Physiologically Based Pharmacokinetic Modeling and Simulations in Lieu of Clinical Pharmacology Studies to Support the New Drug Application of Asciminib
Abstract
1. Introduction
2. Materials and Methods
2.1. PBPK Platform
2.2. Asciminib (As a Victim and a Perpetrator Compound)
2.2.1. Physicochemical and Blood-Binding Properties
2.2.2. Absorption
2.2.3. Distribution
2.2.4. Metabolism and Excretion
In Vitro Studies
Human ADME Study
Biliary Excretion
Renal Elimination
Determination of the Final Fraction Metabolized (fm) and Fraction Transported (ft) to the Total Asciminib Clearance
2.2.5. Interaction
Inhibition Effects of Asciminib on CYP and UGT Enzymes
Induction Effects of Asciminib on CYP Enzymes
Inhibition Effects of Asciminib on Transporters
2.2.6. Model Assumptions and Limitations
Contribution of Biliary Secretion via BCRP
Enterohepatic Circulation (EHC)
2.3. Other Compound Victim Drug Files
2.4. Other Compound Perpetrator Drug Files
2.4.1. CYP3A4 Perpetrators
2.4.2. Imatinib
2.5. Clinical Trial Simulation Designs
2.6. Evaluation of Predictive Performance and PBPK Model Diagnostics
2.7. Identification of Uncertain Parameters in the Asciminib PBPK Models
2.8. Applications of the Established Asciminib PBPK Model
2.9. Presentation of Output Parameters
3. Results
3.1. Performance Verification of the Asciminib Model to Predict the PK in Healthy Subjects and Cancer Patients
Trial 1 | Dose and Regimen | Mean Cmax ± SD (CV%) ng/mL | Mean AUC ± SD (CV%) ng·h/mL 3 | Mean Ctrough ± SD (CV%) ng/mL 4 | Median Tmax [Min, Max] h | ||||
---|---|---|---|---|---|---|---|---|---|
Observed | Simulated | Observed | Simulated | Observed | Simulated | Observed | Simulated | ||
Healthy volunteers | |||||||||
Clarithromycin DDI control arm [5] | 40 mg single dose | 567 ± 187 (33) | 625 ± 139 (22) | 6040 ± 2020 (33.5) | 5490 ± 1964 (36) | NA | NA | 2.02 [1.00, 3.00] | 1.20 [0.86, 1.97] |
%PE 2 = 10.2 | %PE = −9.11 | %PE = −40.6 | |||||||
Rifampicin DDI control arm [5] | 40 mg single dose | 595 ± 207 (34.7) | 627 ± 138 (22) | 5870 ± 1720 (29.3) | 5520 ± 1996 (36) | NA | NA | 2.00 [1.98, 4.00] | 1.20 [0.91, 1.97] |
%PE = 5.38 | %PE = −5.96 | %PE = −40.0 | |||||||
Itraconazole DDI control arm [5] | 40 mg single dose | 594 ± 225 (37.8) | 623 ± 138 (22) | 6000 ± 2210 (36.9) | 5436 ± 1958 (36) | NA | NA | 2.01 [1.93, 3.00] | 1.20 [0.86, 1.97] |
%PE = 4.88 | %PE = −9.40 | %PE = −40.3 | |||||||
Fasted control arm [6] | 40 mg single dose | 589 ± 220 (37.3) | 619 ± 137 (22) | 6040 ± 1980 (32.7) | 5299 ± 1868 (35) | NA | NA | 2.01 [1.00, 5.00] | 1.25 [0.95, 2.00] |
%PE = 5.09 | %PE = −12.3 | %PE = −37.8 | |||||||
HI control arm [7] | 40 mg single dose | 584 ± 89.0 (15.2) | 659 ± 148 (23) | 5000 ± 1020 (20.4) | 6306 ± 2091 (33) | NA | NA | 2.00 [1.00, 4.00] | 1.22 [0.90, 2.02] |
%PE = 12.8 | %PE = 26.1 | %PE = −39.0 | |||||||
RI control arm [7] | 40 mg single dose | 584 ± 164 (28.0) | 696 ± 140 (20) | 5720 ± 1530 (26.7) | 6904 ± 2279 (33) | NA | NA | 2.03 [1.02, 2.05] | 1.26 [0.90, 1.94] |
%PE = 19.2 | %PE = 20.7 | %PE = −37.9 | |||||||
Cancer patients | |||||||||
First in human | 20 mg BID Day 1 | 249 ± 92.6 (37.2) | 305 ± 70 (23) | 1053 ± 385 (36.5) | 1529 ± 433 (28) | NA | NA | 2.07 [1.83, 3.10] | 1.20 [0.87, 1.86] |
%PE = 22.5 | %PE = 45.2 | %PE = −42.0 | |||||||
20 mg BID Day 15 | 339 ± 108 (31.9) | 445 ± 127 (29) | 2515 ± 710 (28.2) | 3216 ± 1277 (40) | 114 ± 61.8 (54.0) | 149 ± 90 (61) | 2.98 [1.97, 4.07] | 1.14 [0.89, 1.71] | |
%PE = 31.3 | %PE = 27.9 | %PE = 30.7 | %PE = −61.7 | ||||||
20 mg BID Day 28 | 537 ± 544 (101) | 445 ± 127 (29) | 2977 ± 2165 (72.7) | 3216 ± 1277 (40) | 128 ± 93.1 (72.8) | 149 ± 90 (61) | 2.03 [1.25, 6.00] | 1.15 [0.86, 1.73] | |
%PE = −17.1 | %PE = 8.03 | %PE = 16.4 | %PE = −43.4 | ||||||
40 mg BID Day 1 | 653 ± 468 (71.6) | 618 ± 145 (24) | 2695 ± 1679 (62.3) | 3187 ± 925 (29) | NA | NA | 2.10 [1.95, 5.62] | 1.24 [0.87, 1.90] | |
%PE = −5.36 | %PE = 18.3 | %PE = −41.0 | |||||||
40 mg BID Day 15 | 806 ± 365 (45.3) | 980 ± 302 (31) | 5519 ± 2782 (50.4) | 7545 ± 3096 (41) | 309 ± 218 (70.6) | 385 ± 221 (58) | 2.11 [1.97, 4.03] | 1.18 [0.89, 1.71] | |
