Electrospun PMVEMA Nanofibers Developed as a Fast-Release Platform for Antineoplastic Drugs Tested in Glioblastoma Primary Cultures
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Drug-Loaded PMVEMA-Ac or PMVEMA-Es Nanofibers
2.3. Loaded Electrospun Nanofibers’ Characterization
2.3.1. Field-Emission Scanning Electron Microscopy (FESEM)
2.3.2. Confocal Microscopy
2.3.3. High-Performance Liquid Chromatography
2.3.4. Encapsulation Efficiency Study and Drug Loading
2.3.5. Drug Release Assay
2.4. Cellular Assays
2.4.1. Cell Cultures
2.4.2. MTT Assay
2.4.3. Cell Cycle
2.4.4. Intracellular Accumulation Assay
2.5. Statistical Analysis
3. Results
3.1. Morphological Characterization of Loaded Nanofibers
3.2. HPLC Quantification of Encapsulation Efficiency and Drug Release Assay from Loaded Nanofibers
3.3. Evaluation of Biological Effect of Drug Loading
3.3.1. Cell Viability Evaluation by MTT Test in HGUE-GB Cell Lines
3.3.2. Evaluation of Effect of Drug Loading on HGUE-GB Cell Cycle
3.3.3. Cell Viability Evaluation by MTT Test in HA Cells
3.3.4. Accumulation Test of Intercellularly Loaded DOX
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lapointe, S.; Perry, A.; Butowski, N.A. Primary Brain Tumours in Adults. Lancet 2018, 392, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Ohgaki, H.; Kleihues, P. Epidemiology and Etiology of Gliomas. Acta Neuropathol. 2005, 109, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Posti, J.P.; Bori, M.; Kauko, T.; Sankinen, M.; Nordberg, J.; Rahi, M.; Frantzén, J.; Vuorinen, V.; Sipilä, J.O.T. Presenting Symptoms of Glioma in Adults. Acta Neurol. Scand. 2014, 131, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229. [Google Scholar] [CrossRef]
- De Bonis, P.; Anile, C.; Pompucci, A.; Fiorentino, A.; Balducci, M.; Chiesa, S.; Maira, G.; Mangiola, A. Safety and Efficacy of Gliadel Wafers for Newly Diagnosed and Recurrent Glioblastoma. Acta Neurochir. 2012, 154, 1371–1378. [Google Scholar] [CrossRef]
- El Kheir, W.; Marcos, B.; Virgilio, N.; Paquette, B.; Faucheux, N.; Lauzon, M.-A. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022, 14, 1189. [Google Scholar] [CrossRef]
- Singh, B.; Kim, K.; Park, M.-H. On-Demand Drug Delivery Systems Using Nanofibers. Nanomaterials 2021, 11, 3411. [Google Scholar] [CrossRef]
- Duan, X.; Chen, H.-L.; Guo, C. Polymeric Nanofibers for Drug Delivery Applications: A Recent Review. J. Mater. Sci. Mater. Med. 2022, 33, 78. [Google Scholar] [CrossRef]
- Cue-Sampedro, R.; Sánchez-Fernández, J. Characterization of pMVEMA-PMAA Copolymers for Biomedical Applications. Mater. Today Proc. 2020, 48, 84–87. [Google Scholar] [CrossRef]
- Mira, A.; Rubio-Camacho, M.; Alarcón, D.; Rodríguez-Cañas, E.; Fernández-Carvajal, A.; Falco, A.; Mallavia, R. L-Menthol-Loadable Electrospun Fibers of PMVEMA Anhydride for Topical Administration. Pharmaceutics 2021, 13, 1845. [Google Scholar] [CrossRef]
- Martínez-Ortega, L.; Mira, A.; Fernandez-Carvajal, A.; Mateo, C.R.; Mallavia, R.; Falco, A. Development of A New Delivery System Based on Drug-Loadable Electrospun Nanofibers for Psoriasis Treatment. Pharmaceutics 2019, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Luo, X.; Mo, Y.; Zhao, P.; Wang, H.; Fang, Y.; Xu, Y. Enzyme-Enhanced Codelivery of Doxorubicin and Bcl-2 Inhibitor by Electrospun Nanofibers for Synergistic Inhibition of Prostate Cancer Recurrence. Pharmaceuticals 2022, 15, 1244. [Google Scholar] [CrossRef] [PubMed]
