 proto: opcua 23 host: opc.tcp://192.168.10.59:4840 24 access: ns=2;s=/Channel/MachineAxis/aaLeadP[u1,2] 25 - stream:point: 26 stream:id: Axes/X/aaTorque 27 stream:value: -2.028 28 stream:timestamp: ’2022-12-16T18:01:18.000+01:00’ 29 stream:source: 30 proto: opcua 31 host: opc.tcp://192.168.10.59:4840 32 access: ns=2;s=/Channel/MachineAxis/aaTorque[u1,1] 33 […] |
Listing 9. Chess Piece Measuring Data. |
1 event: 2 concept:instance: 4153 3 concept:name: Fetch 4 […] 5 stream:datastream: 6 - stream:name: keyence 7 - stream:source: machine 8 - stream:point: 9 stream:id: measurement 10 stream:value: 20.08 11 stream:timestamp: ’2022-12-16T17:51:44.408+01:00’ 12 stream:source: 13 proto: serial 14 access: "/dev/ttyUSB0 115200" 15 stream:meta: {} 16 - stream:point: 17 stream:id: measurement 18 stream:value: 20.09 19 stream:timestamp: ’2022-12-16T17:51:44.423+01:00’ 20 stream:source: 21 proto: serial 22 access: "/dev/ttyUSB0 115200" 23 stream:meta: {} 24 […] |
4.3. Discussion of Results
5. Conclusions and Future Work
- “Provide a well-defined set of named XES attributes to describe individual (sensor) events.” is achieved by defining the named XES attributes in the DataStream Metamodel shown in Figure 4 and using these attributes in the logs of the real-world application scenarios.
- “Utilize well-established XES concepts such as lists to group the named attributes for simplified analysis.” is achieved by identifying different granularity levels such as stream:datastream and point in the DataStream Metamodel shown in Figure 4 and assign the named attributes to their corresponding levels. This leads to easier analysis as for example stream:points can share attributes of their parent stream:datastream as shown in Listings 7–9. This serves the purpose of data de-duplication for a set of stream:point attributes, thus reducing data cleaning effort.
- “Establish a set of named XES attributes to store many (sensor) events per process event.” is achieved by allowing for multiple stream:datastreams and therefore also stream:points to be connected to one process event in the DataStream Metamodel shown in Figure 4. This is also shown in Listings 6–9 where multiple stream:datastreams and/or stream:points are present in one process event. Having a set of common attributes instead of a mix of different attributes with slightly different meaning, reduces data transformation effort, and provides context and meaning to the most basic shared concepts.
- “Describe how to store large quantities of (sensor) events, which might occur between the start/end of a process event or a process instance (i.e., establishing a new XES BPAF lifecycle transition).” is achieved by introducing the stream/data lifecycle transition. The stream/data lifecycle transition allows us to add IoT data to the XES log at any time therefore omitting the need to wait for the next process event to carry the data collected in the process until then. This is described in more depth in Section 3.
- “Establish a set of named XES attributes to connect (sensor) events to groups of process tasks.” is achieved by introducing stream/datacontext (see Section stream/datacontext). This allows us to connect (sensor) data to process tasks, although it is not in the same granularity, for example when averaged sensor readings (e.g., temperature, humidity, …) span multiple process tasks.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, Opportunities, and Directions. IEEE Trans. Ind. Inf. 2018, 14, 4724–4734. [Google Scholar] [CrossRef]
- Seiger, R.; Malburg, L.; Weber, B.; Bergmann, R. Integrating process management and event processing in smart factories: A systems architecture and use cases. J. Manuf. Syst. 2022, 63, 575–592. [Google Scholar] [CrossRef]
- Elsaleh, T.; Bermudez-Edo, M.; Enshaeifar, S.; Acton, S.T.; Rezvani, R.; Barnaghi, P. IoT-Stream: A Lightweight Ontology for Internet of Things Data Streams. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Janisch, C.; Koschmider, A.; Mecella, M.; Weber, B.; Burattin, A.; Di Ciccio, C.; Fortino, G.; Gal, A.; Kannengiesser, U.; Leotta, F.; et al. The Internet of Things Meets Business Process Management: A Manifesto. IEEE Syst. Man Cybern. Mag. 2020, 6, 34–44. [Google Scholar] [CrossRef]
- van der Aalst, W.M.P. Process Mining: Discovery, Conformance and Enhancement of Business Processes; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Berti, A.; van Zelst, S.J.; van der Aalst, W.M.P. Process Mining for Python (PM4Py): Bridging the Gap Between Process- and Data Science. arXiv 2019, arXiv:1905.06169. [Google Scholar]
- Günther, C.W.; Verbeek, E. XEX Standard Definition—Version 2.0. 2014. Available online: https://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf (accessed on 8 February 2023).