%PE = 21.6 | %PE = 36.7 | %PE = 24.6 | %PE = −44.1 | ||||||
40 mg BID Day 28 | 873 ± 369 (42.3) | 980 ± 302 (31) | 5777 ± 2439 (42.2) | 7544 ± 3097 (41) | 308 ± 162 (52.5) | 384 ± 221 (58) | 2.01 [1.00, 6.00] | 1.15 [0.86, 1.73] | |
%PE = 12.3 | %PE = 30.6 | %PE = 24.7 | %PE = −42.8 | ||||||
80 mg BID Day 1 | 1365 ± 534 (39.1) | 1206 ± 283 (24) | 5628 ± 2160 (38.4) | 6308 ± 1788 (28) | NA | NA | 2.88 [1.00, 3.93] | 1.24 [0.91, 1.90] | |
%PE = −11.6 | %PE = 12.1 | %PE = −57.6 | |||||||
80 mg BID Day 15 | 2127 ± 666 (31.3) | 1939 ± 572 (29) | 11,971 ± 3598 (30.1) | 15,100 ± 5897 (39) | 1087 ± 723 (66.5) | 780 ± 422 (54) | 2.13 [2.00, 3.00] | 1.18 [0.89, 1.76] | |
%PE = −8.84 | %PE = 26.1 | %PE = −28.2 | %PE = −44.6 | ||||||
80 mg BID Day 28 | 2165 ± 788 (36.4) | 1939 ± 572 (29) | 14,327 ± 6400 (44.7) | 15,096 ± 5896 (39) | 1020 ± 576 (56.5) | 779 ± 422 (54) | 2.02 [1.5, 3.97] | 1.19 [0.90, 1.73] | |
%PE = −10.4 | %PE = 5.37 | %PE = −23.6 | %PE = −41.1 | ||||||
160 mg BID Day 1 | 2923 ± 1545 (52.9) | 2508 ± 614 (24) | 13,706 ± 4533 (33.1) | 13,360 ± 3976 (30) | NA | NA | 2.10 [0.83, 5.98] | 1.24 [0.87, 1.94] | |
%PE = −14.2 | %PE = −2.52 | %PE = −41.0 | |||||||
160 mg BID Day 15 | 4327 ± 1368 (31.6) | 4373 ± 1504 (34) | 30,577 ± 13,410 (43.9) | 35,506 ± 15,925 (45) | 2193 ± 1036 (47.2) | 1962 ± 1161 (59) | 2.17 [1.00, 3.92] | 1.18 [0.85, 1.71] | |
%PE = 1.06 | %PE = 16.1 | %PE = −10.5 | %PE = −45.6 | ||||||
160 mg BID Day 28 | 4809 ± 1587 (33.0) | 4373 ± 1505 (34) | 32,768 ± 11,949 (36.5) | 35,495 ± 15,934 (45) | 2559 ± 899 (35.1) | 1960 ± 1162 (59) | 2.02 [1.87, 3.03] | 1.17 [0.86, 1.73] | |
%PE = −9.07 | %PE = 8.32 | %PE = −23.4 | %PE = −42.1 | ||||||
200 mg BID Day 1 | 3646 ± 1161 (31.8) | 3275 ± 790 (24) | 16,788 ± 4964 (29.6) | 17,646 ± 5329 (30) | NA | NA | 2.03 [0.95, 7.28] | 1.28 [0.91, 2.15] | |
%PE = −10.2 | %PE = 5.11 | %PE = −36.9 | |||||||
200 mg BID Day 15 | 5700 ± 1782 (31.3) | 6052 ± 2277 (38) | 45,641 ± 13,252 (29.0) | 50,649 ± 24,819 (49) | 3191 ± 1391 (43.6) | 2910 ± 1852 (64) | 2.10 [0.50, 4.00] | 1.22 [0.89, 1.84] | |
%PE = 6.18 | %PE = 11.0 | %PE = −8.81 | %PE = −41.9 | ||||||
200 mg BID Day 28 | 6069 ± 2447 (40.3) | 6050 ± 2278 (38) | 40,639 ± 18,474 (45.5) | 50,622 ± 24,826 (49) | 3137 ± 1899 (60.5) | 2906 ± 1853 (64) | 2.00 [0.90, 7.03] | 1.19 [0.90, 1.81] | |
%PE = −0.31 | %PE = 24.6 | %PE = −7.36 | %PE = −40.5 | ||||||
80 mg QD Day 1 | 1253 ± 448 (35.8) | 1301 ± 312 (24) | 5780 ± 2043 (35.3) | 6874 ± 2054 (30) | NA | NA | 2.06 [1.13, 6.00] | 1.22 [0.88, 1.93] | |
%PE = 3.83 | %PE = 18.9 | %PE = −40.8 | |||||||
80 mg QD Day 15 | 1595 ± 551 (34.5) | 1587 ± 466 (29) | 14,702 ± 4219 (28.7) | 17,541 ± 8323 (47) | 227 ± 97.7 (43.1) | 303 ± 262 (86) | 2.15 [1.02, 4.37] | 1.18 [0.88, 1.85] | |
%PE = −0.50 | %PE = 19.3 | %PE = 33.5 | %PE = −45.1 | ||||||
80 mg QD Day 28 | 1826 ± 422 (23.1) | 1587 ± 466 (29) | 15,633 ± 4070 (26.0) | 17,544 ± 8328 (47) | 208 ± 84.4 (40.7) | 303 ± 262 (86) | 2.00 [0.95, 4.10] | 1.19 [0.90, 1.87] | |
%PE = −13.1 | %PE = 12.2 | %PE = 45.7 | %PE = −40.5 | ||||||
120 mg QD Day 1 | 2199 ± 619 (28.2) | 1942 ± 455 (23) | 9543 ± 2795 (29.3) | 10,333 ± 3021 (29) | NA | NA | 2.04 [1.13, 7.65] | 1.22 [0.88, 1.97] | |
%PE = 11.7 | %PE = 8.28 | %PE = −40.2 | |||||||
120 mg QD Day 15 | 2405 ± 748 (31.1) | 2396 ± 715 (30) | 21,924 ± 6222 (28.4) | 26,948 ± 13,403 (50) | 342 ± 174 (50.9) | 481 ± 454 (94) | 2.03 [0.98, 4.00] | 1.22 [0.88, 1.89] | |
%PE = −0.37 | %PE = 22.9 | %PE = 40.6 | %PE = −39.9 | ||||||
120 mg QD Day 28 | 2547 ± 750 (29.5) | 2396 ± 717 (30) | 21,829 ± 6703 (30.7) | 26,956 ± 13,457 (50) | 332 ± 146 (43.8) | 480 ± 457 (95) | 2.00 [1.00, 3.17] | 1.22 [0.90, 1.91] | |
%PE = −5.93 | %PE = 23.5 | %PE = 44.6 | %PE = −39.0 | ||||||
200 mg QD Day 1 | 3963 ± 1323 (33.4) | 3271 ± 724 (22) | 17,234 ± 5648 (32.8) | 17,482 ± 4867 (28) | NA | NA | 2.00 [1.08, 4.02] | 1.22 [0.88, 1.97] | |
%PE = −17.5 | %PE = 1.44 | %PE = −39.0 | |||||||