- Mira, A.; Mateo, C.R.; Mallavia, R.; Falco, A. Poly(methyl vinyl ether-alt-maleic acid) and Ethyl Monoester as Building Polymers for Drug-Loadable Electrospun Nanofibers. Sci. Rep. 2017, 7, 17205. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Kleinberg, L.R. Carmustine Wafers: Localized Delivery of Chemotherapeutic Agents in CNS Malignancies. Expert Rev. Anticancer. Ther. 2008, 8, 343–359. [Google Scholar] [CrossRef]
- Rivankar, S. An Overview of Doxorubicin Formulations in Cancer Therapy. J. Cancer Res. Ther. 2014, 10, 853–858. [Google Scholar] [CrossRef]
- Peter, S.; Alven, S.; Maseko, R.B.; Aderibigbe, B.A. Doxorubicin-Based Hybrid Compounds as Potential Anticancer Agents: A Review. Molecules 2022, 27, 4478. [Google Scholar] [CrossRef]
- Ventero, M.P.; Fuentes-Baile, M.; Quereda, C.; Perez-Valeciano, E.; Alenda, C.; Garcia-Morales, P.; Esposito, D.; Dorado, P.; Barbera, V.M.; Saceda, M.; et al. Radiotherapy Resistance Acquisition in Glioblastoma. Role of SOCS1 and SOCS3. PLoS ONE 2019, 14, e0212581. [Google Scholar] [CrossRef]
- Araujo-Abad, S.; Manresa-Manresa, A.; Rodríguez-Cañas, E.; Fuentes-Baile, M.; García-Morales, P.; Mallavia, R.; Saceda, M.; Romero, C.d.J. Glioblastoma-Derived Small Extracellular Vesicles: Nanoparticles for Glioma Treatment. Int. J. Mol. Sci. 2023, 24, 5910. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef]
- Liu, S.-J.; Yang, S.-T.; Chen, S.-M.; Huang, Y.-C.; Lee, W.-H.; Ho, J.; Chen, Y.-C.; Tseng, Y.-Y. Novel Multi-Drugs Incorporating Hybrid-Structured Nanofibers Enhance Alkylating Agent Activity in Malignant Gliomas. Ther. Adv. Med. Oncol. 2019, 11. [Google Scholar] [CrossRef]
- Fleming, A.B.; Saltzman, W.M. Pharmacokinetics of the Carmustine Implant. Clin. Pharmacokinet. 2002, 41, 403–419. [Google Scholar] [CrossRef]
- Rubio-Camacho, M.; Martínez-Tomé, M.J.; Mira, A.; Mallavia, R.; Mateo, C.R. Formation of Multicolor Nanogels Based on Cationic Polyfluorenes and Poly(methyl vinyl ether-alt-maleic monoethyl ester): Potential Use as pH-Responsive Fluorescent Drug Carriers. Int. J. Mol. Sci. 2021, 22, 9607. [Google Scholar] [CrossRef] [PubMed]
- Mira, A.; Sainz-Urruela, C.; Codina, H.; Jenkins, S.I.; Rodriguez-Diaz, J.C.; Mallavia, R.; Falco, A. Physico-Chemically Distinct Nanomaterials Synthesized from Derivates of a Poly(Anhydride) Diversify the Spectrum of Loadable Antibiotics. Nanomaterials 2020, 10, 486. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Han, L.; Ren, Y.; Long, L.; Zhong, Y.; Shen, C.; Pu, P.; Yuan, X. Inhibition of C6 Glioma in vivo by Combination Chemotherapy of Implantation of Polymer Wafer and Intracarotid Perfusion of Transferrin-Decorated Nanoparticles. Oncol. Rep. 2011, 27, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Luque, C.; Fernández, M.d.l.C.; Fuentes-Rios, D.; Cepero, A.; Contreras-Cáceres, R.; Doña, M.; Perazzoli, G.; Lozano-Chamizo, L.; Filice, M.; Marciello, M.; et al. Improved Antitumor Activity Through a Tyramidyl Maslinic Acid Derivative. Design and Validation as Drug-Loaded Electrospun Polymeric Nanofibers. Eur. J. Pharm. Biopharm. 2023, 193, 241–253. [Google Scholar] [CrossRef]
