Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = halofantrine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1231 KB  
Article
Indirect Modeling of Post-Prandial Intestinal Lymphatic Uptake of Halofantrine Using PBPK Approaches: Limitations and Implications
by Malaz Yousef, Farag E. S. Mosa, Khaled H. Barakat, Neal M. Davies and Raimar Löbenberg
Pharmaceutics 2025, 17(9), 1228; https://doi.org/10.3390/pharmaceutics17091228 - 22 Sep 2025
Viewed by 834
Abstract
Background/Objectives: Despite the recognized importance and distinctive characteristics of the intestinal lymphatic pathway in drug absorption, its pharmacokinetic modeling remains largely unexplored. This study aimed to address this gap by developing a physiologically based pharmacokinetic model (PBPK) to represent the oral lymphatic uptake [...] Read more.
Background/Objectives: Despite the recognized importance and distinctive characteristics of the intestinal lymphatic pathway in drug absorption, its pharmacokinetic modeling remains largely unexplored. This study aimed to address this gap by developing a physiologically based pharmacokinetic model (PBPK) to represent the oral lymphatic uptake of halofantrine following a fatty meal. Methods: Using GastroPlus™ 9.8.3 and published literature data, halofantrine absorption, distribution, metabolism, and elimination in both fasting and fed states were modeled. As the used software does not directly simulate intestinal lymphatic transport, lymphatic involvement in the fed state was examined indirectly through parameter adjustments such as first-pass metabolism, pKa-driven solubility changes, and bile-salt-mediated solubilization, with the aid of molecular dynamics simulations under post-prandial pH. Results: The pharmacokinetic models revealed a reduction in the first-pass effect of halofantrine in the fed state compared to that in the fasting state. While adjustments in metabolism kinetics sufficed for constructing a representative PBPK model in the fasting state, capturing the fed-state profile required both modifications to metabolism kinetics and other parameters related to the structural rearrangements of halofantrine driven by the changes in intestinal pH following food intake. These changes were confirmed using molecular dynamics simulations of halofantrine in pHs reflecting the post-prandial conditions. Conclusions: This study underscores the need for further exploration and direct modeling of intestinal lymphatic uptake via PBPK models, highlighting its underexplored status in simulation algorithms. Moreover, the importance of integrating representative physicochemical factors for drugs, particularly in post-prandial conditions or lipid formulations, is evident. Overall, these findings contribute to advancing predictive regulatory and developmental considerations in drug development using post hoc analyses. Full article
(This article belongs to the Special Issue In Silico Pharmacokinetic and Pharmacodynamic (PK-PD) Modeling)
Show Figures

Graphical abstract

18 pages, 1991 KB  
Article
Halofantrine Hydrochloride Acts as an Antioxidant Ability Inhibitor That Enhances Oxidative Stress Damage to Candida albicans
by Juan Xiong, Li Wang, Zhe Feng, Sijin Hang, Jinhua Yu, Yanru Feng, Hui Lu and Yuanying Jiang
Antioxidants 2024, 13(2), 223; https://doi.org/10.3390/antiox13020223 - 9 Feb 2024
Cited by 11 | Viewed by 3027
Abstract
Candida albicans, a prominent opportunistic pathogenic fungus in the human population, possesses the capacity to induce life-threatening invasive candidiasis in individuals with compromised immune systems despite the existence of antifungal medications. When faced with macrophages or neutrophils, C. albicans demonstrates its capability [...] Read more.
Candida albicans, a prominent opportunistic pathogenic fungus in the human population, possesses the capacity to induce life-threatening invasive candidiasis in individuals with compromised immune systems despite the existence of antifungal medications. When faced with macrophages or neutrophils, C. albicans demonstrates its capability to endure oxidative stress through the utilization of antioxidant enzymes. Therefore, the enhancement of oxidative stress in innate immune cells against C. albicans presents a promising therapeutic approach for the treatment of invasive candidiasis. In this study, we conducted a comprehensive analysis of a library of drugs approved by the Food and Drug Administration (FDA). We discovered that halofantrine hydrochloride (HAL) can augment the antifungal properties of oxidative damage agents (plumbagin, menadione, and H2O2) by suppressing the response of C. albicans to reactive oxygen species (ROS). Furthermore, our investigation revealed that the inhibitory mechanism of HAL on the oxidative response is dependent on Cap1. In addition, the antifungal activity of HAL has been observed in the Galleria mellonella infection model. These findings provide evidence that targeting the oxidative stress response of C. albicans and augmenting the fungicidal capacity of oxidative damage agents hold promise as effective antifungal strategies. Full article
Show Figures