200 mg QD Day 15 | 4228 ± 1532 (36.3) | 4152 ± 1166 (28) | 40,612 ± 16,291 (40.1) | 48,302 ± 22,663 (47) | 787 ± 493 (62.7) | 928 ± 774 (83) | 2.05 [1.00, 4.00] | 1.18 [0.88, 1.89] | |
%PE = −1.80 | %PE = 18.9 | %PE = 17.9 | %PE = −42.4 | ||||||
200 mg QD Day 28 | 4502 ± 1768 (39.3) | 4152 ± 1168 (28) | 39,144 ± 16,171 (41.3) | 48,309 ± 22,708 (47) | 523 ± 318 (60.8) | 927 ± 776 (84) | 2.02 [2.00, 3.00] | 1.19 [0.90, 1.91] | |
%PE = −7.77 | %PE = 23.4 | %PE = 77.2 | %PE = −41.1 | ||||||
Phase III | 40 mg BID Day 15 | 1010 ± 419 (41.3) | 1030 ± 358 (35) | 6070 ± 2090 (34.5) | 8062 ± 3813 (47) | 324 ± 139 (43) | 422 ± 284 (67) | 1.97 [0.98, 3.33] | 1.16 [0.87, 1.71] |
%PE = 1.98 | %PE = 32.8 | %PE = 30.2 | %PE = −41.1 | ||||||
AFE | 1.00 | 1.14 | 1.13 | ||||||
AAFE | 1.10 | 1.17 | 1.29 |
3.2. Performance Verification of the Asciminib Model to Predict the Victim DDI Potential in Healthy Volunteers
3.2.1. Clarithromycin (Strong CYP3A Inhibitor)
3.2.2. Itraconazole Capsule (Strong CYP3A Inhibitor)
3.2.3. Rifampicin (Strong CYP3A Inducer)
3.2.4. Imatinib (a CYP3A4, BCRP, UGT1A3/4, and UGT2B17 Inhibitor)
3.3. Performance Verification of the Asciminib Model to Predict the Perpetrator DDI Potential in Healthy Volunteers
3.3.1. Midazolam (CYP3A Substrate)
3.3.2. S-Warfarin (CYP2C9 Substrate)
3.3.3. Repaglinide (a CYP2C8 and CYP3A4 Substrate)
3.3.4. Performance Verification of the Asciminib Model to Predict the Effect of Impaired Hepatic Function
3.3.5. Performance Verification of the Asciminib Model to Predict the Effect of Impaired Renal Function on the PK
3.4. PBPK Model Applications
3.4.1. Predictions of Victim DDI Potential in Untested Clinical Scenarios with the Validated Asciminib PBPK Model
Clarithromycin and Itraconazole (Strong CYP3A Inhibitors)
Fluconazole and Erythromycin (Moderate CYP3A Inhibitors)
Rifampicin (a Strong CYP3A Inducers)
Efavirenz (a Moderate CYP3A Inducer)
Imatinib (a CYP3A4, BCRP, UGT1A3/4, and UGT2B17 Inhibitor)
3.4.2. Predictions of Perpetrator DDI Potential in Untested Clinical Scenarios with the Validated Asciminib PBPK Model
Midazolam (a CYP3A4 Substrate)
S-Warfarin (a CYP2C9 Substrate)
Repaglinide (a CYP2C8, CYP3A4 and OATP1B Substrate)
Caffeine (a CYP1A2 Substrate)
Omeprazole (a CYP2C19 Substrate)
Raltegravir (a UGT1A1 Substrate)
3.4.3. Predictions of Hepatic Impairment Potential
3.4.4. Predictions of Renal Impairment Potential
4. Discussion
4.1. Extrapolation of the Effects of Strong and Moderate CYP3A Inhibitors on Asciminib (80 and 200 mg Doses)
4.2. Extrapolation of the Effects of Strong and Moderate CYP3A Inducers on Asciminib (80 and 200 mg Doses)
4.3. Extrapolation of the Effects of Imatinib on Asciminib (80 and 200 mg Doses)
4.4. Extrapolation of Asciminib Effects at 80 mg QD and 200 mg BID on CYP3A-, CYP2C9-, and CYP2C8-Sensitive Substrates
4.5. Prediction of Asciminib Effects at 40 mg BID, 80 mg QD, and 200 mg BID on CYP2C19-Sensitive Substrates
4.6. Prediction of Asciminib Effects at 40 mg BID, 80 mg QD, and 200 mg BID on UGT1A1-Sensitive Substrates
4.7. Prediction of Asciminib Effects at 40 mg BID, 80 mg QD, and 200 mg BID on CYP1A2-Sensitive Substrates
4.8. Extrapolation of the Effect of Hepatic and Renal Impairment on Asciminib (80 mg and 200 mg oses)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Significance Statement
List of Nonstandard Abbreviations
References
- Mauro, M.J.; Boquimpani, C.; Réa, D.; Hochhaus, A.; Maheshwari, V.K.; Allepuz, A.; Patwardhan, P.; Wu, Y.; DeRosa, M.; Minami, Y. CML-417: ASCEMBL Phase 3 Health-Related Quality of Life (HRQL) Comparison of Asciminib and Bosutinib for Patients with Chronic Myelogenous Leukemia in Chronic Phase (CML-CP), Previously Treated with 2 or More Tyrosine Kinase Inhibitors (TKI). Clin. Lymphoma Myeloma Leuk. 2021, 21 (Suppl. 1), S336. [Google Scholar] [CrossRef]
