Diff-SwinT: An Integrated Framework of Diffusion Model and Swin Transformer for Radar Jamming Recognition
Abstract
:1. Introduction
2. Radar Jamming Signal Analysis and Modeling
2.1. Noise Modulation Jamming
2.1.1. Noise Amplitude Modulation Jamming
2.1.2. Noise Frequency Modulation Jamming
2.2. Smart Noise Jamming
2.2.1. Noise Convolution Jamming
2.2.2. Noise Product Jamming
2.3. Deception Jamming
2.3.1. Comb Spectrum Jamming
2.3.2. Smeared Spreading Jamming
2.3.3. Chopping and Interleaving Jamming
2.3.4. Interrupted Sampling Repeater Jamming
3. Methods
3.1. Time-Frequency Analysis Using the Choi-Williams Distribution
3.2. Diagram Denoising with Diffusion Model
3.3. Multi-Scale Feature Extraction Using Swin Transformer
3.3.1. Patch Embedding
3.3.2. Patch Merging
3.3.3. Shifted Window Attention
3.3.4. Transformer Block
3.4. Classification with a Linear Prediction Head
3.5. Loss Function Design
4. Experiments
4.1. Experimental Settings
4.2. Results & Analysis
4.2.1. Recognition Performance of Swin-Transformer
4.2.2. Recognition Performance of Diff-Swin-Transformer
4.2.3. Comparison with Other Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neng-Jing, L.; Yi-Ting, Z. A survey of radar ECM and ECCM. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 1110–1120. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, P.; Lei, X.; Xiao, Y.; Fan, S.; Li, S.; Xiang, W. A Low-Complexity Detection Scheme for Differential Spatial Modulation. IEEE Commun. Lett. 2015, 19, 1516–1519. [Google Scholar] [CrossRef]
- Qu, Q.; Wei, S.; Liu, S.; Liang, J.; Shi, J. JRNet: Jamming recognition networks for radar compound suppression jamming signals. IEEE Trans. Veh. Technol. 2020, 69, 15035–15045. [Google Scholar] [CrossRef]
- Yao, Z.; Fu, X.; Guo, L.; Wang, Y.; Lin, Y.; Shi, S.; Gui, G. Few-Shot Specific Emitter Identification Using Asymmetric Masked Auto-Encoder. IEEE Commun. Lett. 2023, 27, 2657–2661. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, S.; Wang, C.; Li, X.; Chen, S.; Zhu, L.; Zhu, Y. Jamming Recognition of Carrier-Free UWB Cognitive Radar Based on MANet. IEEE Trans. Instrum. Meas. 2023, 72, 1–13. [Google Scholar] [CrossRef]
- Zha, H.; Wang, H.; Feng, Z.; Xiang, Z.; Yan, W.; He, Y.; Lin, Y. LT-SEI: Long-Tailed Specific Emitter Identification Based on Decoupled Representation Learning in Low-Resource Scenarios. IEEE Trans. Intell. Transp. Syst. 2023, 1–15. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, B.; Tao, M.; Bai, X.; Chen, B.; Sun, G. A Large Scene Deceptive Jamming Method for Space-Borne SAR. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4486–4495. [Google Scholar] [CrossRef]
- Lan, L.; Xu, J.; Liao, G.; Zhang, Y.; Fioranelli, F.; So, H.C. Suppression of Mainbeam Deceptive Jammer With FDA-MIMO Radar. IEEE Trans. Veh. Technol. 2020, 69, 11584–11598. [Google Scholar] [CrossRef]
- Ma, Z.; Xiang, W.; Long, H.; Wang, W. Proportional Fair Resource Partition for LTE-Advanced Networks with Type I Relay Nodes. In Proceedings of the 2011 IEEE International Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–5. [Google Scholar] [CrossRef]
- Su, D.; Gao, M. Research on Jamming Recognition Technology Based on Characteristic Parameters. In Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 3–5 July 2020; pp. 303–307. [Google Scholar] [CrossRef]
- Qu, Q.; Wang, Y.L.; Liu, W.; Wei, S.; Du, Q. IRNet: Interference Recognition Networks for Automotive Radars via Autocorrelation Features. IEEE Trans. Microw. Theory Tech. 2022, 70, 2762–2774. [Google Scholar] [CrossRef]
- Wang, Q.; Du, P.; Yang, J.; Wang, G.; Lei, J.; Hou, C. Transferred deep learning based waveform recognition for cognitive passive radar. Signal Process. 2019, 155, 259–267. [Google Scholar] [CrossRef]
- Hou, C.; Liu, G.; Tian, Q.; Zhou, Z.; Hua, L.; Lin, Y. Multisignal Modulation Classification Using Sliding Window Detection and Complex Convolutional Network in Frequency Domain. IEEE Internet Things J. 2022, 9, 19438–19449. [Google Scholar] [CrossRef]
- Feng, Z.; Zha, H.; Xu, C.; He, Y.; Lin, Y. FCGCN: Feature Correlation Graph Convolution Network for Few-Shot Individual Identification. IEEE Trans. Consum. Electron. 2023, 1. [Google Scholar] [CrossRef]
