Modeling and Analyzing Preemption-Based Service Prioritization in 5G Networks Slicing Framework
Abstract
1. Introduction
2. System Model
2.1. Case Example of Two NSIs
2.2. Case Example of Three NSIs
- The highest priority be assigned to all servicing requests at the 1st NSI;
- The medium priority be assigned to all servicing requests at the 2nd NSI;
- The lowest priotity be assigned to all servicing requests at the 3rd NSI.
2.3. General Case of S NSIs
3. Mathematical Model
- when ,
4. Numerical Analysis
- The highest priority to servicing 4K Live Video requests at the 1st NSI;
- The medium priority to servicing 4K 360-degree VR Panoramic Video requests at the 2nd NSI;
- The lowest priority to servicing 8K FOV VR Video requests at the 3rd NSI.
5. Conclusions
- Up to more than 60% gain in terms of admission probability of arriving 4K 360-degree VR Panoramic Video requests at the 2nd NSI;
- Up to 100% gain in terms of blocking probabilities of arriving requests;
- Up to 15% in terms of average utilization of the guaranteed network capacity of the 2nd NSI.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 3GPP | Third Generation Partnership Project |
| 5G | Fifth generation |
| BE | Best effort |
| BG | Best effort with minimum guaranteed |
| BS | Base station |
| CN | Core network |
| DN | Data network |
| E2E | End-to-End |
| FOV | Field of vision/view |
| GB | Guaranteed bit rate |
| GSM | Groupe Speciale Mobile |
| IoT | Internet of Things |
| IoV | Internet of Vehicles |
| MNO | Mobile network operator |
| NS | Network slicing |
| NSI | Network slice instance |
| PP | Pre-emption-based prioritization |
| QoS | Quality of Service |
| QS | Queueing system |
| RAC | Radio admission control |
| RAT | Radio access technology |
| RR | Resource reservation |
| TN | Transport network |
| VoIP | Voice over Internet Protocol |
| VR | Virtual reality |
References
- Meredith, J.M.; Firmin, F.; Pope, M. Release 16 Description; Summary of Rel-16 Work Items. Technical Report (TR) 21.916, 3rd Generation Partnership Project (3GPP). 2022. Version 16.2.0. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3493 (accessed on 1 September 2022).
- Sultan, A.; Pope, M. Feasibility Study on New Services and Markets Technology Enablers for Network Operation; Stage 1. Technical Report (TR) 22.864, 3rd Generation Partnership Project (3GPP). 2016. Version 15.0.0. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3016 (accessed on 1 September 2022).
- Meredith, J.M.; Soveri, M.C.; Pope, M. Management and Orchestration; 5G End to end Key Performance Indicators (KPI). Technical Specification (TS) 28.554, 3rd Generation Partnership Project (3GPP). 2022. Version 17.8.0. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3415 (accessed on 1 September 2022).
- 5G Industry Campus Network Deployment Guideline. Official Document NG.123, GSM Association (GSMA). 2021. Version 2.0. Available online: https://www.gsma.com/newsroom/wp-content/uploads//NG.123-v2.0.pdf (accessed on 1 September 2022).
- DOCOMO Today, Technology Reports (Special Articles), Technology Reports, Standardization. Technical Journal, NTT DOCOMO. 2022, Volume 23. No.4. Available online: https://www.docomo.ne.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol23_4/vol23_4_en_total.pdf (accessed on 1 September 2022).
- Zambianco, M.; Lieto, A.; Malanchini, I.; Verticale, G. A Learning Approach for Production-Aware 5G Slicing in Private Industrial Networks. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Korea, 16–20 May 2022. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, G.; Ou, M.; Bao, J. 5G Slice Allocation Algorithm Based on Mapping Relation. In Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; pp. 1608–1616. [Google Scholar] [CrossRef]
- Luntovskyy, A.; Shubyn, B.; Maksymyuk, T.; Klymash, M. 5G Slicing and Handover Scenarios: Compulsoriness and Machine Learning. In Current Trends in Communication and Information Technologies; Springer International Publishing: Cham, Switzerland, 2021; pp. 223–255. [Google Scholar] [CrossRef]
- Riad, M.A.; El-Ghandour, O.; El-Haleem, A.M.A. Joint User-Slice Pairing and Association Framework Based on H-NOMA in RAN Slicing. Sensors 2022, 22, 7343. [Google Scholar] [CrossRef]