- Singh, B.; Yun, S.; Park, M.-H. Light-Responsive Layer-by-Layer Assembled Nanofibers for Sequential Drug Release. J. Drug Deliv. Sci. Technol. 2023, 88, 104910. [Google Scholar] [CrossRef]
- Ye, P.; Yusufu, R.; Guan, Z.; Chen, T.; Li, S.; Feng, Y.; Zeng, X.; Lu, J.; Luo, M.; Wei, F. Multifunctional Bioactivity Electrospinning Nanofibers Encapsulating Emodin Provide a Potential Postoperative Management Strategy for Skin Cancer. Pharmaceutics 2024, 16, 1131. [Google Scholar] [CrossRef]
- Han, D.; Serra, R.; Gorelick, N.; Fatima, U.; Eberhart, C.G.; Brem, H.; Tyler, B.; Steckl, A.J. Multi-Layered Core-Sheath Fiber Membranes for Controlled Drug Release in the Local Treatment of Brain Tumor. Sci. Rep. 2019, 9, 17936. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, J.; Zhao, G.; Huang, X.; Wang, L.; Zhang, Y.; Zhang, L.; Konduru, N.; Xie, J.; Yu, R.; et al. Multi-Responsive Nanofibers Composite Gel for Local Drug Delivery to Inhibit Recurrence of Glioma after Operation. J. Nanobiotechnol. 2021, 19, 198. [Google Scholar] [CrossRef]
- M, S.J.; Sumathi, S. A Review of Electrospun Polymeric Fibers as Potential Drug Delivery Systems for Tunable Release Kinetics. J. Sci. Adv. Mater. Devices 2025, 10, 100933. [Google Scholar] [CrossRef]
- Erickson, A.; Chiarelli, P.A.; Huang, J.; Levengood, S.L.; Zhang, M. Electrospun Nanofibers for 3D Cancer Models, Diagnostics, and Therapy. Nanoscale Horiz. 2022, 7, 1279–1298. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y. Dimerization of Doxorubicin Causes Its Precipitation. ACS Omega 2020, 5, 33235–33241. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, L.; Xie, X.; Zhu, W.; Lei, Z.; Lv, L.; Yu, H.; Xu, J.; Ren, J. Multifunctional Nanoparticles Codelivering Doxorubicin and Amorphous Calcium Carbonate Preloaded with Indocyanine Green for Enhanced Chemo-Photothermal Cancer Therapy. Int. J. Nanomed. 2023, 18, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Zelepukin, I.V.; Griaznova, O.Y.; Shevchenko, K.G.; Ivanov, A.V.; Baidyuk, E.V.; Serejnikova, N.B.; Volovetskiy, A.B.; Deyev, S.M.; Zvyagin, A.V. Flash Drug Release from Nanoparticles Accumulated in the Targeted Blood Vessels Facilitates the Tumour Treatment. Nat. Commun. 2022, 13, 6910. [Google Scholar] [CrossRef]
- Ahad, A.; Shakeel, F.; Raish, M.; Ahmad, A.; Bin Jardan, Y.A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Thermodynamic Solubility Profile of Temozolomide in Different Commonly Used Pharmaceutical Solvents. Molecules 2022, 27, 1437. [Google Scholar] [CrossRef]
- Mahdavi, S.Z.B.; Pouladi, N.; Amini, M.; Baradaran, B.; Najafi, S.; Mehrabani, S.V.; Yari, A.; Alamdari, S.G.; Mokhtarzadeh, A.A. Let-7a-3p Overexpression Increases Chemosensitivity to Carmustine and Synergistically Promotes Autophagy and Suppresses Cell Survival in U87MG Glioblastoma Cancer Cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 6903–6918. [Google Scholar] [CrossRef]
- Huang, Y.; Sadée, W. Membrane Transporters and Channels in Chemoresistance and Sensitivity of Tumor Cells. Cancer Lett. 2006, 239, 168–182. [Google Scholar] [CrossRef]