- Bertrand, Y.; De Weerdt, J.; Serral Asensio, E. Assessing the suitability of traditional event log standards for IoT-enhanced event logs. In LNBIP Post-Proceedings; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Bermudez-Edo, M.; Elsaleh, T.; Barnaghi, P.; Taylor, K. IoT-Lite: A Lightweight Semantic Model for the Internet of Things. In Proceedings of the UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld 2016, Toulouse, France, 18–21 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 90–97. [Google Scholar]
- Dorsemaine, B.; Gaulier, J.P.; Wary, J.P.; Kheir, N.; Urien, P. Internet of Things: A Definition & Taxonomy. In Proceedings of the NGMAST, Cambridge, UK, 9–11 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 72–77. [Google Scholar]
- Dey, A.K. Understanding and Using Context. Pers. Ubiquitous Comput. 2001, 5, 4–7. [Google Scholar] [CrossRef]
- Serpanos, D.; Wolf, M. Internet-of-Things (IoT) Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Koschmider, A.; Janssen, D.; Mannhardt, F. Framework for Process Discovery from Sensor Data. In Proceedings of the EMISA, Kiel, Germany, 14–15 May 2020; pp. 32–38. [Google Scholar]
- Tax, N.; Sidorova, N.; Haakma, R.; van der Aalst, W.M.P. Event Abstraction for Process Mining using Supervised Learning Techniques. arXiv 2018, arXiv:1606.07283. [Google Scholar]
- Aheleroff, S.; Xu, X.; Lu, Y.; Aristizabal, M.; Pablo Velásquez, J.; Joa, B.; Valencia, Y. IoT-enabled smart appliances under industry 4.0: A case study. Adv. Eng. Inform. 2020, 43, 101043. [Google Scholar] [CrossRef]
- Chang, C.; Srirama, S.N.; Buyya, R. Mobile Cloud Business Process Management System for the Internet of Things: A Survey. ACM Comput. Surv. 2017, 49, 70:1–70:42. [Google Scholar] [CrossRef] [Green Version]
- Bazan, P.; Estevez, E. Industry 4.0 and business process management: State of the art and new challenges. Bus. Process Manag. J. 2022, 28, 62–80. [Google Scholar] [CrossRef]
- Fattouch, N.; Ben Lahmar, I.; Boukadi, K. IoT-aware Business Process: Comprehensive survey, discussion and challenges. In Proceedings of the 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Bayonne, France, 10–13 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 100–105. [Google Scholar]
- Baumgraß, A.; Botezatu, M.; Di Ciccio, C.; Dijkman, R.; Grefen, P.W.P.J.; Hewelt, M.; Mendling, J.; Meyer, A.; Pourmirza, S.; Völzer, H. Towards a methodology for the engineering of event-driven process applications. In Proceedings of the 13th International Workshops, Innsbruck, Austria, 31 August–3 September 2015; Springer: Berlin/Heidelberg, Germany, 2016; pp. 501–514. [Google Scholar]
- Kammerer, K.; Pryss, R.; Hoppenstedt, B.; Sommer, K.; Reichert, M. Process-driven and flow-based processing of industrial sensor data. Sensors 2020, 20, 5245. [Google Scholar] [CrossRef]
- Schönig, S.; Ackermann, L.; Jablonski, S.; Ermer, A. IoT meets BPM: A bidirectional communication architecture for IoT-aware process execution. Softw. Syst. Model. 2020, 19, 1443–1459. [Google Scholar] [CrossRef] [Green Version]
- Koot, M.; Iacob, M.E.; Mes, M.R.K. A Reference Architecture for IoT-Enabled Dynamic Planning in Smart Logistics. In Advanced Information Systems Engineering; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2021; Volume 12751, pp. 551–565. [Google Scholar]
- Ramos Gutiérrez, B.; Reina Quintero, A.M.; Parody, L.; Gómez López, M.T. When business processes meet complex events in logistics: A systematic mapping study. Comput. Ind. 2023, 144, 103788. [Google Scholar] [CrossRef]
- Seiger, R.; Huber, S.; Schlegel, T. Toward an execution system for self-healing workflows in cyber-physical systems. Softw. Syst. Model. 2018, 17, 551–572. [Google Scholar] [CrossRef]
- Seiger, R.; Huber, S.; Heisig, P.; Aßmann, U. Toward a framework for self-adaptive workflows in cyber-physical systems. Softw. Syst. Model. 2019, 18, 1117–1134. [Google Scholar] [CrossRef]
- Seiger, R.; Franceschetti, M.; Weber, B. An Interactive Method for Detection of Process Activity Executions from IoT Data. Future Internet 2023, 15, 77. [Google Scholar] [CrossRef]
