Indirect Modeling of Post-Prandial Intestinal Lymphatic Uptake of Halofantrine Using PBPK Approaches: Limitations and Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. PK and PBPK Modeling of Halofantrine
2.2. Parameter Sensitivity Analysis (PSA)
2.3. Molecular Dynamics (MD) Simulations of Halofantrine
3. Results
3.1. PK Modeling of Halofantrine
3.2. PBPK Modeling of Halofantrine
3.3. Parameter Sensitivity Analysis (PSA)
3.4. MD Simulations of Halofantrine
4. Discussion
4.1. PK Modeling of Halofantrine
4.2. PBPK Modeling of Halofantrine
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yousef, M.; Silva, D.; Chacra, N.B.; Davies, N.; Löbenberg, R. The lymphatic system: A sometimes-forgotten compartment in pharmaceutical sciences. J. Pharm. Pharm. Sci. 2021, 24, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Cifarelli, V.; Eichmann, A. The intestinal lymphatic system: Functions and metabolic implications. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Trevaskis, N.L.; Kaminskas, L.M.; Porter, C.J.H. From sewer to saviour—Targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 2015, 14, 781–803. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Qi, J.; Wu, W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm. Sin. B 2021, 11, 2449–2460. [Google Scholar] [CrossRef]
- Ms, P.; Naha, A.; Shetty, D.; Nayak, U.Y. Lymphatic drug transport and associated drug delivery technologies: A comprehensive review. Curr. Pharm. Des. 2020, 26, 5312–5326. [Google Scholar]
- Yáñez, J.A.; Wang, S.W.J.; Knemeyer, I.W.; Wirth, M.A.; Alton, K.B. Intestinal lymphatic transport for drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 923–942. [Google Scholar] [CrossRef]
- Shackleford, D.M.; Faassen, W.F.; Houwing, N.; Lass, H.; Edwards, G.A.; Porter, C.J.; Charman, W.N. Contribution of lymphatically transported testosterone undecanoate to the systemic exposure of testosterone after oral administration of two andriol formulations in conscious lymph duct-cannulated dogs. J. Pharmacol. Exp. Ther. 2003, 306, 925–933. [Google Scholar] [CrossRef]
- Horst, J.; Höltje, W.J.; Dennis, M.; Coert, A.; Geelen, J.; Voigt, K.D. Lymphatic absorption and metabolism of orally administered testosterone undecanoate in man. Klin. Wochenschr. 1976, 54, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.; Bou-Chacra, N.; Löbenberg, R.; Davies, N.M. Understanding lymphatic drug delivery through chylomicron blockade: A retrospective and prospective analysis. J. Pharmacol. Toxicol. Methods. 2024, 121, 107548. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Garg, A.; Verma, A. Nano lipid-based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in vitro, ex vivo, in situ and in vivo study models. J. Drug Deliv. Sci. Technol. 2020, 59, 101899. [Google Scholar] [CrossRef]
- Holm, R.; Hoest, J. Successful in silico predicting of intestinal lymphatic transfer. Int. J. Pharm. 2004, 272, 189–193. [Google Scholar] [CrossRef]
- Lin, W.; Chen, Y.; Unadkat, J.D.; Zhang, X.; Wu, D.; Heimbach, T. Applications, challenges, and outlook for PBPK modeling and simulation: A regulatory, industrial and academic perspective. Pharm. Res. 2022, 39, 1701–1731. [Google Scholar] [CrossRef]
- Krstevska, A.; Đuriš, J.; Ibrić, S.; Cvijić, S. In-depth analysis of physiologically based pharmacokinetic (PBPK) modeling utilization in different application fields using text mining tools. Pharmaceutics 2022, 15, 107. [Google Scholar] [CrossRef]
- El-Khateeb, E.; Burkhill, S.; Murby, S.; Amirat, H.; Rostami-Hodjegan, A.; Ahmad, A. Physiological-based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20 years: In-depth analysis of applications, organizations, and platforms. Biopharm. Drug Dispos. 2021, 42, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Sager, J.E.; Yu, J.; Ragueneau-Majlessi, I.; Isoherranen, N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: A systematic review of published models, applications, and model verification. Drug Metab. Dispos. 2015, 43, 1823–1837. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulations: Principles, Methods, and Applications in the Pharmaceutical Industry; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Perry, C.; Davis, G.; Conner, T.M.; Zhang, T. Utilization of physiologically based pharmacokinetic modeling in clinical pharmacology and therapeutics: An overview. Curr. Pharmacol. Rep. 2020, 6, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.M.; Gardner, I.B.; Watson, K.J. Modelling and PBPK simulation in drug discovery. AAPS J. 2009, 11, 155–166. [Google Scholar] [CrossRef]