- Singh, S.; Babu, C.R.; Ramana, K.; Ra, I.H.; Yoon, B. BENS-B5G: Blockchain-Enabled Network Slicing in 5G and Beyond-5G (B5G) Networks. Sensors 2022, 22, 6068. [Google Scholar] [CrossRef]
- Zahoor, S.; Ahmad, I.; Othman, M.T.B.; Mamoon, A.; Rehman, A.U.; Shafiq, M.; Hamam, H. Comprehensive Analysis of Network Slicing for the Developing Commercial Needs and Networking Challenges. Sensors 2022, 22, 6623. [Google Scholar] [CrossRef]
- Awada, Z.; Boulos, K.; El-Helou, M.; Khawam, K.; Lahoud, S. Distributed multi-tenant RAN slicing in 5G networks. Wirel. Netw. 2022, 28, 3185–3198. [Google Scholar] [CrossRef]
- Wichary, T.; Batalla, J.M.; Mavromoustakis, C.X.; Żurek, J.; Mastorakis, G. Network Slicing Security Controls and Assurance for Verticals. Electronics 2022, 11, 222. [Google Scholar] [CrossRef]
- Dangi, R.; Jadhav, A.; Choudhary, G.; Dragoni, N.; Mishra, M.K.; Lalwani, P. ML-Based 5G Network Slicing Security: A Comprehensive Survey. Future Internet 2022, 14, 116. [Google Scholar] [CrossRef]
- Thantharate, A.; Paropkari, R.; Walunj, V.; Beard, C.; Kankariya, P. Secure5G: A Deep Learning Framework Towards a Secure Network Slicing in 5G and Beyond. In Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020. [Google Scholar] [CrossRef]
- Chen, C.; Tian, H.; Nie, G. Fairness Resource Allocation Scheme for GBR Services in Downlink SCMA System. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020. [Google Scholar] [CrossRef]
- D, M.P.; Das, D. Efficient way of Non-GBR, High Latency GTP-U Packet Transmission in 4G and 5G Networks. In Proceedings of the 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 9–11 July 2021. [Google Scholar] [CrossRef]
- Kheddar, H.; Ouldkhaoua, S.; Bouguerra, R. All you need for horizontal slicing in 5G network. arXiv 2022, arXiv:2207.11477. [Google Scholar]
- Kotulski, Z.; Nowak, T.W.; Sepczuk, M.; Tunia, M.A. 5G networks: Types of isolation and their parameters in RAN and CN slices. Comput. Netw. 2020, 171, 107135. [Google Scholar] [CrossRef]
- Alotaibi, D. Survey on Network Slice Isolation in 5G Networks: Fundamental Challenges. Procedia Comput. Sci. 2021, 182, 38–45. [Google Scholar] [CrossRef]
- Wong, S.; Han, B.; Schotten, H.D. 5G Network Slice Isolation. Network 2022, 2, 153–167. [Google Scholar] [CrossRef]
- Kermani, P.; Kleinrock, L. Analysis of buffer allocation schemes in a multiplexing node. In Proceedings of the Conference Record, International Conference on Communications, Chicago, IL, USA, 12–15 June 1977; Volume 2, pp. 30–34. [Google Scholar]
- Kamoun, F.; Kleinrock, L. Analysis of Shared Finite Storage in a Computer Network Node Environment Under General Traffic Conditions. IEEE Trans. Commun. 1980, 28, 992–1003. [Google Scholar] [CrossRef]
- Marabissi, D.; Fantacci, R. Highly Flexible RAN Slicing Approach to Manage Isolation, Priority, Efficiency. IEEE Access 2019, 7, 97130–97142. [Google Scholar] [CrossRef]
- Chinchilla-Romero, L.; Prados-Garzon, J.; Ameigeiras, P.; Muñoz, P.; Lopez-Soler, J.M. 5G Infrastructure Network Slicing: E2E Mean Delay Model and Effectiveness Assessment to Reduce Downtimes in Industry 4.0. Sensors 2021, 22, 229. [Google Scholar] [CrossRef]
- Yarkina, N.; Correia, L.M.; Moltchanov, D.; Gaidamaka, Y.; Samouylov, K. Multi-tenant resource sharing with equitable-priority-based performance isolation of slices for 5G cellular systems. Comput. Commun. 2022, 188, 39–51. [Google Scholar] [CrossRef]
- Gabilondo, Á.; Fernández, Z.; Viola, R.; Martín, Á.; Zorrilla, M.; Angueira, P.; Montalbán, J. Traffic Classification for Network Slicing in Mobile Networks. Electronics 2022, 11, 1097. [Google Scholar] [CrossRef]
- Rehman, A.U.; Mahmood, I.; Kamran, M.; Sanaullah, M.; Ijaz, A.; Ali, J.; Ali, M. Enhancement in Quality-of-Services using 5G cellular network using resource reservation protocol. Phys. Commun. 2022, 101907. [Google Scholar] [CrossRef]
- Luu, Q.T.; Kerboeuf, S.; Kieffer, M. Admission Control and Resource Reservation for Prioritized Slice Requests With Guaranteed SLA Under Uncertainties. IEEE Trans. Netw. Serv. Manag. 2022, 19, 3136–3153. [Google Scholar] [CrossRef]
- Yarkina, N.; Gaidamaka, Y.; Correia, L.M.; Samouylov, K. An Analytical Model for 5G Network Resource Sharing with Flexible SLA-Oriented Slice Isolation. Mathematics 2020, 8, 1177. [Google Scholar] [CrossRef]