- Combes, F.P.; Sy, S.K.B.; Li, Y.F.; Lorenzo, S.; Dasgupta, K.; Kapoor, S.; Hoch, M.; Ho, Y.Y. Dose Justification for Asciminib in Patients with Philadelphia Chromosome-Positive Chronic Myeloid Leukemia with and Without the T315I Mutation. Clin. Pharmacokinet. 2024, 63, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.; Hanna, I.; Eggimann, F.K.; Schoepfer, J.; Ray, T.; Zhu, B.; Wang, L.; Priess, P.; Tian, X.; Hourcade-Potelleret, F.; et al. Disposition of Asciminib, a Potent BCR-ABL1 Tyrosine Kinase Inhibitor, in Healthy Male Subjects. Xenobiotica 2020, 50, 150–169. [Google Scholar] [CrossRef] [PubMed]
- Hoch, M.; Sengupta, T.; Hourcade-Potelleret, F. Pharmacokinetic Drug Interactions of Asciminib with the Sensitive Cytochrome P450 Probe Substrates Midazolam, Warfarin, and Repaglinide in Healthy Participants. Clin. Transl. Sci. 2022, 15, 1406–1416. [Google Scholar] [CrossRef]
- Hoch, M.; Huth, F.; Sato, M.; Sengupta, T.; Quinlan, M.; Dodd, S.; Kapoor, S.; Hourcade-Potelleret, F. Pharmacokinetics of Asciminib in the Presence of CYP3A or P-Gp Inhibitors, CYP3A Inducers, and Acid-Reducing Agents. Clin. Transl. Sci. 2022, 15, 1698–1712. [Google Scholar] [CrossRef]
- Hoch, M.; Zack, J.; Quinlan, M.; Huth, F.; Forte, S.; Dodd, S.; Aimone, P.; Hourcade-Potelleret, F. Pharmacokinetics of Asciminib When Taken With Imatinib or With Food. Clin. Pharmacol. Drug Dev. 2022, 11, 207–219. [Google Scholar] [CrossRef]
- Hoch, M.; Sato, M.; Zack, J.; Quinlan, M.; Sengupta, T.; Allepuz, A.; Aimone, P.; Hourcade-Potelleret, F. Pharmacokinetics of Asciminib in Individuals With Hepatic or Renal Impairment. J. Clin. Pharmacol. 2021, 61, 1454–1465. [Google Scholar] [CrossRef]
- Hoch, M.; Huth, F.; Manley, P.W.; Loisios-Konstantinidis, I.; Combes, F.P.; Li, Y.F.; Fu, Y.; Sy, S.K.B.; Obourn, V.; Chakraborty, A.; et al. Clinical Pharmacology of Asciminib: A Review. Clin. Pharmacokinet. 2024, 63, 1513–1528. [Google Scholar] [CrossRef]
- Fahmi, O.A.; Hurst, S.; Plowchalk, D.; Cook, J.; Guo, F.; Youdim, K.; Dickins, M.; Phipps, A.; Darekar, A.; Hyland, R.; et al. Comparison of Different Algorithms for Predicting Clinical Drug-Drug Interactions, Based on the Use of CYP3A4 in Vitro Data: Predictions of Compounds as Precipitants of Interaction. Drug Metab. Dispos. 2009, 37, 1658–1666. [Google Scholar] [CrossRef]
- Prasad, B.; Bhatt, D.K.; Johnson, K.; Chapa, R.; Chu, X.; Salphati, L.; Xiao, G.; Lee, C.; Hop, C.E.C.A.; Mathias, A.; et al. Abundance of Phase 1 and 2 Drug-Metabolizing Enzymes in Alcoholic and Hepatitis C Cirrhotic Livers: A Quantitative Targeted Proteomics Study. Drug Metab. Dispos. 2018, 46, 943–952. [Google Scholar] [CrossRef]
- Heimbach, T.; Chen, Y.; Chen, J.; Dixit, V.; Parrott, N.; Peters, S.A.; Poggesi, I.; Sharma, P.; Snoeys, J.; Shebley, M.; et al. Physiologically-Based Pharmacokinetic Modeling in Renal and Hepatic Impairment Populations: A Pharmaceutical Industry Perspective. Clin. Pharmacol. Ther. 2021, 110, 297–310. [Google Scholar] [CrossRef]
- Huth, F.; Domange, N.; Poller, B.; Vapurcuyan, A.; Durrwell, A.; Hanna, I.D.; Faller, B. Predicting Oral Absorption for Compounds Outside the Rule of Five Property Space. J. Pharm. Sci. 2021, 110, 2562–2569. [Google Scholar] [CrossRef]
- Mann, J.; Dressman, J.; Rosenblatt, K.; Ashworth, L.; Muenster, U.; Frank, K.; Hutchins, P.; Williams, J.; Klumpp, L.; Wielockx, K.; et al. Validation of Dissolution Testing with Biorelevant Media: An OrBiTo Study. Mol. Pharm. 2017, 14, 4192–4201. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Combes, F.P.; Hoch, M.; Lorenzo, S.; Sy, S.K.B.; Ho, Y.Y. Population Pharmacokinetics of Asciminib in Tyrosine Kinase Inhibitor-Treated Patients with Philadelphia Chromosome-Positive Chronic Myeloid Leukemia in Chronic and Acute Phases. Clin. Pharmacokinet. 2022, 61, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Kalvass, J.C.; Pollack, G.M. Kinetic Considerations for the Quantitative Assessment of Efflux Activity and Inhibition: Implications for Understanding and Predicting the Effects of Efflux Inhibition. Pharm. Res. 2007, 24, 265–276. [Google Scholar] [CrossRef]
- European Medicines Agency. Investigation of Drug Interactions—Scientific Guideline. Available online: https://www.ema.europa.eu/en/investigation-drug-interactions-scientific-guideline (accessed on 26 July 2024).