- Malburg, L.; Klein, P.; Bergmann, R. Semantic Web Services for AI-Research with Physical Factory Simulation Models in Industry 4.0. In Proceedings of the International Conference on Innovative Intelligent Industrial Production and Logistics 1st IN4PL, Budapest, Hungary, 2–4 November 2020; SciTePress: Setúbal, Portugal, 2020; pp. 32–43. [Google Scholar]
- Marrella, A.; Mecella, M.; Sardiña, S. Intelligent Process Adaptation in the SmartPM System. ACM Trans. Intell. Syst. Technol. 2017, 8, 25:1–25:43. [Google Scholar] [CrossRef] [Green Version]
- Malburg, L.; Hoffmann, M.; Bergmann, R. Applying MAPE-K control loops for adaptive workflow management in smart factories. J. Intell. Inf. Syst. 2023, 1–29. [Google Scholar] [CrossRef]
- Ochoa, W.; Larrinaga, F.; Pérez, A. Architecture for managing AAS-based business processes. Procedia Comput. Sci. 2023, 217, 217–226. [Google Scholar] [CrossRef]
- Wieland, M.; Schwarz, H.; Breitenbucher, U.; Leymann, F. Towards situation-aware adaptive workflows: SitOPT—A general purpose situation-aware workflow management system. In Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), St. Louis, MO, USA, 23–27 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 32–37. [Google Scholar]
- Traganos, K.; Vanderfeesten, I.; Grefen, P.W.P.J.; Erasmus, J.; Gerrits, T.; Verhofstad, W. End-to-End Production Process Orchestration for Smart Printing Factories: An Application in Industry. In Proceedings of the 2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC) 24th EDOC, Eindhoven, The Netherlands, 5–8 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 155–164. [Google Scholar]
- Traganos, K.; Grefen, P.W.P.J.; Vanderfeesten, I.; Erasmus, J.; Boultadakis, G.; Bouklis, P. The HORSE framework: A reference architecture for cyber-physical systems in hybrid smart manufacturing. J. Manuf. Syst. 2021, 61, 461–494. [Google Scholar] [CrossRef]
- Bordel Sánchez, B.; Alcarria, R.; Rivera, D.S.d.; Sánchez-Picot, Á. Enhancing Process Control in Industry 4.0 Scenarios using Cyber-Physical Systems. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2016, 7, 41–64. [Google Scholar]
- Kirikkayis, Y.; Gallik, F.; Winter, M.; Reichert, M. BPMNE4IoT: A Framework for Modeling, Executing and Monitoring IoT-Driven Processes. Future Internet 2023, 15, 90. [Google Scholar] [CrossRef]
- Bocciarelli, P.; D’Ambrogio, A.; Panetti, T. A Model Based Framework for IoT-Aware Business Process Management. Future Internet 2023, 15, 50. [Google Scholar] [CrossRef]
- van Dongen, B.F.; van der Aalst, W.M.P. A Meta Model for Process Mining Data. EMOI-INTEROP 2005, 160, 30. [Google Scholar]
- van Dongen, B.F.; Shabani, S. Relational XES: Data Management for Process Mining. In Proceedings of the CAiSE Forum, Stockholm, Sweden, 8–15 June 2015. [Google Scholar]
- van der Aalst, W.M.P. Data Science in Action. In Process Mining; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–23. [Google Scholar]
- Popova, V.; Fahland, D.; Dumas, M. Artifact Lifecycle Discovery. arXiv 2013, arXiv:1303.2554. [Google Scholar] [CrossRef] [Green Version]
- Ghahfarokhi, A.F.; Park, G.; Berti, A.; van der Aalst, W.M.P. OCEL: A Standard for Object-Centric Event Logs. In Proceedings of the 25th ADBIS, Tartu, Estonia, 24–26 August 2021; Springer: Berlin/Heidelberg, Germany, 2021. Communications in Computer and Information Science. Volume 1450, pp. 169–175. [Google Scholar]
- Rebmann, A.; Rehse, J.R.; van der Aa, H. Uncovering Object-Centric Data in Classical Event Logs for the Automated Transformation from XES to OCEL. In Business Process Management, Proceedings of the 20th International Conference, BPM 2022, Münster, Germany, 11–16 September 2022; Lecture Notes in Computer Science; Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-Ma, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 379–396. [Google Scholar] [CrossRef]
