# Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Simulation Framework

**Initialization Rules of Cellular State**

**Evolution Rules of Cellular State**

**Initialization and Annihilation Rules of Cellular States**

## 3. Simulation

#### 3.1. Setting of the Simulation Scenario

^{2}and ${a}_{\mathrm{min}}=-4$ m/s

^{2}. The total time of the simulation is $T=3000$ s. Letting $N$ represent the total number of the vehicles on the road, one can obtain

#### 3.2. The Simulation of Traffic Flow

^{−1}under the same condition. To further explore the positive effect of the GPV information on the traffic flow in the V2X environment, extra simulation is carried out, and the fundamental diagram represented by the volume–density relationship is obtained, which can be seen in Figure 6.

^{−1}. By contrast, the jamming density of traffic flow affected by the GPV information in the V2X environment can reach up to $197.79$ veh∙km

^{−1}, which means the increase is up to 16.35%, under the same condition. These results are consistent with the fundamental diagram in the above contents. It is worth noting that there is a phenomenon of a “steep drop” of operating velocity after the traffic flow breaks away from the free-flow state in the unconnected environment represented by the FVD model. This phenomenon may be caused by the increase of density, which usually means an increase of headway and decrease of the velocity when the traffic flow breaks away from the free-flow state. These changes in density and velocity can be regarded as a disturbance, to a certain extent. When the changes happen, it can be regarded as a disturbance that emerges in the traffic flow and then propagates in the vehicle fleet, which eventually causes the “steep drop” of the operating velocity of the traffic flow.

#### 3.3. Simulation on the Impacts of Disturbance on Traffic Flow

^{−1}in the V2X environment. By contrast, the traffic flow is operating with the velocity $28.47$ km∙h

^{−1}in the unconnected environment.