- Miller, N.A.; Reddy, M.B.; Heikkinen, A.T.; Lukacova, V.; Parrott, N. Physiologically based pharmacokinetic modelling for first-in-human predictions: An updated model building strategy illustrated with challenging industry case studies. Clin. Pharmacokinet. 2019, 58, 727–746. [Google Scholar] [CrossRef]
- Zhuang, X.; Lu, C. PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B 2016, 6, 430–440. [Google Scholar] [CrossRef]
- Min, J.S.; Bae, S.K. Prediction of drug–drug interaction potential using physiologically based pharmacokinetic modeling. Arch. Pharm. Res. 2017, 40, 1356–1379. [Google Scholar] [CrossRef]
- Chu, X.; Prasad, B.; Neuhoff, S.; Yoshida, K.; Leeder, J.S.; Mukherjee, D.; Taskar, K.; Varma, M.V.S.; Zhang, X.; Yang, X.; et al. Clinical implications of altered drug transporter abundance/function and PBPK modeling in specific populations: An ITC perspective. Clin. Pharmacol. Ther. 2022, 112, 501–526. [Google Scholar] [CrossRef] [PubMed]
- Jamei, M. Recent advances in development and application of physiologically based pharmacokinetic (PBPK) models: A transition from academic curiosity to regulatory acceptance. Curr. Pharmacol. Rep. 2016, 2, 161–169. [Google Scholar] [CrossRef]
- Dolton, M.J.; Chiang, P.-C.; Chen, Y. Mechanistic oral absorption modeling of halofantrine: Exploring the role of intestinal lymphatic transport. J. Pharm. Sci. 2021, 110, 1427–1430. [Google Scholar] [CrossRef]
- Wilson, C.M.; Freedman, D.O. Antiparasitic Agents. In Principles and Practice of Pediatric Infectious Disease; Long, S.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1488–1506. [Google Scholar] [CrossRef]
- Giao, P.T.; de Vries, P.J. Pharmacokinetic interactions of antimalarial agents. Clin. Pharmacokinet. 2001, 40, 343–373. [Google Scholar] [CrossRef]
- Karbwang, J.; Bangchang, K.N. Clinical pharmacokinetics of halofantrine. Clin. Pharmacokinet. 1994, 27, 104–119. [Google Scholar] [CrossRef]
- Caliph, S.M.; Charman, W.N.; Porter, C.J.H. Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J. Pharm. Sci. 2000, 89, 1073–1084. [Google Scholar] [CrossRef]
- Milton, K.A.; Edwards, G.; Ward, S.A.; Orme, M.L.; Breckenridge, A.M. Pharmacokinetics of halofantrine in man: Effects of food and dose size. Br. J. Clin. Pharmacol. 1989, 28, 71–77. [Google Scholar] [CrossRef]
- Lukacova, V.; Parrott, N.; Lavé, T.; Fraczkiewicz, G.; Bolger, M.B. General approach to calculation of tissue:plasma, partition coefficients for physiologically based pharmacokinetic (PBPK) modeling. In Proceedings of the AAPS National Annual Meeting and Exposition, Atlanta, GA, USA, 17–19 November 2008. [Google Scholar]
- Baune, B.; Flinois, J.P.; Furlan, V.; Gimenez, F.; Taburet, A.M.; Becquemont, L.; Farinotti, R. Halofantrine metabolism in microsomes in man: Major role of CYP 3A4 and CYP 3A5. J. Pharm. Pharmacol. 1999, 51, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Babalola, C.P.; Adegoke, A.O.; Ogunjinmi, M.A.; Osimosu, M.O. Determination of physicochemical properties of halofantrine. Afr. J. Med. Med. Sci. 2003, 32, 357–359. [Google Scholar] [PubMed]
- Khoo, S.-M.; Prankerd, R.J.; Edwards, G.A.; Porter, C.J.H.; Charman, W.N. A physicochemical basis for the extensive intestinal lymphatic transport of a poorly lipid-soluble antimalarial, halofantrine hydrochloride, after postprandial administration to dogs. J. Pharm. Sci. 2002, 91, 647–659. [Google Scholar] [CrossRef]
- Onyeji, C.O.; Omoruyi, S.I.; Oladimeji, F.A. Dissolution properties and characterization of halofantrine-2-hydroxypropyl-β-cyclodextrin binary systems. Pharmazie 2007, 62, 858–863. [Google Scholar]
