Redundancy Mitigation Mechanism for Collective Perception in Connected and Autonomous Vehicles
Abstract
:1. Introduction
2. State of Art about Collective Perception for Connected and Autonomous Vehicle
2.1. CP Overview
2.2. Communication Aspect
2.3. Data Selection and Fusion Aspect
2.4. Privacy and Security Aspect
3. Collective Perception Mechanism for Autonomous Vehicles
3.1. Network and System Model
- Every CAV can detect and share a object that is inside the sensor FoV. The sensors detect all objects not covered by buildings or other vehicles;
- Other errors, sensor noise, and processing latency are not modeled;
- Each CAV is aware of its own data by means of orientation and positioning system, such as global positioning systems (GPS) and inertial measurement unit (IMU);
3.2. VILE Operation
Algorithm 1: VILE Algorithm |
4. Evaluation
4.1. Simulation Scenario Description
4.2. Simulations Results
5. Open Issues about Collective Perception
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Liu, J.; Kato, N. Networking and communications in autonomous driving: A survey. IEEE Commun. Surv. Tutorials 2018, 21, 1243–1274. [Google Scholar] [CrossRef]
- Liu, S.; Tang, J.; Zhang, Z.; Gaudiot, J.L. Computer architectures for autonomous driving. Computer 2017, 50, 18–25. [Google Scholar] [CrossRef]
- Shladover, S.E. Opportunities and Challenges in Cooperative Road Vehicle Automation. IEEE Open J. Intell. Transp. Syst. 2021, 2, 216–224. [Google Scholar] [CrossRef]
- Schiegg, F.A.; Llatser, I.; Bischoff, D.; Volk, G. Collective perception: A safety perspective. Sensors 2020, 21, 159. [Google Scholar] [CrossRef] [PubMed]
- Lobato, W.; de Souza, A.M.; Peixoto, M.L.; Rosário, D.; Villas, L. A Cache Strategy for Intelligent Transportation System to Connected Autonomous Vehicles. In Proceedings of the IEEE 92nd Vehicular Technology Conference (VTC-Fall), Virtual, 18 November–16 December 2020; pp. 1–5. [Google Scholar]
- da Costa, J.B.; Meneguette, R.I.; Rosário, D.; Villas, L.A. Combinatorial optimization-based task allocation mechanism for vehicular clouds. In Proceedings of the IEEE 91st Vehicular Technology Conference (VTC-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Ambrosin, M.; Alvarez, I.J.; Buerkle, C.; Yang, L.L.; Oboril, F.; Sastry, M.R.; Sivanesan, K. Object-level perception sharing among connected vehicles. In Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 1566–1573. [Google Scholar]
- Ding, L.; Wang, Y.; Wu, P.; Li, L.; Zhang, J. Kinematic information aided user-centric 5G vehicular networks in support of cooperative perception for automated driving. IEEE Access 2019, 7, 40195–40209. [Google Scholar] [CrossRef]
- Delooz, Q.; Festag, A.; Vinel, A. Revisiting message generation strategies for collective perception in connected and automated driving. In Proceedings of the 9th International Conference on Advances in Vehicular Systems, Technologies and Applications (VEHICULAR), Porto, Portugal, 18–22 October 2020. [Google Scholar]
- Masi, S.; Xu, P.; Bonnifait, P.; Ieng, S.S. Augmented Perception with Cooperative Roadside Vision Systems for Autonomous Driving in Complex Scenarios. In Proceedings of the IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 1140–1146. [Google Scholar]
- Tang, S.; Gu, Z.; Fu, S.; Yang, Q. Vehicular Edge Computing for Multi-Vehicle Perception. In Proceedings of the Fourth International Conference on Connected and Autonomous Driving (MetroCAD), Detroit, MI, USA, 28–29 April 2021; pp. 9–16. [Google Scholar]
- Thandavarayan, G.; Sepulcre, M.; Gozalvez, J. Cooperative perception for connected and automated vehicles: Evaluation and impact of congestion control. IEEE Access 2020, 8, 197665–197683. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, X.; Tang, S.; Guo, J.; Yang, Q.; Fu, S. F-cooper: Feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, Arlington, VA, USA, 7–9 November 2019; pp. 88–100. [Google Scholar]
- Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications. IEEE Internet Things J. 2018, 5, 829–846. [Google Scholar] [CrossRef]
- Krijestorac, E.; Memedi, A.; Higuchi, T.; Ucar, S.; Altintas, O.; Cabric, D. Hybrid vehicular and cloud distributed computing: A case for cooperative perception. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Yang, Q.; Fu, S.; Wang, H.; Fang, H. Machine-learning-enabled cooperative perception for connected autonomous vehicles: Challenges and opportunities. IEEE Netw. 2021, 35, 96–101. [Google Scholar] [CrossRef]
- SAE J 3016-2018; Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. Society of Automobile Engineers: Warrendale, PA, USA, 2018.