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Appendix A

Abbreviations | Full Name |
---|---|

V2X | vehicles to everything |

GPV | generalized preceding vehicles |

CA | cellular automata |

OV | optimal velocity |

GF | generalized force |

FVD | full velocity difference |

TFSF | traffic flow simulation framework |

CACC | cooperative adaptive cruise control |

## References

- Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications. IEEE Internet Things J.
**2018**, 5, 829–846. [Google Scholar] [CrossRef] - Haider, A.; Hwang, S.H. Adaptive Transmit Power Control Algorithm for Sensing-Based Semi-Persistent Scheduling in C-V2X Mode 4 Communication. Electronics
**2019**, 8, 846. [Google Scholar] [CrossRef] [Green Version] - Mannoni, V.; Berg, V.; Sesia, S.; Perraud, E. A Comparison of the V2X Communication Systems: ITS-G5 and C-V2X. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–5. [Google Scholar]
- Naik, G.; Choudhury, B.; Park, J.-M. IEEE 802.11bd & 5G NR V2X: Evolution of Radio Access Technologies for V2X Communications. IEEE Access
**2019**, 7, 70169–70184. [Google Scholar] [CrossRef] - Chen, S.; Hu, J.; Shi, Y.; Zhao, L.; Li, W. A Vision of C-V2X: Technologies, Field Testing, and Challenges with Chinese Development. IEEE Internet Things J.
**2020**, 7, 3872–3881. [Google Scholar] [CrossRef] [Green Version] - Qi, W.; Landfeldt, B.; Song, Q.; Guo, L.; Jamalipour, A. Traffic Differentiated Clustering Routing in DSRC and C-V2X Hybrid Vehicular Networks. IEEE Trans. Veh. Technol.
**2020**, 69, 7723–7734. [Google Scholar] [CrossRef] [Green Version] - Romeo, F.; Campolo, C.; Molinaro, A.; Berthet, A.O. DENM Repetitions to Enhance Reliability of the Autonomous Mode in NR V2X Sidelink. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Tang, F.; Kawamot, Y.; Kato, N.; Liu, J. Future Intelligent and Secure Vehicular Network Toward 6G: Machine-Learning Approaches. Proc. IEEE
**2020**, 108, 292–307. [Google Scholar] [CrossRef] - Zadobrischi, E.; Dimian, M. Vehicular Communications Utility in Road Safety Applications: A Step toward Self-Aware Intelligent Traffic Systems. Symmetry
**2021**, 13, 438. [Google Scholar] [CrossRef] - Li, Y.; Wang, H.; Wang, W.; Xing, L.; Liu, S.; Wei, X. Evaluation of the Impacts of Cooperative Adaptive Cruise Control on Reducing Rear-End Collision Risks on Freeways. Accid. Anal. Prev.
**2017**, 98, 87–95. [Google Scholar] [CrossRef] - Rios-Torres, J.; Malikopoulos, A.A. A Survey on the Coordination of Connected and Automated Vehicles at Intersections and Merging at Highway On-Ramps. IEEE Trans. Intell. Transp. Syst.
**2017**, 18, 1066–1077. [Google Scholar] [CrossRef] - Stern, R.E.; Cui, S.; Delle Monache, M.L.; Bhadani, R.; Bunting, M.; Churchill, M.; Hamilton, N.; Haulcy, R.; Pohlmann, H.; Wu, F.; et al. Dissipation of Stop-and-Go Waves via Control of Autonomous Vehicles: Field Experiments. Transp. Res. Part C Emerg. Technol.
**2018**, 89, 205–221. [Google Scholar] [CrossRef] [Green Version] - Papadoulis, A.; Quddus, M.; Imprialou, M. Evaluating the Safety Impact of Connected and Autonomous Vehicles on Motorways. Accid. Anal. Prev.
**2019**, 124, 12–22. [Google Scholar] [CrossRef] [Green Version] - Ye, L.; Yamamoto, T. Evaluating the Impact of Connected and Autonomous Vehicles on Traffic Safety. Phys. Stat. Mech. ITS Appl.
**2019**, 526. [Google Scholar] [CrossRef] - Zadobrischi, E.; Cosovanu, L.-M.; Dimian, M. Traffic Flow Density Model and Dynamic Traffic Congestion Model Simulation Based on Practice Case with Vehicle Network and System Traffic Intelligent Communication. Symmetry
**2020**, 12, 1172. [Google Scholar] [CrossRef] - Farah, H.; Koutsopoulos, H.N. Do Cooperative Systems Make Drivers’ Car-Following Behavior Safer? Transp. Res. Part C Emerg. Technol.