- Davies, B.; Morris, T. Physiological Parameters in Laboratory Animals and Humans. Pharm. Res. 1993, 10, 1093–1095. [Google Scholar] [CrossRef]
- Yang, J.; Jamei, M.; Yeo, K.; Tucker, G.; Rostami-Hodjegan, A. Prediction of Intestinal First-Pass Drug Metabolism. Curr. Drug Metab. 2007, 8, 676–684. [Google Scholar] [CrossRef]
- Chen, Y.; Cabalu, T.D.; Callegari, E.; Einolf, H.; Liu, L.; Parrott, N.; Peters, S.A.; Schuck, E.; Sharma, P.; Tracey, H.; et al. Recommendations for the Design of Clinical Drug–Drug Interaction Studies With Itraconazole Using a Mechanistic Physiologically-Based Pharmacokinetic Model. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 685–695. [Google Scholar] [CrossRef]
- Filppula, A.M.; Neuvonen, M.; Laitila, J.; Neuvonen, P.J.; Backman, J.T. Autoinhibition of CYP3A4 Leads to Important Role of CYP2C8 in Imatinib Metabolism: Variability in CYP2C8 Activity May Alter Plasma Concentrations and Response. Drug Metab. Dispos. 2013, 41, 50–59. [Google Scholar] [CrossRef]
- Hughes, T.P.; Mauro, M.J.; Cortes, J.E.; Minami, H.; Rea, D.; DeAngelo, D.J.; Breccia, M.; Goh, Y.-T.; Talpaz, M.; Hochhaus, A.; et al. Asciminib in Chronic Myeloid Leukemia after ABL Kinase Inhibitor Failure. New Engl. J. Med. 2019, 381, 2315–2326. [Google Scholar] [CrossRef]
- Réa, D.; Mauro, M.J.; Boquimpani, C.; Minami, Y.; Lomaia, E.; Voloshin, S.; Turkina, A.; Kim, D.W.; Apperley, J.F.; Abdo, A.; et al. A Phase 3, Open-Label, Randomized Study of Asciminib, a STAMP Inhibitor, vs Bosutinib in CML after 2 or More Prior TKIs. Blood 2021, 138, 2031–2041. [Google Scholar] [CrossRef]
- Jones, H.M.; Chen, Y.; Gibson, C.; Heimbach, T.; Parrott, N.; Peters, S.A.; Snoeys, J.; Upreti, V.V.; Zheng, M.; Hall, S.D. Physiologically Based Pharmacokinetic Modeling in Drug Discovery and Development: A Pharmaceutical Industry Perspective. Clin. Pharmacol. Ther. 2015, 97, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Kuemmel, C.; Yang, Y.; Zhang, X.; Florian, J.; Zhu, H.; Tegenge, M.; Huang, S.M.; Wang, Y.; Morrison, T.; Zineh, I. Consideration of a Credibility Assessment Framework in Model-Informed Drug Development: Potential Application to Physiologically-Based Pharmacokinetic Modeling and Simulation. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Guest, E.J.; Aarons, L.; Houston, J.B.; Rostami-Hodjegan, A.; Galetin, A. Critique of the Two-Fold Measure of Prediction Success for Ratios: Application for the Assessment of Drug-Drug Interactions. Drug Metab. Dispos. 2011, 39, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Poulin, P.; Theil, F.P. Development of a Novel Method for Predicting Human Volume of Distribution at Steady-State of Basic Drugs and Comparative Assessment with Existing Methods. J. Pharm. Sci. 2009, 98, 4941–4961. [Google Scholar] [CrossRef]
- Pedersen, J.M.; Khan, E.K.; Bergström, C.A.S.; Palm, J.; Hoogstraate, J.; Artursson, P. Substrate and Method Dependent Inhibition of Three ABC-Transporters (MDR1, BCRP, and MRP2). Eur. J. Pharm. Sci. 2017, 103, 70–76. [Google Scholar] [CrossRef]
- D’Cunha, R.; Bae, S.H.; Murry, D.J.; An, G. TKI Combination Therapy: Strategy to Enhance Dasatinib Uptake by Inhibiting Pgp- and BCRP-Mediated Efflux. Biopharm. Drug Dispos. 2016, 37, 397–408. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Scemblix Multi-Discipline Review. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215358Orig1s000,Orig2s000MultidisciplineR.pdf (accessed on 30 July 2025).
- Sáfár, Z.; Kecskeméti, G.; Molnár, J.; Kurunczi, A.; Szabó, Z.; Janáky, T.; Kis, E.; Krajcsi, P. Inhibition of ABCG2/BCRP-Mediated Transport–Correlation Analysis of Various Expression Systems and Probe Substrates. Eur. J. Pharm. Sci. 2021, 156, 105593. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). FDA Approves Asciminib for Philadelphia Chromosome-Positive Chronic Myeloid Leukemia. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/215358s009lbl.pdf (accessed on 30 July 2025).