Figure 1

17 pages, 4303 KB  
Article
Development of a Novel In Vitro Model to Study Lymphatic Uptake of Drugs via Artificial Chylomicrons
by Malaz Yousef, Chulhun Park, Mirla Henostroza, Nadia Bou Chacra, Neal M. Davies and Raimar Löbenberg
Pharmaceutics 2023, 15(11), 2532; https://doi.org/10.3390/pharmaceutics15112532 - 26 Oct 2023
Cited by 9 | Viewed by 4995
Abstract
The lymphatic system plays a crucial role in the absorption of lipophilic drugs, making it an important route for drug delivery. In this study, an in vitro model using Intralipid® was developed to investigate the lymphatic uptake of drugs. The model was [...] Read more.
The lymphatic system plays a crucial role in the absorption of lipophilic drugs, making it an important route for drug delivery. In this study, an in vitro model using Intralipid® was developed to investigate the lymphatic uptake of drugs. The model was validated using cannabidiol, halofantrine, quercetin, and rifampicin. Remarkably, the uptake of these drugs closely mirrored what would transpire in vivo. Furthermore, adding peanut oil to the model system significantly increased the lymphatic uptake of rifampicin, consistent with meals containing fat stimulating lymphatic drug uptake. Conversely, the inclusion of pluronic L-81 was observed to inhibit the lymphatic uptake of rifampicin in the model. This in vitro model emerges as a valuable tool for investigating and predicting drug uptake via the lymphatic system. It marks the first phase in developing a physiologically based predictive tool that can be refined further to enhance the precision of drug interaction predictions with chylomicrons and their subsequent transport via the lymphatic system. Moreover, it can be employed to explore innovative drug formulations and excipients that either enhance or hinder lymphatic drug uptake. The insights gained from this study have significant implications for advancing drug delivery through the lymphatic system. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

14 pages, 2377 KB  
Article
CRISPR/Cas9-Based Screening of FDA-Approved Drugs for NRF2 Activation: A Novel Approach to Discover Therapeutics for Non-Alcoholic Fatty Liver Disease
by James Li, Sandra Arest, Bartlomiej Olszowy, John Gordon, Carlos A. Barrero and Oscar Perez-Leal
Antioxidants 2023, 12(7), 1363; https://doi.org/10.3390/antiox12071363 - 29 Jun 2023
Cited by 5 | Viewed by 3982
Abstract
With the rising prevalence of obesity, non-alcoholic fatty liver disease (NAFLD) now affects 20–25% of the global population. NAFLD, a progressive condition associated with oxidative stress, can result in cirrhosis and liver cancer in 10% and 3% of patients suffering NAFLD, respectively. Therapeutic [...] Read more.
With the rising prevalence of obesity, non-alcoholic fatty liver disease (NAFLD) now affects 20–25% of the global population. NAFLD, a progressive condition associated with oxidative stress, can result in cirrhosis and liver cancer in 10% and 3% of patients suffering NAFLD, respectively. Therapeutic options are currently limited, emphasizing the need for novel treatments. In this study, we examined the potential of activating the transcription factor NRF2, a crucial player in combating oxidative stress, as an innovative approach to treating NAFLD. Utilizing a CRISPR/Cas9-engineered human HEK293T cell line, we were able to monitor the expression of heme oxygenase-1 (HMOX1), an NRF2 target, using a Nanoluc luciferase tag. Our model was validated using a known NRF2 activator, after which we screened 1200 FDA-approved drugs, unearthing six compounds (Disulfiram, Thiostrepton, Auranofin, Thimerosal, Halofantrine, and Vorinostat) that enhanced NRF2 activity and antioxidant response. These compounds demonstrated protective effects against oxidative stress induced by hydrogen peroxide and lipid droplets accumulation in vitro with hepatoma HUH-7 cells. Our study underscores the utility of CRISPR/Cas9 tagging with Nanoluc luciferase in identifying potential NRF2 activators, paving the way for potential NAFLD therapeutics. Full article
Show Figures