- Martínez-Lacaci, I.; Morales, P.G.; Soto, J.L.; Saceda, M. Tumour Cells Resistance in Cancer Therapy. Clin. Transl. Oncol. 2007, 9, 13–20. [Google Scholar] [CrossRef]
- Dhungel, L.; Rowsey, M.E.; Harris, C.; Raucher, D. Synergistic Effects of Temozolomide and Doxorubicin in the Treatment of Glioblastoma Multiforme: Enhancing Efficacy through Combination Therapy. Molecules 2024, 29, 840. [Google Scholar] [CrossRef]
- Cardoso, L.M.d.F.; Barreto, T.; Gama, J.F.G.; Alves, L.A. Natural Biopolymers as Additional Tools for Cell Microencapsulation Applied to Cellular Therapy. Polymers 2022, 14, 2641. [Google Scholar] [CrossRef]
- Bignold, L.P. Principles of Nonsurgical Therapies. In Principles of Tumors: A Translational Approach to Foundations, 2nd ed.; Elsevier: Cambridge, UK, 2020; pp. 355–374. ISBN 978-0-12-816920-9. [Google Scholar]
- Leonard, R.C.F.; Williams, S.; Tulpule, A.; Levine, A.M.; Oliveros, S. Improving the Therapeutic Index of Anthracycline Chemotherapy: Focus on Liposomal Doxorubicin (Myocet™). Breast 2009, 18, 218–224. [Google Scholar] [CrossRef]
Drug | Elution Mode | Organic Phase (%) | Detection (nm) | Column T° (°C) | Flow (mL/min) | Time (min) |
---|---|---|---|---|---|---|
BCNU 1 | Gradient 1 | 45 to 50 MeOH | 230 | 30 | 0.9 | 10 |
TMZ 2 | Isocratic 2 | 30 MeOH | 330 | 35 | 1.1 | 5 |
DOX | Gradient 1 | 20 to 70 ACN | 480 | 40 | 1.0 | 5 |
Polymer | Drug (%w/polymer) | EE (%) | DL (%) |
---|---|---|---|
PMVEMA-Ac | DOX 1 | 100 | 1.0 |
PMVEMA-Ac | TMZ 1 | 100 | 1.1 |
PMVEMA-Ac | BCNU 1 | 80 | 0.8 |
PMVEMA-Es | BCNU 8 | 81 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badía-Hernández, P.V.; Carrió, J.M.; Fuentes-Baile, M.; Losada-Echeberría, M.; Díaz-Puertas, R.; Mira, A.; Saceda, M.; García-Morales, P.; Mallavia, R. Electrospun PMVEMA Nanofibers Developed as a Fast-Release Platform for Antineoplastic Drugs Tested in Glioblastoma Primary Cultures. Pharmaceutics 2025, 17, 1172. https://doi.org/10.3390/pharmaceutics17091172
Badía-Hernández PV, Carrió JM, Fuentes-Baile M, Losada-Echeberría M, Díaz-Puertas R, Mira A, Saceda M, García-Morales P, Mallavia R. Electrospun PMVEMA Nanofibers Developed as a Fast-Release Platform for Antineoplastic Drugs Tested in Glioblastoma Primary Cultures. Pharmaceutics. 2025; 17(9):1172. https://doi.org/10.3390/pharmaceutics17091172
Chicago/Turabian StyleBadía-Hernández, Pedro Valentín, Joan Moll Carrió, María Fuentes-Baile, María Losada-Echeberría, Rocío Díaz-Puertas, Amalia Mira, Miguel Saceda, Pilar García-Morales, and Ricardo Mallavia. 2025. "Electrospun PMVEMA Nanofibers Developed as a Fast-Release Platform for Antineoplastic Drugs Tested in Glioblastoma Primary Cultures" Pharmaceutics 17, no. 9: 1172. https://doi.org/10.3390/pharmaceutics17091172
APA StyleBadía-Hernández, P. V., Carrió, J. M., Fuentes-Baile, M., Losada-Echeberría, M., Díaz-Puertas, R., Mira, A., Saceda, M., García-Morales, P., & Mallavia, R. (2025). Electrospun PMVEMA Nanofibers Developed as a Fast-Release Platform for Antineoplastic Drugs Tested in Glioblastoma Primary Cultures. Pharmaceutics, 17(9), 1172. https://doi.org/10.3390/pharmaceutics17091172