- Garlichs, K.; Wegner, M.; Wolf, L.C. Realizing collective perception in the artery simulation framework. In Proceedings of the IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan, 5–7 December 2018; pp. 1–4. [Google Scholar]
- Miucic, R.; Sheikh, A.; Medenica, Z.; Kunde, R. V2X applications using collaborative perception. In Proceedings of the IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–6. [Google Scholar]
- Hussain, R.; Zeadally, S. Autonomous cars: Research results, issues, and future challenges. IEEE Commun. Surv. Tutorials 2018, 21, 1275–1313. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, P.; Lu, G. Cooperative autonomous traffic organization method for connected automated vehicles in multi-intersection road networks. Transp. Res. Part C Emerg. Technol. 2020, 111, 458–476. [Google Scholar] [CrossRef]
- Huang, H.; Li, H.; Shao, C.; Sun, T.; Fang, W.; Dang, S. Data redundancy mitigation in V2X based collective perceptions. IEEE Access 2020, 8, 13405–13418. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, H.; Cheng, N.; Lyu, F.; Shi, W.; Chen, J.; Shen, X. Internet of vehicles in big data era. IEEE/CAA J. Autom. Sin. 2017, 5, 19–35. [Google Scholar] [CrossRef]
- Qazi, S.; Sabir, F.; Khawaja, B.A.; Atif, S.M.; Mustaqim, M. Why is internet of autonomous vehicles not as plug and play as we think? Lessons to be learnt from present internet and future directions. IEEE Access 2020, 8, 133015–133033. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, Y.; Guo, S.; Bai, J.; Shu, Q. Sensing system of environmental perception technologies for driverless vehicle: A review of state of the art and challenges. Sens. Actuators A Phys. 2021, 319, 112566. [Google Scholar] [CrossRef]
- Van Brummelen, J.; O’Brien, M.; Gruyer, D.; Najjaran, H. Autonomous vehicle perception: The technology of today and tomorrow. Transp. Res. Part C Emerg. Technol. 2018, 89, 384–406. [Google Scholar] [CrossRef]
- Schiegg, F.A.; Bischoff, D.; Krost, J.R.; Llatser, I. Analytical performance evaluation of the collective perception service in IEEE 802.11 p networks. In Proceedings of the Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Delooz, Q.; Festag, A. Network load adaptation for collective perception in v2x communications. In Proceedings of the IEEE International Conference on Connected Vehicles and Expo (ICCVE), Graz, Austria, 4–8 November 2019; pp. 1–6. [Google Scholar]
- Garlichs, K.; Günther, H.J.; Wolf, L.C. Generation rules for the collective perception service. In Proceedings of the IEEE Vehicular Networking Conference (VNC), Los Angeles, CA, USA, 4–6 December 2019; pp. 1–8. [Google Scholar]
- Ishihara, S.; Furukawa, K.; Kikuchi, H. Congestion Control Algorithms for Collective Perception in Vehicular Networks. J. Inf. Process. 2022, 30, 22–29. [Google Scholar] [CrossRef]
- Thandavarayan, G.; Sepulcre, M.; Gozalvez, J. Generation of cooperative perception messages for connected and automated vehicles. IEEE Trans. Veh. Technol. 2020, 69, 16336–16341. [Google Scholar] [CrossRef]
- ETSI TR 103 562; Intelligent Transport System (ITS); Vehicular Communications; Basic Set of Applications; Analysis of the Collective-Perception Service (CPS). European Telecommunications Standards Institute: Sophia-Antipolis, France, 2019.
- Iranmanesh, S.; Abkenar, F.S.; Jamalipour, A.; Raad, R. A Heuristic Distributed Scheme to Detect Falsification of Mobility Patterns in Internet of Vehicles. IEEE Internet Things J. 2021, 9, 719–727. [Google Scholar] [CrossRef]
- Tsukada, M.; Oi, T.; Ito, A.; Hirata, M.; Esaki, H. AutoC2X: Open-source software to realize V2X cooperative perception among autonomous vehicles. In Proceedings of the IEEE 92nd Vehicular Technology Conference (VTC-Fall), Virtual, 18 November–16 December 2020; pp. 1–6. [Google Scholar]
- Zhou, P.; Kortoçi, P.; Yau, Y.P.; Finley, B.; Wang, X.; Braud, T.; Lee, L.H.; Tarkoma, S.; Kangasharju, J.; Hui, P. AICP: Augmented Informative Cooperative Perception. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22505–22518. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.K.; Perlecto, C.; Samarakoon, S.; Bennis, M. V2V cooperative sensing using reinforcement learning with action branching. In Proceedings of the IEEE International Conference on Communications (ICC), Virtual, 12–14 October 2021; pp. 1–6. [Google Scholar]
- Lima, A.; Bonnifait, P.; Cherfaoui, V.; Al Hage, J. Data Fusion with Split Covariance Intersection for Cooperative Perception. In Proceedings of the IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 1112–1118. [Google Scholar]
- Miller, A.; Rim, K.; Chopra, P.; Kelkar, P.; Likhachev, M. Cooperative perception and localization for cooperative driving. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 1256–1262. [Google Scholar]