**2014**, 41, 61–72. [Google Scholar] [CrossRef] - Li, X.; Cui, J.; An, S.; Parsafard, M. Stop-and-Go Traffic Analysis: Theoretical Properties, Environmental Impacts and Oscillation Mitigation. Transp. Res. Part B Methodol.
**2014**, 70, 319–339. [Google Scholar] [CrossRef] - Jia, D.; Ngoduy, D. Enhanced Cooperative Car-Following Traffic Model with the Combination of V2V and V2I Communication. Transp. Res. Part B Methodol.
**2016**, 90, 172–191. [Google Scholar] [CrossRef] - Nagatani, T. Stabilization and Enhancement of Traffic Flow by the Next-Nearest-Neighbor Interaction. Phys. Rev. E
**1999**, 60, 6395–6401. [Google Scholar] [CrossRef] [Green Version] - Lenz, H.; Wagner, C.K.; Sollacher, R. Multi-Anticipative Car-Following Model. Eur. Phys. J. B
**1999**, 7, 331–335. [Google Scholar] [CrossRef] - Ge, H.X.; Dai, S.Q.; Dong, L.Y.; Xue, Y. Stabilization Effect of Traffic Flow in an Extended Car-Following Model Based on an Intelligent Transportation System Application. Phys. Rev. E
**2004**, 70, 066134. [Google Scholar] [CrossRef] - Li, Z.-P.; Liu, Y.-C. Analysis of Stability and Density Waves of Traffic Flow Model in an ITS Environment. Eur. Phys. J. B
**2006**, 53, 367–374. [Google Scholar] [CrossRef] - Peng, G.H.; Sun, D.H. A Dynamical Model of Car-Following with the Consideration of the Multiple Information of Preceding Cars. Phys. Lett. A
**2010**, 374, 1694–1698. [Google Scholar] [CrossRef] - Li, Y.; Sun, D.; Liu, W.; Zhang, M.; Zhao, M.; Liao, X.; Tang, L. Erratum to: Modeling and Simulation for Microscopic Traffic Flow Based on Multiple Headway, Velocity and Acceleration Difference. Nonlinear Dyn.
**2011**, 66, 845. [Google Scholar] [CrossRef] [Green Version] - Hu, Y.; Ma, T.; Chen, J. An Extended Multi-Anticipative Delay Model of Traffic Flow. Commun. Nonlinear Sci. Numer. Simul.
**2014**, 19, 3128–3135. [Google Scholar] [CrossRef] - Chen, J.; Liu, R.; Ngoduy, D.; Shi, Z. A New Multi-Anticipative Car-Following Model with Consideration of the Desired Following Distance. Nonlinear Dyn.
**2016**, 85, 2705–2717. [Google Scholar] [CrossRef] - Guo, L.; Zhao, X.; Yu, S.; Li, X.; Shi, Z. An Improved Car-Following Model with Multiple Preceding Cars’ Velocity Fluctuation Feedback. Phys. Stat. Mech. Its Appl.
**2017**, 471, 436–444. [Google Scholar] [CrossRef] - Sun, D.; Kang, Y.; Yang, S. A Novel Car Following Model Considering Average Speed of Preceding Vehicles Group. Phys. Stat. Mech. Its Appl.
**2015**, 436, 103–109. [Google Scholar] [CrossRef] - Kuang, H.; Xu, Z.-P.; Li, X.-L.; Lo, S.-M. An Extended Car-Following Model Accounting for the Average Headway Effect in Intelligent Transportation System. Phys. Stat. Mech. Its Appl.
**2017**, 471, 778–787. [Google Scholar] [CrossRef] - Guo, Y.; Xue, Y.; Shi, Y.; Wei, F.; Lü, L.; He, H. Mean-Field Velocity Difference Model Considering the Average Effect of Multi-Vehicle Interaction. Commun. Nonlinear Sci. Numer. Simul.
**2018**, 59, 553–564. [Google Scholar] [CrossRef] - Wen-Xing, Z.; Li-Dong, Z. A New Car-Following Model for Autonomous Vehicles Flow with Mean Expected Velocity Field. Phys. Stat. Mech. Its Appl.
**2018**, 492, 2154–2165. [Google Scholar] [CrossRef] - Kuang, H.; Wang, M.-T.; Lu, F.-H.; Bai, K.-Z.; Li, X.-L. An Extended Car-Following Model Considering Multi-Anticipative Average Velocity Effect under V2V Environment. Phys. Stat. Mech. Its Appl.
**2019**, 527, 121268. [Google Scholar] [CrossRef] - Han, J.; Zhang, J.; Wang, X.; Liu, Y.; Wang, Q.; Zhong, F. An Extended Car-Following Model Considering Generalized Preceding Vehicles in V2X Environment. Future Internet
**2020**, 12, 216. [Google Scholar] [CrossRef] - Bando, M.; Hasebe, K.; Nakayama, A.; Shibata, A.; Sugiyama, Y. Dynamical Model of Traffic Congestion and Numerical Simulation. Phys. Rev. E
**1995**, 51, 1035–1042. [Google Scholar] [CrossRef] [PubMed] - Helbing, D.; Tilch, B. Generalized Force Model of Traffic Dynamics. Phys. Rev. E
**1998**, 58, 133–138. [Google Scholar] [CrossRef] [Green Version] - Treiber, M.; Hennecke, A.; Helbing, D. Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Nonlocal Traffic Model. Phys. Rev. E
**1999**, 59, 239–253. [Google Scholar] [CrossRef] [Green Version] - Jiang, R.; Wu, Q.; Zhu, Z. Full Velocity Difference Model for a Car-Following Theory. Phys. Rev. E
**2001**, 64, 017101. [Google Scholar] [CrossRef] [Green Version] - Yi, J.; Horowitz, R. Macroscopic Traffic Flow Propagation Stability for Adaptive Cruise Controlled Vehicles. Transp. Res. Part C Emerg. Technol.
**2006**, 14, 81–95. [Google Scholar] [CrossRef] - Ngoduy, D. Application of Gas-Kinetic Theory to Modelling Mixed Traffic of Manual and ACC Vehicles. Transportmetrica
**2012**, 8, 43–60. [Google Scholar] [CrossRef] - Ngoduy, D. Instability of Cooperative Adaptive Cruise Control Traffic Flow: A Macroscopic Approach. Commun. Nonlinear Sci. Numer. Simul.
**2013**, 18, 2838–2851. [Google Scholar] [CrossRef] - Ngoduy, D. Platoon-Based Macroscopic Model for Intelligent Traffic Flow. Transp. B Transp. Dyn.
**2013**, 1, 153–169. [Google Scholar] [CrossRef] - Ngoduy, D.; Jia, D. Multi Anticipative Bidirectional Macroscopic Traffic Model Considering Cooperative Driving Strategy. Transp. B Transp. Dyn.
**2017**, 5, 96–110. [Google Scholar] [CrossRef] - Delis, A.I.; Nikolos, I.K.; Papageorgiou, M. A Macroscopic Multi-Lane Traffic Flow Model for ACC/CACC Traffic Dynamics. Transp. Res. Rec.
**2018**, 2672, 178–192. [Google Scholar] [CrossRef] - Wolfram, S. Statistical Mechanics of Cellular Automata. Rev. Mod. Phys.
**1983**, 55, 601–644. [Google Scholar] [CrossRef] - Cremer, M.; Ludwig, J. A Fast Simulation Model for Traffic Flow on the Basis of Boolean Operations. Math. Comput. Simul.
**1986**, 28, 297–303. [Google Scholar] [CrossRef] - Nagel, K.; Schreckenberg, M. A Cellular Automaton Model for Freeway Traffic. J. Phys. I
**1992**, 2, 2221–2229. [Google Scholar] [CrossRef] - Biham, O.; Middleton, A.A.; Levine, D. Self-Organization and a Dynamical Transition in Traffic-Flow Models. Phys. Rev. A
**1992**, 46, R6124–R6127. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Takayasu, M.; Takayasu, H. 1/f noise in a traffic model. Fractals
**1993**, 1, 860–866. [Google Scholar] [CrossRef] - Nagatani, T. Self-Organization and Phase Transition in Traffic-Flow Model of a Two-Lane Roadway. J. Phys. Math. Gen.
**1993**, 26, L781–L787. [Google Scholar] [CrossRef] - Fukui, M.; Ishibashi, Y. Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed. J. Phys. Soc. Jpn.
**1996**, 65, 1868–1870. [Google Scholar] [CrossRef] - Rickert, M.; Nagel, K.; Schreckenberg, M.; Latour, A. Two Lane Traffic Simulations Using Cellular Automata. Phys. Stat. Mech. Its Appl.
**1996**, 231, 534–550. [Google Scholar] [CrossRef] [Green Version] - Knospe, W.; Santen, L.; Schadschneider, A.; Schreckenberg, M. Towards a Realistic Microscopic Description of Highway Traffic. J. Phys. Math. Gen.
**2000**, 33, L477. [Google Scholar] [CrossRef] - Pedersen, M.; Ruhoff, P.T. Entry Ramps in the Nagel-Schreckenberg Model. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
**2002**, 65, 056705. [Google Scholar] [CrossRef] - Bham, G.H.; Benekohal, R.F. A High Fidelity Traffic Simulation Model Based on Cellular Automata and Car-Following Concepts. Transp. Res. Part C Emerg. Technol.
**2004**, 12, 1–32. [Google Scholar] [CrossRef] - He, Y.; Yao, D.; Zhang, Y.; Pei, X.; Li, L. Cellular Automaton Model for Bidirectional Traffic under Condition of Intelligent Vehicle Infrastructure Cooperative Systems. In Proceedings of the 2016 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Beijing, China, 10–12 July 2016; pp. 1–6. [Google Scholar]
- Darwish, S.M. Empowering Vehicle Tracking in a Cluttered Environment with Adaptive Cellular Automata Suitable to Intelligent Transportation Systems. IET Intell. Transp. Syst.