- Ehrendorfer, M.; Mangler, J.; Rinderle-Ma, S. Assessing the impact of context data on process outcomes during runtime. In Proceedings of the International Conference on Service-Oriented Computing, Virtual, 22–25 November 2021; Springer: Cham, Switzerland, 2021; pp. 3–18. [Google Scholar]
- Seiger, R.; Zerbato, F.; Burattin, A.; Garcia-Banuelos, L.; Weber, B. Towards IoT-driven Process Event Log Generation for Conformance Checking in Smart Factories. In Proceedings of the 2020 IEEE 24th International Enterprise Distributed Object Computing Workshop (EDOCW), Eindhoven, The Netherlands, 5–8 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 20–26. [Google Scholar]
- Bertrand, Y.; de Weerdt, J.; Serral, E. A Bridging Model for Process Mining and IoT. In Process Mining Workshops; Springer: Berlin/Heidelberg, Germany, 2022; Volume 433, pp. 98–110. [Google Scholar]
- Mannhardt, F. Multi-perspective Process Mining. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2018. [Google Scholar]
- Stertz, F.; Rinderle-Ma, S.; Mangler, J. Analyzing process concept drifts based on sensor event streams during runtime. In Proceedings of the 18th BPM, Seville, Spain, 13–18 September 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 202–219. [Google Scholar]
- Teinemaa, I.; Dumas, M.; Rosa, M.L.; Maggi, F.M. Outcome-Oriented Predictive Process Monitoring: Review and Benchmark. ACM Trans. Knowl. Discov. Data 2019, 13, 1–57. [Google Scholar] [CrossRef]
- Banham, A.; Leemans, S.J.J.; Wynn, M.T.; Andrews, R. xPM: A Framework for Process Mining with Exogenous Data. In Proceedings of the Process Mining Workshops—ICPM 2021 International Workshops, Eindhoven, The Netherlands, 31 October–4 November 2021; Revised Selected Papers; Lecture Notes in Business Information Processing. Munoz-Gama, J., Lu, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 433, pp. 85–97. [Google Scholar] [CrossRef]
- Wei, J.; Ouyang, C.; ter Hofstede, A.H.; Moreira, C. AMORETTO: A Method for Deriving IoT-enriched Event Logs. arXiv 2022, arXiv:abs/2212.02071. [Google Scholar]
- Grüger, J.; Malburg, L.; Mangler, J.; Bertrand, Y.; Rinderle-Ma, S.; Bergmann, R.; Asensio, E.S. SensorStream: An XES Extension for Enriching Event Logs with IoT-Sensor Data. arXiv 2022, arXiv:2206.11392. [Google Scholar]
- Reijers, H.A.; Mendling, J. A Study Into the Factors That Influence the Understandability of Business Process Models. IEEE Trans. Syst. Man Cybern.—Part A Syst. Hum. 2011, 41, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Stertz, F.; Mangler, J.; Rinderle-Ma, S. Temporal Conformance Checking at Runtime based on Time-infused Process Models. arXiv 2020, arXiv:2008.07262. [Google Scholar]
- Aheleroff, S.; Huang, H.; Xu, X.; Zhong, R.Y. Toward sustainability and resilience with Industry 4.0 and Industry 5.0. Front. Manuf. Technol. 2022, 2, 951643. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangler, J.; Grüger, J.; Malburg, L.; Ehrendorfer, M.; Bertrand, Y.; Benzin, J.-V.; Rinderle-Ma, S.; Serral Asensio, E.; Bergmann, R. DataStream XES Extension: Embedding IoT Sensor Data into Extensible Event Stream Logs. Future Internet 2023, 15, 109. https://doi.org/10.3390/fi15030109
Mangler J, Grüger J, Malburg L, Ehrendorfer M, Bertrand Y, Benzin J-V, Rinderle-Ma S, Serral Asensio E, Bergmann R. DataStream XES Extension: Embedding IoT Sensor Data into Extensible Event Stream Logs. Future Internet. 2023; 15(3):109. https://doi.org/10.3390/fi15030109
Chicago/Turabian StyleMangler, Juergen, Joscha Grüger, Lukas Malburg, Matthias Ehrendorfer, Yannis Bertrand, Janik-Vasily Benzin, Stefanie Rinderle-Ma, Estefania Serral Asensio, and Ralph Bergmann. 2023. "DataStream XES Extension: Embedding IoT Sensor Data into Extensible Event Stream Logs" Future Internet 15, no. 3: 109. https://doi.org/10.3390/fi15030109
APA StyleMangler, J., Grüger, J., Malburg, L., Ehrendorfer, M., Bertrand, Y., Benzin, J. -V., Rinderle-Ma, S., Serral Asensio, E., & Bergmann, R. (2023). DataStream XES Extension: Embedding IoT Sensor Data into Extensible Event Stream Logs. Future Internet, 15(3), 109. https://doi.org/10.3390/fi15030109