- Lv, Q.; Quan, Y.; Feng, W.; Sha, M.; Dong, S.; Xing, M. Radar Deception Jamming Recognition Based on Weighted Ensemble CNN With Transfer Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Wei, S.; Qu, Q.; Zeng, X.; Liang, J.; Shi, J.; Zhang, X. Self-Attention Bi-LSTM Networks for Radar Signal Modulation Recognition. IEEE Trans. Microw. Theory Tech. 2021, 69, 5160–5172. [Google Scholar] [CrossRef]
- Dong, G.; Liu, H. Signal Augmentations Oriented to Modulation Recognition in the Realistic Scenarios. IEEE Trans. Commun. 2023, 71, 1665–1677. [Google Scholar] [CrossRef]
- Bao, Z.; Lin, Y.; Zhang, S.; Li, Z.; Mao, S. Threat of Adversarial Attacks on DL-Based IoT Device Identification. IEEE Internet Things J. 2022, 9, 9012–9024. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Z.; Lu, W.; Chen, Y.; Gao, X.; Zhao, N. Distributed Few-Shot Learning for Intelligent Recognition of Communication Jamming. IEEE J. Sel. Top. Signal Process. 2022, 16, 395–405. [Google Scholar] [CrossRef]
- Luo, Z.; Cao, Y.; Yeo, T.S.; Wang, Y.; Wang, F. Few-Shot Radar Jamming Recognition Network via Time-Frequency Self-Attention and Global Knowledge Distillation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Lin, Y.; Tu, Y.; Dou, Z. An Improved Neural Network Pruning Technology for Automatic Modulation Classification in Edge Devices. IEEE Trans. Veh. Technol. 2020, 69, 5703–5706. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, L.; Ma, M.; Guo, Z. Compound radar jamming recognition based on signal source separation. Signal Process. 2024, 214, 109246. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Zhai, Q.; Li, Y.; Gao, M. Mode Recognition of Multifunction Radars for Few-Shot Learning Based on Compound Alignments. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 5860–5874. [Google Scholar] [CrossRef]
- Long, H.; Xiang, W.; Wang, J.; Zhang, Y.; Wang, W. Cooperative jamming and power allocation with untrusty two-way relay nodes. IET Commun. 2014, 8, 2290–2297. [Google Scholar] [CrossRef]
- Lin, Y.; Zha, H.; Tu, Y.; Zhang, S.; Yan, W.; Xu, C. GLR-SEI: Green and Low Resource Specific Emitter Identification Based on Complex Networks and Fisher Pruning. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 1–12. [Google Scholar] [CrossRef]
- Ya, T.; Yun, L.; Haoran, Z.; Zhang, J.; Yu, W.; Guan, G.; Shiwen, M. Large-scale real-world radio signal recognition with deep learning. Chin. J. Aeronaut. 2022, 35, 35–48. [Google Scholar] [CrossRef]
- Zhu, M.; Li, Y.; Pan, Z.; Yang, J. Automatic modulation recognition of compound signals using a deep multi-label classifier: A case study with radar jamming signals. Signal Process. 2020, 169, 107393. [Google Scholar] [CrossRef]
- Ravi Kishore, T.; Rao, K.D. Automatic Intrapulse Modulation Classification of Advanced LPI Radar Waveforms. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 901–914. [Google Scholar] [CrossRef]
- Hoang, L.M.; Kim, M.; Kong, S.H. Automatic Recognition of General LPI Radar Waveform Using SSD and Supplementary Classifier. IEEE Trans. Signal Process. 2019, 67, 3516–3530. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, H.; Ma, X.; Tu, Y.; Wang, M. Adversarial Attacks in Modulation Recognition With Convolutional Neural Networks. IEEE Trans. Reliab. 2021, 70, 389–401. [Google Scholar] [CrossRef]
- Huynh-The, T.; Doan, V.S.; Hua, C.H.; Pham, Q.V.; Nguyen, T.V.; Kim, D.S. Accurate LPI Radar Waveform Recognition With CWD-TFA for Deep Convolutional Network. IEEE Wirel. Commun. Lett. 2021, 10, 1638–1642. [Google Scholar] [CrossRef]
- Zhu, M.; Li, Y.; Wang, S. Model-Based Time Series Clustering and Interpulse Modulation Parameter Estimation of Multifunction Radar Pulse Sequences. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3673–3690. [Google Scholar] [CrossRef]
- Lin, Y.; Tu, Y.; Dou, Z.; Chen, L.; Mao, S. Contour Stella Image and Deep Learning for Signal Recognition in the Physical Layer. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 34–46. [Google Scholar] [CrossRef]