**2017**, 11, 84–91. [Google Scholar] [CrossRef] - Xue, S.; Jia, B.; Jiang, R.; Li, X.; Shan, J. An Improved Burgers Cellular Automaton Model for Bicycle Flow. Phys. Stat. Mech. Its Appl.
**2017**, 487, 164–177. [Google Scholar] [CrossRef] - Pang, M.-B.; Ren, B.-N. Effects of Rainy Weather on Traffic Accidents of a Freeway Using Cellular Automata Model. Chin. Phys. B
**2017**, 26, 108901. [Google Scholar] [CrossRef] - Mu, R.; Yamamoto, T. Analysis of Traffic Flow with Micro-Cars with Respect to Safety and Environmental Impact. Transp. Res. Part Policy Pract.
**2019**, 124, 217–241. [Google Scholar] [CrossRef] - Yeldan, Ö.; Colorni, A.; Luè, A.; Rodaro, E. A Stochastic Continuous Cellular Automata Traffic Flow Model with a Multi-Agent Fuzzy System. Procedia Soc. Behav. Sci.
**2012**, 54, 1350–1359. [Google Scholar] [CrossRef] [Green Version] - Zamith, M.; Leal-Toledo, R.C.P.; Clua, E.; Toledo, E.M.; de Magalhães, G.V.P. A New Stochastic Cellular Automata Model for Traffic Flow Simulation with Drivers’ Behavior Prediction. J. Comput. Sci.
**2015**, 9, 51–56. [Google Scholar] [CrossRef] - Li, X.; Li, X.; Xiao, Y.; Jia, B. Modeling Mechanical Restriction Differences between Car and Heavy Truck in Two-Lane Cellular Automata Traffic Flow Model. Phys. Stat. Mech. Its Appl.
**2016**, 451, 49–62. [Google Scholar] [CrossRef] - Heeroo, K.N.S.; Gukhool, O.; Hoorpah, D. A Ludo Cellular Automata Model for Microscopic Traffic Flow. J. Comput. Sci.
**2016**, 16, 114–127. [Google Scholar] [CrossRef] - Qian, Y.-S.; Feng, X.; Zeng, J.-W. A Cellular Automata Traffic Flow Model for Three-Phase Theory. Phys. Stat. Mech. Its Appl.
**2017**, 479, 509–526. [Google Scholar] [CrossRef] - Yan, F.; Pan, P.-Z.; Feng, X.-T.; Lv, J.-H.; Li, S.-J. An Adaptive Cellular Updating Scheme for the Continuous–Discontinuous Cellular Automaton Method. Appl. Math. Model.
**2017**, 46, 1–15. [Google Scholar] [CrossRef] - Kesting, A.; Treiber, M. Calibrating Car-Following Models by Using Trajectory Data: Methodological Study. Transp. Res. Rec.
**2008**, 2088, 148–156. [Google Scholar] [CrossRef] [Green Version] - Levin, M.W.; Boyles, S.D. A Cell Transmission Model for Dynamic Lane Reversal with Autonomous Vehicles. Transp. Res. Part C Emerg. Technol.
**2016**, 68, 126–143. [Google Scholar] [CrossRef] [Green Version] - Levin, M.W.; Boyles, S.D. A Multiclass Cell Transmission Model for Shared Human and Autonomous Vehicle Roads. Transp. Res. Part C Emerg. Technol.
**2016**, 62, 103–116. [Google Scholar] [CrossRef] [Green Version] - Tiaprasert, K.; Zhang, Y.; Aswakul, C.; Jiao, J.; Ye, X. Closed-Form Multiclass Cell Transmission Model Enhanced with Overtaking, Lane-Changing, and First-in First-out Properties. Transp. Res. Part C Emerg. Technol.
**2017**, 85, 86–110. [Google Scholar] [CrossRef] - van Arem, B.; van Driel, C.J.G.; Visser, R. The Impact of Cooperative Adaptive Cruise Control on Traffic-Flow Characteristics. IEEE Trans. Intell. Transp. Syst.
**2006**, 7, 429–436. [Google Scholar] [CrossRef] [Green Version] - Ngoduy, D.; Hoogendoorn, S.P.; Liu, R. Continuum Modeling of Cooperative Traffic Flow Dynamics. Phys. Stat. Mech. Its Appl.
**2009**, 388, 2705–2716. [Google Scholar] [CrossRef] - Saffarian, M.; Happee, R. Supporting Drivers in Car Following: A Step towards Cooperative Driving. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 939–944. [Google Scholar]
- Milanés, V.; Shladover, S.E. Modeling Cooperative and Autonomous Adaptive Cruise Control Dynamic Responses Using Experimental Data. Transp. Res. Part C Emerg. Technol.
**2014**, 48, 285–300. [Google Scholar] [CrossRef] [Green Version] - Liu, H.; Kan, X.D.; Shladover, S.E.; Lu, X.-Y.; Ferlis, R.E. Modeling Impacts of Cooperative Adaptive Cruise Control on Mixed Traffic Flow in Multi-Lane Freeway Facilities. Transp. Res. Part C Emerg. Technol.
**2018**, 95, 261–279. [Google Scholar] [CrossRef]