- Wong, S.G.; Ramsden, D.; Dallas, S.; Fung, C.; Einolf, H.J.; Palamanda, J.; Chen, L.; Goosen, T.C.; Amy Siu, Y.; Zhang, G.; et al. Considerations from the Innovation and Quality Induction Working Group in Response to Drug-Drug Interaction Guidance from Regulatory Agencies: Guidelines on Model Fitting and Recommendations on Time Course for In Vitro Cytochrome P450 Induction Studies Including Impact on Drug Interaction Risk Assessment. Drug Metab. Dispos. 2021, 49, 94–110. [Google Scholar] [CrossRef]
- Schwenger, E.; Reddy, V.P.; Moorthy, G.; Sharma, P.; Tomkinson, H.; Masson, E.; Vishwanathan, K. Harnessing Meta-Analysis to Refine an Oncology Patient Population for Physiology-Based Pharmacokinetic Modeling of Drugs. Clin. Pharmacol. Ther. 2018, 103, 271–280. [Google Scholar] [CrossRef]
Input Parameter | Description | Units | Mean Value (SD) | Reference |
---|---|---|---|---|
Physicochemical and blood binding properties | ||||
MW | Molecular weight | g/mol | 449.85 | |
Log P | Octanol–water partition (titration)/logD pH 6.8 (titration) | - | 3.9 | [8] |
Compound type | Acid, base, or neutral | - | Monoprotic base | |
pKa | - | 4.0 | [8] | |
B/P ratio | [8] | |||
Blood to plasma ratio | - | 0.8 (0.18) | ||
fup | Fraction unbound in plasma | - | 0.027 (0.011) | [8] |
fup RI | Adjusted fraction unbound in renal impairment | 0.018 | PSA optimized to fit the PK of subjects with severe RI | |
Absorption | ||||
Absorption model | First order absorption model | |||
Fasted state | ||||
fa | Fraction available from dosage form | - | 1 | |
%CV (fa) | Coefficient of variation (fa) | - | 9.0 | Preliminary popPK analysis (%CV for ka) |
ka | Absorption rate constant | 1/h | 1.3 | Optimized for PK fit |
%CV (ka) | Coefficient of variation (ka) | - | 9.0 | Preliminary popPK analysis |
tlag | Absorption lag time | h | 0.374 | Preliminary popPK analysis |
%CV (tlag) | Coefficient of variation (tlag) | - | 0.4 | Preliminary popPK analysis |
fu,gut | Unbound fraction in enterocytes | - | 0.25 | PSA on midazolam DDI |
Qgut | Nominal flow in gut model | L/h | 5.3 | PSA on midazolam DDI |
CV (Qgut) | Coefficient of variation (Q(gut)) | % | 30 | Default |
Peff,man | Effective permeability in man | 10−4 cm/s | 3.729 1 | User input (calculated from in-house calibration) |
MDCK-LE permeability | Passive permeability (apical to basolateral) | 10−6 cm/s | 22.1 1 | In-house data |
MDCK-LE reference permeability (negative control) | Passive permeability of aztreonam | 10−6 cm/s | 0.24 1 | In-house data |
MDCK-LE reference permeability (positive control) | Passive permeability of propranolol | 10−6 cm/s | 36.04 1 | In-house data |
Distribution | ||||
Distribution model | Full PBPK model (permeability-limited liver) | |||
Vss prediction method | Rodgers–Rowland (Method 2) | |||
Vss | Volume of distribution at steady state | L/kg | 0.8 | Predicted |
Kp scalar | Scalar applied to all predicted tissue Kp values | 0.025 | Optimized for PK fit | |
Enzyme/transporter phenotyping | ||||
Enzyme (recombinant) | ||||
Vmax (CYP3A4) | Maximum rate of elimination | pmol/min/pmol of CYP | 3.8 | Aim for fm = 0.351 |
Km,u (CYP3A4) 3 | Michaelis–Menten constant | μM | 15.7 (0.88) | [3] |
Vmax (CYP2C8) | Maximum rate of elimination | pmol/min/pmol CYP | 0.136 | Aim for fm = 0.005 |
Km,u (CYP2C8) 4 | Michaelis–Menten constant | μM | 7.6 (0.91) | [3] |
Vmax (CYP2D6) | Maximum rate of elimination | pmol/min/pmol CYP | 0.736 | Aim for fm = 0.002 |
Km,u (CYP2D6) 5 | Michaelis–Menten constant | μM | 30.7 (3.6) | [3] |
Vmax (CYP2J2) | Maximum rate of elimination | pmol/min/pmol CYP | 0.355 | Aim for fm = 0.0076 |
Km,u (CYP2J2) 6 | Michaelis–Menten constant | μM | 0.694 (0.051) | [3] |
Vmax (UGT1A3) | Maximum rate of elimination | pmol/min/pmol UGT | 1.73 | Aim for fm = 0.033 2 |
Km,u (UGT1A3) 7 | Michaelis–Menten constant | μM | 12.9 (2.1) | In-house data |
Vmax (UGT1A4) | Maximum rate of elimination | pmol/min/pmol UGT | 0.73 | Aim for fm = 0.033 2 |
Km,u (UGT1A4) 7 | Michaelis–Menten constant | μM | 12.9 (2.1) | In-house data |
Vmax (UGT2B7) | Maximum rate of elimination | pmol/min/pmol UGT | 2.04 | Aim for fm = 0.131 2 |
Km,u (UGT2B7) 7 | Michaelis–Menten constant | μM | 12.7 (2.0) | In-house data |
Vmax (UGT2B17) | Maximum rate of elimination | pmol/min/pmol UGT | 17.7 | Aim for fm = 0.076 2 |
Km,u (UGT2B17) 7 | Michaelis–Menten constant | μM | 9.41 (1.8) | In-house data |
Transporter (Liver) | ||||
CLPD | Passive diffusion clearance | mL/min/106 hepatocytes | 0.06 | Optimized for PK fit |
Jmax (BCRP) | In vitro maximum rate of transporter mediated efflux | pmol/min/106 cells | 0.2782 | Optimized for PK fit |
Km (BCRP) | Michaelis–Menten constant | μM | 0.0070865 | Optimized for PK fit In vitro intracellular Km (BCRP) = 0.142 μM (In-house data) |
Other distribution and elimination properties | ||||
In vivo CL | ||||
CLr | Renal clearance in 20–30-year-old healthy male | mL/min/1.73 m2 | 1.8 | Aim for fe = 0.025 (equal to 0.108 L/h) |
In vitro CL | ||||
HLM CLint, liver (unbound) | Additional undefined HLM Clint, liver | µL/min/mg | 0.65 | Aim for fm = 0.0071 (hydrolysis) |
CV HLM CLint, liver | % Coefficient of variation HLM Clint, liver | - | 30 | Default |
Interaction | ||||