- Chao, Z.; Quanhua, L.; Cheng, H. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming. J. Radars 2019, 8, 100–106. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, Z.; Zhou, C.; Liu, Q.; Long, T. Radar Compound Jamming Cognition Based on a Deep Object Detection Network. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 3251–3263. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Y.; Yu, L. Interrupted sampling repeater jamming recognition and suppression based on phase-coded signal processing. Signal Process. 2022, 198, 108596. [Google Scholar] [CrossRef]
- Croitoru, F.A.; Hondru, V.; Ionescu, R.T.; Shah, M. Diffusion Models in Vision: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 10850–10869. [Google Scholar] [CrossRef]
- Özbey, M.; Dalmaz, O.; Dar, S.U.; Bedel, H.A.; Özturk, Ş.; Güngör, A.; Çukur, T. Unsupervised Medical Image Translation with Adversarial Diffusion Models. IEEE Trans. Med. Imaging 2023, 1. [Google Scholar] [CrossRef]
- Liu, C.; Fu, X.; Wang, Y.; Guo, L.; Liu, Y.; Lin, Y.; Zhao, H.; Gui, G. Overcoming data limitations: A few-shot specific emitter identification method using self-supervised learning and adversarial augmentation. IEEE Trans. Inf. Forensics Secur. 2023; early access. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 9992–10002. [Google Scholar] [CrossRef]
- Lin, A.; Chen, B.; Xu, J.; Zhang, Z.; Lu, G.; Zhang, D. DS-TransUNet: Dual Swin Transformer U-Net for Medical Image Segmentation. IEEE Trans. Instrum. Meas. 2022, 71, 1–15. [Google Scholar] [CrossRef]
- Minhong, S.; Bin, T. Noise amplitude modulation jamming signal suppression based on weighted-matching pursuit. J. Syst. Eng. Electron. 2009, 20, 962–967. [Google Scholar]
- Hao, H.; Zeng, D.; Ge, P. Research on the Method of Smart Noise Jamming on Pulse Radar. In Proceedings of the 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, 18–20 September 2015; pp. 1339–1342. [Google Scholar] [CrossRef]
- Schuerger, J.; Garmatyuk, D. Deception jamming modeling in radar sensor networks. In Proceedings of the MILCOM 2008—2008 IEEE Military Communications Conference, San Diego, CA, USA, 16–19 November 2008; pp. 1–7. [Google Scholar] [CrossRef]
- Zhou, H.; Dong, C.; Wu, R.; Xu, X.; Guo, Z. Feature Fusion Based on Bayesian Decision Theory for Radar Deception Jamming Recognition. IEEE Access 2021, 9, 16296–16304. [Google Scholar] [CrossRef]
Jamming Type | Parameter | Range |
---|---|---|
NAMJ | Amplitude | 5–10 |
Frequency | 100–150 MHz | |
bandwidth | 10–30 MHz | |
NFMJ | Amplitude | 5–10 |
Frequency | 100–150 MHz | |
bandwidth | 10–30 MHz | |
effective modulation index | 0.5–0.75 | |
NCJ | Amplitude | 5–10 |
Frequency | 100–150 MHz | |
bandwidth | 10–30 MHz | |
NPJ | Amplitude | 5–10 |
Frequency | 100–150 MHz | |
bandwidth | 10–30 MHz | |
CSJ | Amplitude | 5–10 |
Frequency | 100–150 MHz | |
bandwidth | 10–30 MHz | |
Comb teeth number | 4–8 | |
SMSPJ | Amplitude | 5–10 |
Frequency | 100–150 MHz | |
bandwidth | 10–30 MHz | |
Sampling Multiple | 2–4 | |
CIJ | Amplitude | 5–10 |
Frequency | 100–150 MHz | |
bandwidth | 2–10 MHz | |
Sub-pulse Number | 2–10 | |
Retransmission Number | 4–8 | |
ISRJ | Amplitude | 5–10 |
Frequency | 100–150 MHz | |
bandwidth | 2–10 MHz | |
sampling number | 3–5 |
Method | Parameters (M) | FLOPs (G) | Time (ms) |
---|---|---|---|
VGG | 138.36 | 15.50 | 15.42 |
FFB | - | - | 7.01 |
SwinT | 28.29 | 4.36 | 8.22 |
DIFF-SwinT | 59.41 | 10.52 | 12.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, M.; Wang, D.; Meng, F.; Wang, W.; Han, Y. Diff-SwinT: An Integrated Framework of Diffusion Model and Swin Transformer for Radar Jamming Recognition. Future Internet 2023, 15, 374. https://doi.org/10.3390/fi15120374
Sha M, Wang D, Meng F, Wang W, Han Y. Diff-SwinT: An Integrated Framework of Diffusion Model and Swin Transformer for Radar Jamming Recognition. Future Internet. 2023; 15(12):374. https://doi.org/10.3390/fi15120374
Chicago/Turabian StyleSha, Minghui, Dewu Wang, Fei Meng, Wenyan Wang, and Yu Han. 2023. "Diff-SwinT: An Integrated Framework of Diffusion Model and Swin Transformer for Radar Jamming Recognition" Future Internet 15, no. 12: 374. https://doi.org/10.3390/fi15120374
APA StyleSha, M., Wang, D., Meng, F., Wang, W., & Han, Y. (2023). Diff-SwinT: An Integrated Framework of Diffusion Model and Swin Transformer for Radar Jamming Recognition. Future Internet, 15(12), 374. https://doi.org/10.3390/fi15120374