- Chackalamannil, S.; Rotella, D.; Ward, S. Comprehensive Medicinal Chemistry III; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Klein, K.; Aarons, L.; Ter Kuile, F.O.; Nosten, F.; White, N.J.; Edstein, M.D.; Teja-Isavadharm, P. Population pharmacokinetics of halofantrine in healthy volunteers and patients with symptomatic falciparum malaria. J. Pharm. Pharmacol. 2012, 64, 1603–1613. [Google Scholar] [CrossRef]
- Krishna, S.; Ter Kuile, F.; Supanaranond, W.; Pukrittayakamee, S.; Teja-Isavadharm, P.; Kyle, D.; White, N. Pharmacokinetics, efficacy and toxicity of parenteral halofantrine in uncomplicated malaria. Br. J. Clin. Pharmacol. 1993, 36, 585–591. [Google Scholar] [CrossRef]
- Chemical Computing Group ULC. Molecular Operating Environment (MOE), Version 2022; Chemical Computing Group ULC: Montreal, QC, Canada, 2022. [Google Scholar]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; et al. Amber 2021; University of California: San Francisco, CA, USA, 2021. [Google Scholar]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 2019, 16, 528–552. [Google Scholar] [CrossRef]
- Vassetti, D.; Pagliai, M.; Procacci, P. Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules. J. Chem. Theory Comput. 2019, 15, 1983–1995. [Google Scholar] [CrossRef] [PubMed]
- Mosa, F.E.S.; Alqahtani, M.A.; El-Ghiaty, M.A.; Barakat, K.; El-Kadi, A.O.S. Identifying novel aryl hydrocarbon receptor (AhR) modulators from clinically approved drugs: In silico screening and in vitro validation. Arch. Biochem. Biophys. 2024, 754, 109958. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Roe, D.R.; Cheatham, T.E., III. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, J.A.; Remsberg, C.M.; Sayre, C.L.; Forrest, M.L.; Davies, N.M. Flip-flop pharmacokinetics–delivering a reversal of disposition: Challenges and opportunities during drug development. Ther. Deliv. 2011, 2, 643–672. [Google Scholar] [CrossRef]
- Wu, D.; Sanghavi, M.; Kollipara, S.; Ahmed, T.; Saini, A.K.; Heimbach, T. Physiologically based pharmacokinetics modeling in biopharmaceutics: Case studies for establishing the bioequivalence safe space for innovator and generic drugs. Pharm. Res. 2023, 40, 337–357. [Google Scholar] [CrossRef]
- Chryssafidis, P.; Tsekouras, A.A.; Macheras, P. Revising pharmacokinetics of oral drug absorption: II Bioavailability–bioequivalence considerations. Pharm. Res. 2021, 38, 1345–1356. [Google Scholar] [CrossRef]
- Belubbi, T.; Bassani, D.; Stillhart, C.; Parrott, N. Physiologically based biopharmaceutics modeling of food effect for basmisanil: A retrospective case study of the utility for formulation bridging. Pharmaceutics 2023, 15, 191. [Google Scholar] [CrossRef]
- Khoo, S.M.; Edwards, G.A.; Porter, C.J.H.; Charman, W.N. A conscious dog model for assessing the absorption, enterocyte-based metabolism, and intestinal lymphatic transport of halofantrine. J. Pharm. Sci. 2001, 90, 1599–1607. [Google Scholar] [CrossRef]
- Brocks, D.R.; Davies, N.M. Lymphatic drug absorption via the enterocytes: Pharmacokinetic simulation, modeling, and considerations for optimal drug development. J. Pharm. Pharm. Sci. 2018, 21, 254s–270s. [Google Scholar] [CrossRef]
- Imbimbo, B.P.; Martinelli, P.; Rocchetti, M.; Ferrari, G.; Bassotti, G.; Imbimbo, E. Efficiency of different criteria for selecting pharmacokinetic multiexponential equations. Biopharm. Drug Dispos. 1991, 12, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Ludden, T.M.; Beal, S.L.; Sheiner, L.B. Comparison of the Akaike Information Criterion, the Schwarz criterion and the F test as guides to model selection. J. Pharmacokinet. Biopharm. 1994, 22, 431–447. [Google Scholar] [CrossRef]
- Wu, W.; Ke, M.; Ye, L.; Lin, C. Application of physiologically based pharmacokinetic modeling to predict the pharmacokinetics of telavancin in obesity with renal impairment. Eur. J. Clin. Pharmacol. 2021, 77, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Chiney, M.S.; Ng, J.; Gibbs, J.P.; Shebley, M. Quantitative assessment of elagolix enzyme–transporter interplay and drug–drug interactions using physiologically based pharmacokinetic modeling. Clin. Pharmacokinet. 2020, 59, 617–627. [Google Scholar] [CrossRef]