Figure 1

8 pages, 985 KB  
Article
Resistance to Antimalarial Monotherapy Is Cyclic
by Rachel Weitzman, Ortal Calfon-Peretz, Trishna Saha, Naamah Bloch, Karin Ben Zaken, Avi Rosenfeld, Moshe Amitay and Abraham O. Samson
J. Clin. Med. 2022, 11(3), 781; https://doi.org/10.3390/jcm11030781 - 31 Jan 2022
Cited by 5 | Viewed by 3450
Abstract
Malaria is a prevalent parasitic disease that is estimated to kill between one and two million people—mostly children—every year. Here, we query PubMed for malaria drug resistance and plot the yearly citations of 14 common antimalarials. Remarkably, most antimalarial drugs display cyclic resistance [...] Read more.
Malaria is a prevalent parasitic disease that is estimated to kill between one and two million people—mostly children—every year. Here, we query PubMed for malaria drug resistance and plot the yearly citations of 14 common antimalarials. Remarkably, most antimalarial drugs display cyclic resistance patterns, rising and falling over four decades. The antimalarial drugs that exhibit cyclic resistance are quinine, chloroquine, mefloquine, amodiaquine, artesunate, artemether, sulfadoxine, doxycycline, halofantrine, piperaquine, pyrimethamine, atovaquone, artemisinin, and dihydroartemisinin. Exceptionally, the resistance of the two latter drugs can also correlate with a linear rise. Our predicted antimalarial drug resistance is consistent with clinical data reported by the Worldwide Antimalarial Resistance Network (WWARN) and validates our methodology. Notably, the cyclical resistance suggests that most antimalarial drugs are sustainable in the end. Furthermore, cyclic resistance is clinically relevant and discourages routine monotherapy, in particular, while resistance is on the rise. Finally, cyclic resistance encourages the combination of antimalarial drugs at distinct phases of resistance. Full article
Show Figures

Figure 1

19 pages, 7540 KB  
Article
A 3D-Printed Polymer–Lipid-Hybrid Tablet towards the Development of Bespoke SMEDDS Formulations
by Bryce W. Barber, Camille Dumont, Philippe Caisse, George P. Simon and Ben J. Boyd
Pharmaceutics 2021, 13(12), 2107; https://doi.org/10.3390/pharmaceutics13122107 - 7 Dec 2021
Cited by 27 | Viewed by 5399
Abstract
3D printing is a rapidly growing area of interest within pharmaceutical science thanks to its versatility in creating different dose form geometries and drug doses to enable the personalisation of medicines. Research in this area has been dominated by polymer-based materials; however, for [...] Read more.
3D printing is a rapidly growing area of interest within pharmaceutical science thanks to its versatility in creating different dose form geometries and drug doses to enable the personalisation of medicines. Research in this area has been dominated by polymer-based materials; however, for poorly water-soluble lipophilic drugs, lipid formulations present advantages in improving bioavailability. This study progresses the area of 3D-printed solid lipid formulations by providing a 3D-printed dissolvable polymer scaffold to compartmentalise solid lipid formulations within a single dosage form. This allows the versatility of different drugs in different lipid formulations, loaded into different compartments to generate wide versatility in drug release, and specific control over release geometry to tune release rates. Application to a range of drug molecules was demonstrated by incorporating the model lipophilic drugs; halofantrine, lumefantrine and clofazimine into the multicompartmental scaffolded tablets. Fenofibrate was used as the model drug in the single compartment scaffolded tablets for comparison with previous studies. The formulation-laden scaffolds were characterised using X-ray CT and dispersion of the formulation was studied using nephelometry, while release of a range of poorly water-soluble drugs into different gastrointestinal media was studied using HPLC. The studies show that dispersion and drug release are predictably dependent on the exposed surface area-to-volume ratio (SA:V) and independent of the drug. At the extremes of SA:V studied here, within 20 min of dissolution time, formulations with an SA:V of 0.8 had dispersed to between 90 and 110%, and completely released the drug, where as an SA:V of 0 yielded 0% dispersion and drug release. Therefore, this study presents opportunities to develop new dose forms with advantages in a polypharmacy context. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

Back to TopTop