**Figure 9.**The operation of traffic flow affected by the generalized preceding vehicles (GPV) information in the vehicles to everything (V2X) environment: (

**a**) Before exerting the disturbance; (

**b**) After exerting the disturbance.

**Figure 10.**The operation of traffic flow in the unconnected environment: (

**a**) Before exerting the disturbance; (

**b**) After exerting the disturbance.

**Table 1.**Parameters value in Equation (3) [35].

Parameters | V_{1} | V_{2} | C_{1} | C_{2} | l_{c} |
---|---|---|---|---|---|

6.75 | 7.91 | 0.13 | 1.57 | 5 |

**Table 2.**Parameters value in Equation (4) [33].

Parameters | Generalized Preceding Vehicles (GPV) Model | Full Velocity Difference (FVD) Model |
---|---|---|

α | 0.767 | 0.852 |

λ | 0.301 | 0.389 |

p | 0.769 | -- |

$\mathbf{Parameter}\mathit{p}$ | Maximum Volume | Rate A of the Increase | Rate B of the Increase |
---|---|---|---|

0.9 | $3110.40$ veh∙h^{−1} | 52.40% | 0% |

0.8 | $3477.60$ veh∙h^{−1} | 70.39% | 11.80% |

0.7 | $3715.21$ veh∙h^{−1} | 82.03% | 6.83% |

0.6 | $3852.00$ veh∙h^{−1} | 88.73% | 3.68% |

^{1}The rate A is the increasing rate of the corresponding maximum volume compared with the one in the unconnected environment.

^{2}The rate B is the increasing rate of the corresponding maximum volume compared with the previous one.

$\mathbf{Parameter}\mathit{p}$ | Breaking Value | Rate A of the Increase | Rate B of the Increase |
---|---|---|---|

0.9 | $28.8$ veh/km | 52.30% | 0% |

0.8 | $32.20$ veh/km | 70.28% | 34.37% |

0.7 | $34.40$ veh/km | 81.91% | 16.55% |

0.6 | $35.67$ veh/km | 88.63% | 8.20% |

^{1}The rate A is the increasing rate of the corresponding breaking value compared with the one in the unconnected environment.

^{2}The rate B is the increasing rate of the corresponding breaking value compared with the previous one.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, X.; Han, J.; Bai, C.; Shi, H.; Zhang, J.; Wang, G.
Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment. *Future Internet* **2021**, *13*, 88.
https://doi.org/10.3390/fi13040088

**AMA Style**

Wang X, Han J, Bai C, Shi H, Zhang J, Wang G.
Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment. *Future Internet*. 2021; 13(4):88.
https://doi.org/10.3390/fi13040088

**Chicago/Turabian Style**

Wang, Xiaoyuan, Junyan Han, Chenglin Bai, Huili Shi, Jinglei Zhang, and Gang Wang.
2021. "Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment" *Future Internet* 13, no. 4: 88.
https://doi.org/10.3390/fi13040088