- Coutinho, R.W.; Boukerche, A. Guidelines for the design of vehicular cloud infrastructures for connected autonomous vehicles. IEEE Wirel. Commun. 2019, 26, 6–11. [Google Scholar] [CrossRef]
- Yoon, D.D.; Ayalew, B.; Ali, G.M.N. Performance of decentralized cooperative perception in v2v connected traffic. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6850–6863. [Google Scholar] [CrossRef]
- Aoki, S.; Higuchi, T.; Altintas, O. Cooperative perception with deep reinforcement learning for connected vehicles. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NE, USA, 19 October–13 November 2020; pp. 328–334. [Google Scholar]
- Volk, G.; Gamerdinger, J.; von Bernuth, A.; Bringmann, O. A comprehensive safety metric to evaluate perception in autonomous systems. In Proceedings of the IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–8. [Google Scholar]
- Guo, J.; Yang, Q.; Fu, S.; Boyles, R.; Turner, S.; Clarke, K. Towards Trustworthy Perception Information Sharing on Connected and Autonomous Vehicles. In Proceedings of the International Conference on Connected and Autonomous Driving (MetroCAD), Detroit, MI, USA, 27–28 February 2020; pp. 85–90. [Google Scholar]
- Masuda, H.; El Marai, O.; Tsukada, M.; Taleb, T.; Esaki, H. Feature-based Vehicle Identification Framework for Optimization of Collective Perception Messages in Vehicular Networks. IEEE Trans. Veh. Technol. 2022, 23, 1–11. [Google Scholar] [CrossRef]
- Shan, M.; Narula, K.; Wong, Y.F.; Worrall, S.; Khan, M.; Alexander, P.; Nebot, E. Demonstrations of cooperative perception: Safety and robustness in connected and automated vehicle operations. Sensors 2020, 21, 200. [Google Scholar] [CrossRef] [PubMed]
- Hurl, B.; Cohen, R.; Czarnecki, K.; Waslander, S. Trupercept: Trust modelling for autonomous vehicle cooperative perception from synthetic data. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NE, USA, 19 October–13 November 2020; pp. 341–347. [Google Scholar]
- Brodsky, I. H3: Hexagonal Hierarchical Geospatial Indexing System. Uber Open Source Retrieved. 2018. Available online: h3geo.org (accessed on 1 December 2022).
- Duszak, P.; Siemiątkowska, B. The application of hexagonal grids in mobile robot Navigation. In Proceedings of the International Conference Mechatronics, Ilmenau, Germany, 18–20 March 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 198–205. [Google Scholar]
- Brennand, C.A.; Filho, G.P.R.; Maia, G.; Cunha, F.; Guidoni, D.L.; Villas, L.A. Towards a fog-enabled intelligent transportation system to reduce traffic jam. Sensors 2019, 19, 3916. [Google Scholar] [CrossRef] [Green Version]
- Duszak, P.; Siemiątkowska, B.; Więckowski, R. Hexagonal Grid-Based Framework for Mobile Robot Navigation. Remote Sens. 2021, 13, 4216. [Google Scholar] [CrossRef]
- Li, T.; Xia, M.; Chen, J.; Gao, S.; De Silva, C. A hexagonal grid-based sampling planner for aquatic environmental monitoring using unmanned surface vehicles. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 3683–3688. [Google Scholar]
- Deepa, J.; Ali, S.A.; Hemamalini, S. Intelligent energy efficient vehicle automation system with sensible edge processing protocol in Internet of Vehicles using hybrid optimization strategy. Wirel. Netw. 2023, 29, 1–17. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
IVC Technology | IEEE 802.11p |
Transmission Power | 20 mW |
Beacon Transmission Rate | 1 |
Bit Rate | 6 Mbit/s |
Transmission Range | 250 m |
Maximum Interference Range | 2600 m |
Data Message Size | 1024 Bytes |
Scenario | Grid |
Simulation Area | 1 km2 |
Number of Road Segments | 9 |
Number of Vehicles | {100, 150, 200} |
Number of Pedestrians | 100 |
Vehicles Speed | Mean: 13.84 m/s (St.Dev: 5.27) |
Sensor FoV | 360° |
Range of Perception | 150 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobato, W.; Mendes, P.; Rosário, D.; Cerqueira, E.; Villas, L.A. Redundancy Mitigation Mechanism for Collective Perception in Connected and Autonomous Vehicles. Future Internet 2023, 15, 41. https://doi.org/10.3390/fi15020041
Lobato W, Mendes P, Rosário D, Cerqueira E, Villas LA. Redundancy Mitigation Mechanism for Collective Perception in Connected and Autonomous Vehicles. Future Internet. 2023; 15(2):41. https://doi.org/10.3390/fi15020041
Chicago/Turabian StyleLobato, Wellington, Paulo Mendes, Denis Rosário, Eduardo Cerqueira, and Leandro A. Villas. 2023. "Redundancy Mitigation Mechanism for Collective Perception in Connected and Autonomous Vehicles" Future Internet 15, no. 2: 41. https://doi.org/10.3390/fi15020041
APA StyleLobato, W., Mendes, P., Rosário, D., Cerqueira, E., & Villas, L. A. (2023). Redundancy Mitigation Mechanism for Collective Perception in Connected and Autonomous Vehicles. Future Internet, 15(2), 41. https://doi.org/10.3390/fi15020041