- Holz, M.; Fahr, A. Compartment modeling. Adv. Drug Deliv. Rev. 2001, 48, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Abuassba, A.O.M. Compartmental models with application to pharmacokinetics. Procedia Comput. Sci. 2021, 187, 60–70. [Google Scholar] [CrossRef]
- Logan, R.; Kong, A.; Krise, J.P. Evaluating the roles of autophagy and lysosomal trafficking defects in intracellular distribution-based drug–drug interactions involving lysosomes. J. Pharm. Sci. 2013, 102, 4173–4180. [Google Scholar] [CrossRef] [PubMed]
- Pisonero-Vaquero, S.; Medina, D.L. Lysosomotropic drugs: Pharmacological tools to study lysosomal function. Curr. Drug Metab. 2017, 18, 1147–1158. [Google Scholar] [CrossRef]
- Holm, R.; Porter, J.H.C.; Edwards, G.A.; Müllertz, A.; Kristensen, H.G.; Charman, W.N. Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides. Eur. J. Pharm. Sci. 2003, 20, 91–97. [Google Scholar] [CrossRef]
- Karpf, D.M.; Holm, R.; Kristensen, H.G.; Müllertz, A. Influence of the type of surfactant and the degree of dispersion on the lymphatic transport of halofantrine in conscious rats. Pharm. Res. 2004, 2, 1413–1418. [Google Scholar] [CrossRef]
- Trevaskis, N.L.; Lee, G.; Escott, A.; Phang, K.L.; Hong, J.; Cao, E. Intestinal lymph flow, and lipid and drug transport scale allometrically from pre-clinical species to humans. Front. Physiol. 2020, 11, 458. [Google Scholar] [CrossRef] [PubMed]
- Charman, S.A.; Andreu, A.; Barker, H.; Blundell, S.; Campbell, A.; Campbell, M.; Chen, G.; Chiu, F.C.K.; Crighton, E.; Katneni, K.; et al. An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malar. J. 2020, 19, 1. [Google Scholar] [CrossRef]
- Espié, P.; Tytgat, D.; Sargentini-Maier, M.-L.; Poggesi, I.; Watelet, J.-B. Physiologically based pharmacokinetics (PBPK). Drug Metab. Rev. 2009, 41, 391–407. [Google Scholar] [CrossRef]
- De Sutter, P.-J.; De Cock, P.; Johnson, T.N.; Musther, H.; Gasthuys, E.; Vermeulen, A. Predictive performance of physiologically based pharmacokinetic modelling of beta-lactam antibiotic concentrations in adipose, bone, and muscle tissues. Drug Metab. Dispos. 2023, 51, 499–508. [Google Scholar] [CrossRef]
- Varma, M.V.S.; Feng, B.; Obach, R.S.; Troutman, M.D.; Chupka, J.; Miller, H.R.; El-Kattan, A. Physicochemical determinants of human renal clearance. J. Med. Chem. 2009, 52, 4844–4852. [Google Scholar] [CrossRef]
- El-Din, S.H.S.; Sabra, A.-N.A.-A.; Hammam, O.A.; El-Lakkany, N.M. Effect of ketoconazole, a cytochrome P450 inhibitor, on the efficacy of quinine and halofantrine against Schistosoma mansoni in mice. Korean J. Parasitol. 2013, 51, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Charbit, B.; Becquemont, L.; Lepère, B.; Peytavin, G.; Funck-Brentano, C. Pharmacokinetic and pharmacodynamic interaction between grapefruit juice and halofantrine. Clin. Pharmacol. Ther. 2002, 72, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Parrott, N.; Lukacova, V.; Fraczkiewicz, G.; Bolger, M.B. Predicting pharmacokinetics of drugs using physiologically based modeling—Application to food effects. AAPS J. 2009, 11, 45–53. [Google Scholar] [CrossRef]
- Pepin, X.J.H.; Huckle, J.E.; Alluri, R.V.; Basu, S.; Dodd, S.; Parrott, N.; Riedmaier, A.E. Understanding mechanisms of food effect and developing reliable PBPK models using a middle-out approach. AAPS J. 2021, 23, 12. [Google Scholar] [CrossRef] [PubMed]
- DeSesso, J.M.; Jacobson, C.F. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem. Toxicol. 2001, 39, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Jambhekar, S.S.; Breen, P.J. Basic Pharmacokinetics; Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Yousef, M.A.E. Development of Novel Models to Study Sub and Post Cellular Uptake of Drugs Following Oral Administration. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2024. Available online: https://doi.org/10.7939/r3-wfs6-t497 (accessed on 1 September 2025).