CYP/UGT inhibition (reversible) | ||||
IC50,u (CYP1A2) | Unbound ABL001 concentrations estimated to inhibit probe substrate reaction by 50% | µM | 20.8 8 | In-house data |
Ki,u (CYP1A2) | Unbound inhibition constant | µM | 10.4 | as Ki,u = IC50,u/2 |
IC50,u (CYP2A6) | Unbound ABL001 concentrations estimated to inhibit probe substrate reaction by 50% | µM | 87.1 8 | In-house data |
Ki,u (CYP2A6) | Unbound inhibition constant | µM | 43.6 | as Ki,u = IC50,u/2 |
Ki,u (CYP2B6) | Unbound inhibition constant | µM | 2.62 9 (0.438) | In-house data |
Ki,u (CYP2C8) | Unbound inhibition constant | µM | 0.466 9 (0.0866) | In-house data |
Ki,u (CYP2C9) | Unbound inhibition constant | µM | 0.03 | Optimized based on PSA with Warfarin DDI AUC and Cmax ratios (initial value 0.407 +/− 0.0595) |
IC50,u (CYP2C19) | Unbound ABL001 concentrations estimated to inhibit probe substrate reaction by 50% | µM | 3 8 | In-house data |
Ki,u (CYP2C19) | Unbound inhibition constant | µM | 1.5 | as Ki,u = IC50,u/2 |
IC50,u (CYP2D6) | Unbound ABL001 concentrations estimated to inhibit probe substrate reaction by 50% | µM | 17 8 | In-house data |
Ki,u (CYP2D6) | Unbound inhibition constant | µM | 8.5 | as Ki,u = IC50,u/2 |
IC50,u (CYP2E1) | Unbound ABL001 concentrations estimated to inhibit probe substrate reaction by 50% | µM | 75 8 | In-house data |
Ki,u (CYP2E1) | Unbound inhibition constant | µM | 37.5 | as Ki,u = IC50,u/2 |
Ki,u (CYP3A4/5) | Unbound inhibition constant | µM | 0.348 9 (0.146) | In-house data |
IC50,u (UGT1A1) | Unbound ABL001 concentrations estimated to inhibit probe substrate reaction by 50% | µM | 0.56 10 | In-house data |
Ki,u (UGT1A1) | Unbound inhibition constant | µM | 0.35 | Ki,u = IC50,u/(1 + S/Km) 11 |
IC50,u (UGT2B7) | Unbound ABL001 concentrations estimated to inhibit probe substrate reaction by 50% | µM | 7.28 10 | In-house data |
Ki,u (UGT2B7) | Unbound inhibition constant | µM | 7.28 | as Ki,u = IC50,u |
CYP induction | ||||
IndC50 (CYP1A2) | Induction constant | µM | 0.59 | In-house data |
CV IndC50 (1A2) | % Coefficient of variation (IndC50) | - | 30 | Default |
Indmax (CYP1A2) | Maximum fold induction | - | 4.5 | In-house data |
CV Indmax (1A2) | % Coefficient of variation (Indmax) | - | 30 | Default |
IndC50 (CYP3A4) | Induction constant (calibrated) | µM | 2.057 | Non-calibrated IndC50 = 2.7 µM In-house data |
CV IndC50 (3A4) | % Coefficient of variation (IndC50) | - | 30 | Default |
Indmax (CYP3A4) | Maximum fold induction (calibrated) | - | 1.53 | Non-calibrated Emax = 4.4 In-house data |
CV Indmax (3A4) | % Coefficient of variation (Indmax) | - | 30 | |
Transporter inhibition | ||||
Ki P-gp | Inhibition constant (total) | µM | 21.7 | In-house data |
Ki BCRP | Inhibition constant (total) | µM | 0.088 | In-house data |
Ki OATP1B1 | Inhibition constant (total) | µM | 2.46 | In-house data |
Ki OATP1B3 | Inhibition constant (total) | µM | 1.92 | In-house data |
Ki OAT1 | Inhibition constant (total) | µM | 6.90 | In-house data |
Ki OAT3 | Inhibition constant (total) | µM | 1.01 | In-house data |
Ki OCT1 | Inhibition constant (total) | µM | 3.41 | In-house data |
Ki OCT2 | Inhibition constant (total) | µM | 8.22 | In-house data |
Ki MATE1 (MATE2K) | Inhibition constant (total) | µM | 6.22 (2.36) | In-house data |
Ki BSEP | Inhibition constant (total) | µM | No inhibition | In-house data |
Trial | Drug-Drug Interaction or Organ Impairment Degree | Geometric Mean Cmax Ratio (90% CI) | Geometric Mean AUCinf Ratio (90% CI) | |||||
---|---|---|---|---|---|---|---|---|
Perpetrator Dosing Regimen | Victim Dosing Regimen | Observed | Simulated | Rpred/obs | Observed | Simulated | Rpred/obs | |
[5] | Clarithromycin 500 mg BID for 8 days | Asciminib 40 mg single dose on day 5 | 1.19 (1.1, 1.3) | 1.05 (1.04, 1.05) | 0.882 | 1.36 (1.27, 1.46) | 1.32 (1.30, 1.34) | 0.971 |
[5] | Itraconazole capsule 200 mg QD for 8 days | Asciminib 40 mg single dose on day 5 | 1.04 (NA, NA) | 1.05 (1.05, 1.06) | 1.01 | 1.04 (NA, NA) | 1.24 (1.22, 1.25) | 1.19 |
[5] | Rifampicin 600 mg QD for 6 days | Asciminib 40 mg single dose on day 5 | 1.09 (0.996, 1.20) | 0.838 (0.821, 0.855) | 0.769 | 0.851 (0.804, 0.902) | 0.566 (0.548, 0.584) | 0.665 |
[6] | Imatinib 400 mg QD for 8 days | Asciminib 40 mg single dose on day 5 | 1.59 (1.45, 1.75) | 1.15 (1.13, 1.17) [1.14 (1.12, 1.16)] | 0.723 | 2.08 (1.93, 2.24) | 1.99 (1.92, 2.07) [1.56 (1.52, 1.60)] | 0.957 |
[4] | Asciminib 40 mg BID | Midazolam 4 mg on day 3 | 1.11 (0.957, 1.28) | 1.18 (1.16, 1.19) | 1.06 | 1.28 (1.15, 1.43) | 1.23 (1.21, 1.25) | 0.961 |
[4] | Asciminib 40 mg BID | S-Warfarin 2.5 mg on day 3 | 1.08 (1.04, 1.13) | 1.03 (1.03, 1.04) | 0.954 | 1.41 (1.37, 1.45) | 1.40 (1.37, 1.42) | 0.993 |
[4] | Asciminib 40 mg BID | Repaglinide 0.5 mg on day 3 | 1.14 (1.01, 1.28) | 1.07 (1.07, 1.08) | 0.939 | 1.08 (1.02, 1.14) | 1.10 (1.09, 1.10) | 1.02 |
[7] | Mild HI/HV control, 40 mg single dose | 1.26 (1.05, 1.52) | 0.966 | 0.767 | 1.22 (0.964, 1.54) | 1.11 | 0.910 | |
[7] | Moderate HI/HV control, 40 mg single dose | 0.983 (0.819, 1.18) | 0.908 | 0.924 | 1.03 (0.813, 1.30) | 1.32 | 1.28 | |
[7] | Severe HI/HV control, 40 mg single dose | 1.29 (1.08, 1.55) | 0.776 | 0.602 | 1.66 (1.30, 2.12) | 1.28 | 0.771 | |