- Basharin, G.P.; Gaidamaka, Y.V.; Samouylov, K.E. Mathematical theory of teletraffic and its application to the analysis of multiservice communication of next generation networks. Autom. Control Comput. Sci. 2013, 47, 62–69. [Google Scholar] [CrossRef]
- Naumov, V.; Gaidamaka, Y.; Yarkina, N.; Samouylov, K. Matrix and Analytical Methods for Performance Analysis of Telecommunication Systems; Springer Nature: Singapore, 2021. [Google Scholar]
- Althumali, H.; Othman, M.; Noordin, N.K.; Hanapi, Z.M. Priority-based load-adaptive preamble separation random access for QoS-differentiated services in 5G networks. J. Netw. Comput. Appl. 2022, 203, 103396. [Google Scholar] [CrossRef]
- Gedikli, A.M.; Koseoglu, M.; Sen, S. Deep reinforcement learning based flexible preamble allocation for RAN slicing in 5G networks. Comput. Netw. 2022, 215, 109202. [Google Scholar] [CrossRef]
- Enderton, H.B. Elements of Set Theory; Elsevier: Amsterdam, The Netherlands, 1977. [Google Scholar] [CrossRef]
- Devlin, K. The Joy of Sets; Undergraduate Texts in Mathematics; Springer: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Bagaria, J. Set Theory. In The Stanford Encyclopedia of Philosophy, Winter 2021 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2021. [Google Scholar]
- Xie, D. An efficient finite element iterative method for solving a nonuniform size modified Poisson-Boltzmann ion channel model. J. Comput. Phys. 2022, 470, 111556. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, Z.; Pan, E.; Zhang, Y. Dynamic statistical responses of gear drive based on improved stochastic iteration method. Appl. Math. Model. 2022, 108, 46–65. [Google Scholar] [CrossRef]
- Stepanov, S.N. Theory of Teletraffic: Concepts, Models, Applications [Teoriya Teletraffika: Kontseptsii, Modeli, Prilozheniya]; Goryachaya Liniya-Telekom: Moscow, Russia, 2015; p. 868. (In Russian) [Google Scholar]
- Schoolar, D.; Lambert, P.; Nanbin, W.; Liang, Z. 5G Service Experience-Based Network Planning Criteria. White Paper, Ovum Consulting. 2019. in Partnership with Huawei. Available online: https://carrier.huawei.com/~/media/cnbgv2/download/products/servies/5g-planning-criteria-white-paper.pdf (accessed on 1 September 2022).











| Notation | Description |
|---|---|
| The set of NSIs at the 5G BS, , [units (u.)] | |
| S | The number of NSIs at the 5G BS, , [u.] |
| C | The total network capacity of the 5G BS, [capacity units (c.u.)] |
| The overall network capacity of the NSI, , , [c.u.] | |
| The guaranteed network capacity of the NSI, , , [c.u.] | |
| The arrival rate of requests at the NSI, , [requests per time units (requests/t.u.)] | |
| The average service time for a request at the NSI, , [t.u.] | |
| The offered load at the NSI | |
| The requirement for starting service of a request at the NSI, , , [c.u.] | |
| The maximum number of requests that may be admitted for service with the overall network capacity of the NSI, , [u.] | |
| The maximum number of requests that may be admitted for service with the guaranteed network capacity of the NSI, , [u.] | |
| The current number of servicing requests at the NSI, , [u.] | |
| The row of the size identity matrix | |
| The S-dimensional all-ones vector |
| Parameter | Value RR-Scheme | Value PP-Scheme | Unit of Measure |
|---|---|---|---|
| C | 5.0 | Gbps | |
| 1.0, 1.5, 2.5 | Gbps | ||
| 1.5, 2.0, 3.0 | Gbps | ||
| 0.04, 0.08, 0.1 | Gbps | ||
| from 5 to 100 | - | ||
| 60, 30, 45 | min | ||
| requests/min | |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adou, Y.; Markova, E.; Gaidamaka, Y. Modeling and Analyzing Preemption-Based Service Prioritization in 5G Networks Slicing Framework. Future Internet 2022, 14, 299. https://doi.org/10.3390/fi14100299
Adou Y, Markova E, Gaidamaka Y. Modeling and Analyzing Preemption-Based Service Prioritization in 5G Networks Slicing Framework. Future Internet. 2022; 14(10):299. https://doi.org/10.3390/fi14100299
Chicago/Turabian StyleAdou, Yves, Ekaterina Markova, and Yuliya Gaidamaka. 2022. "Modeling and Analyzing Preemption-Based Service Prioritization in 5G Networks Slicing Framework" Future Internet 14, no. 10: 299. https://doi.org/10.3390/fi14100299
APA StyleAdou, Y., Markova, E., & Gaidamaka, Y. (2022). Modeling and Analyzing Preemption-Based Service Prioritization in 5G Networks Slicing Framework. Future Internet, 14(10), 299. https://doi.org/10.3390/fi14100299