Property | Value | Reference |
---|---|---|
Molecular weight (g/mol) | 500.44 | AP 10.4 |
pKa | 8.18 | [32] |
pKa | 5.58 | [33] |
Log p | 7.58 | AP 10.4 |
Aqueous solubility (mg/mL) | 0.0001 (pH = 1.2) 0.00024 (pH =7.4) | [34] |
FaSSIF (mg/mL) | 0.00552 (pH = 6) | [33] |
FeSSIF (mg/mL) | 2.311 (pH = 6) | [33] |
Solubility factor | 105,000 | AP 10.4 |
Permeability (cm/s 10E4) | 1.44 | AP 10.4 |
Percent unbound in plasma (%) | 0.7 * | [35] |
Blood/plasma concentration ratio | 1.5 | [35,36] |
In vitro CYP3A4 Km halofantrine (µM) | 48 | [31] |
In vitro CYP3A4 Vmax halofantrine (pmol min−1 mg−1 protein) | 215 | [31] |
PK Parameter | Observed Value ± s.d. (n = 6) | Predicted Value | FE | %PE |
---|---|---|---|---|
Fasting State | ||||
Cmax (µg/L) | 184.0 ± 115.0 | 181.5 | 0.98 | 1.4 |
Tmax (h) | 6.0 ± 1.3 | 5.8 | 0.97 | 3.3 |
AUC0–t (µg·L−1·h) | 3.9 ± 2.6 | 3.9 | 1 | 0.0 |
Fed State | ||||
Cmax (µg/L) | 1218.0 ± 464.0 | 1106.6 | 0.91 | 9.1 |
Tmax (h) | 3.3 ± 1.5 | 4.1 | 1.24 | 24.2 |
AUC0–t (µg·L−1·h) | 11.3 ± 3.5 | 11.9 | 1.05 | 5.3 |
PK Parameter | Observed Value ± s.d. (n = 6) | Predicted Value | FE | %PE |
---|---|---|---|---|
Fasting State | ||||
Cmax (µg/L) | 184.0 ± 115.0 | 189.7 | 1.03 | 3.1 |
Tmax (h) | 6.0 ± 1.3 | 3.9 | 0.65 | 35 |
AUC0–t (µg·L−1·h) | 3.9 ± 2.6 | 4.5 | 1.15 | 15.4 |
Fed State | ||||
Cmax (µg/L) | 1218.0 ± 464.0 | 764.9 | 0.63 | 37.2 |
Tmax (h) | 3.3 ± 1.5 | 3.3 | 1 | 0 |
AUC0–t (µg·L−1·h) | 11.3 ± 3.5 | 12.3 | 1.09 | 8.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousef, M.; Mosa, F.E.S.; Barakat, K.H.; Davies, N.M.; Löbenberg, R. Indirect Modeling of Post-Prandial Intestinal Lymphatic Uptake of Halofantrine Using PBPK Approaches: Limitations and Implications. Pharmaceutics 2025, 17, 1228. https://doi.org/10.3390/pharmaceutics17091228
Yousef M, Mosa FES, Barakat KH, Davies NM, Löbenberg R. Indirect Modeling of Post-Prandial Intestinal Lymphatic Uptake of Halofantrine Using PBPK Approaches: Limitations and Implications. Pharmaceutics. 2025; 17(9):1228. https://doi.org/10.3390/pharmaceutics17091228
Chicago/Turabian StyleYousef, Malaz, Farag E. S. Mosa, Khaled H. Barakat, Neal M. Davies, and Raimar Löbenberg. 2025. "Indirect Modeling of Post-Prandial Intestinal Lymphatic Uptake of Halofantrine Using PBPK Approaches: Limitations and Implications" Pharmaceutics 17, no. 9: 1228. https://doi.org/10.3390/pharmaceutics17091228
APA StyleYousef, M., Mosa, F. E. S., Barakat, K. H., Davies, N. M., & Löbenberg, R. (2025). Indirect Modeling of Post-Prandial Intestinal Lymphatic Uptake of Halofantrine Using PBPK Approaches: Limitations and Implications. Pharmaceutics, 17(9), 1228. https://doi.org/10.3390/pharmaceutics17091228