[7] | Severe RI/HV control, 40 mg single dose | 1.08 (0.719, 1.61) | 1.14 [0.818] 1 | 1.06 | 1.56 (1.05, 2.30) | 1.44 [0.970] 1 | 0.923 | |
GMFE | 1.18 | 1.14 |
Intended PBPK Model Application | Feeback by FDA | Rationale of FDA’s Assessment | Impact on Drug Product Label or Other |
---|---|---|---|
Victim DDI | |||
Extrapolation of the effects of strong CYP3A inhibitors on asciminib 80 and 200 mg dose | Not accepted yet supportive | Uncertainties in elimination pathways | Closely monitor for adverse reactions in patients treated with SCEMBLIX at 200 mg twice daily with concomitant use of strong CYP3A4 inhibitors. |
Extrapolation of the effects of strong CYP3A inducers on asciminib 80 and 200 mg dose | Not accepted | Uncertainties in elimination pathways; overprediction of DDI with rifampin | Post-marketing requirement: Clinical study to assess the effect of the strong CYP3A inducer phenytoin on asciminib 200 mg single dose |
Extrapolation of the effects of imatinib on asciminib 80 and 200 mg dose | Not accepted | Uncertainties in elimination pathways/IVIVE for UGTs, and BCRP not established | No mention about 80 mg QD; concomitant use of imatinib with SCEMBLIX at 200 mg twice daily has not been fully characterized. |
Prediction of the effects of moderate CYP3A perpetrators on asciminib 40, 80 and 200 mg dose | Not accepted yet supportive | Uncertainties in elimination pathways | No dose adjustments or label restrictions for moderate CYP3A perpetrators. |
Perpetrator DDI | |||
Extrapolation of asciminib effects at 80 mg QD and 200 mg BID on CYP3A-sensitive substrates | Accepted | PK and DDI with midazolam adequately predicted | PBPK simulation results for 80 mg QD and 200 mg BID for midazolam were reported in lieu of clinical data. |
Extrapolation of asciminib effects at 80 mg QD and 200 mg BID on CYP2C9-sensitive substrates | Accepted | PK and DDI with warfarin adequately predicted | PBPK simulation results for 80 mg QD and 200 mg BID for warfarin were reported in lieu of clinical data. |
Extrapolation of asciminib effects at 80 mg QD and 200 mg BID on CYP2C8-sensitive substrates | Accepted | PK and DDI with repaglinide adequately predicted | PBPK simulation results for 80 mg QD and 200 mg BID for repaglinide were reported in lieu of clinical data. |
Prediction of asciminib effects at 40 mg BID, 80 mg QD, and 200 mg BID on dual CYP2C9 and CYP2C8 substrates | Accepted | PK and DDI with warfarin and repaglinide adequately predicted; additional PSA on CYP2C8 and CYP2C9 Ki,u | PBPK simulation results for 40 mg BID, 80 mg QD, and 200 mg BID for rosiglitazone were reported in lieu of clinical data. |
Prediction of asciminib effects at 40 mg BID, 80 mg QD, and 200 mg BID on CYP2C19-sensitive substrates | Accepted | Additional PSA down to twofold lower Ki,u indicated only a weak effect at 200 mg BID. | May reversibly inhibit CYP2C19 at concentrations reached at 200 mg twice daily dose. |
Prediction of asciminib effects at 40 mg BID, 80 mg QD, and 200 mg BID on UGT1A1-sensitive substrates | Accepted | Additional PSA with a twofold lower Ki,u, indicating potential for interaction | May reversibly inhibit UGT1A1 at plasma concentrations reached at a total daily dose of 80 mg and 200 mg twice daily. |
Prediction of asciminib effects at 40 mg BID, 80 mg QD, and 200 mg BID on CYP1A2-sensitive substrates | Accepted | Additional PSA to explore the induction risk | No dose adjustments or label restrictions for CYP1A2 substrates |
Organ impairment | |||
Extrapolation of the effect of hepatic impairment on asciminib 80 mg and 200 mg doses | Not accepted yet supportive | Uncertainties in elimination pathways | No dose adjustments or label restrictions for hepatic impairment |
Extrapolation of the effect of renal impairment on asciminib 80 mg and 200 mg doses | Not accepted yet supportive | Uncertainties in elimination pathways | No dose adjustments or label restrictions for renal impairment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loisios-Konstantinidis, I.; Huth, F.; Hoch, M.; Einolf, H.J. Physiologically Based Pharmacokinetic Modeling and Simulations in Lieu of Clinical Pharmacology Studies to Support the New Drug Application of Asciminib. Pharmaceutics 2025, 17, 1266. https://doi.org/10.3390/pharmaceutics17101266
Loisios-Konstantinidis I, Huth F, Hoch M, Einolf HJ. Physiologically Based Pharmacokinetic Modeling and Simulations in Lieu of Clinical Pharmacology Studies to Support the New Drug Application of Asciminib. Pharmaceutics. 2025; 17(10):1266. https://doi.org/10.3390/pharmaceutics17101266
Chicago/Turabian StyleLoisios-Konstantinidis, Ioannis, Felix Huth, Matthias Hoch, and Heidi J. Einolf. 2025. "Physiologically Based Pharmacokinetic Modeling and Simulations in Lieu of Clinical Pharmacology Studies to Support the New Drug Application of Asciminib" Pharmaceutics 17, no. 10: 1266. https://doi.org/10.3390/pharmaceutics17101266
APA StyleLoisios-Konstantinidis, I., Huth, F., Hoch, M., & Einolf, H. J. (2025). Physiologically Based Pharmacokinetic Modeling and Simulations in Lieu of Clinical Pharmacology Studies to Support the New Drug Application of Asciminib. Pharmaceutics, 17(10), 1266. https://doi.org/10.3390/pharmaceutics17101266