Drug Metabolism and Pharmacokinetics of Oxazolo[4,5-c]quinoline Analogs as Novel Interleukin-33 Inhibitors
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pharmacokinetic Studies in Male ICR Mice
2.3. In Vitro Metabolic Stability in Liver Tissue Fractions
2.4. Metabolite Identification
2.5. Binding Assays
2.6. Analytical Methods
2.6.1. Quantitative Analysis
2.6.2. Qualitative Analysis
2.7. Data Analysis
3. Results
3.1. Pharmacokinetics of KB-1517 and KB-1518 in Mice
3.2. In Vitro Metabolic Stability of KB-1517 and KB-1518
3.3. Metabolite Identification
3.3.1. Identification of KB-1517 Metabolites In Vitro
3.3.2. Identification of KB-1518 Metabolites In Vitro
3.3.3. Involvement of FMO in the Metabolism of KB-1517 and KB-1518
3.3.4. Identification of Metabolites In Vivo
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol. 2015, 16, 45–56. [Google Scholar] [CrossRef]
- Conrad, N.; Misra, S.; Verbakel, J.Y.; Verbeke, G.; Molenberghs, G.; Taylor, P.N.; Mason, J.; Sattar, N.; McMurray, J.J.V.; McInnes, I.B.; et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population-based cohort study of 22 million individuals in the UK. Lancet 2023, 401, 1878–1890. [Google Scholar] [CrossRef]
- To, T.; Stanojevic, S.; Moores, G.; Gershon, A.S.; Bateman, E.D.; Cruz, A.A.; Boulet, L.P. Global asthma prevalence in adults: Findings from the cross-sectional world health survey. BMC Public Health 2012, 12, 204. [Google Scholar] [CrossRef] [PubMed]
- Braman, S.S. The global burden of asthma. Chest 2006, 130 (Suppl. S1), 4S–12S. [Google Scholar] [CrossRef] [PubMed]
- Comberiati, P.; Di Cicco, M.E.; D’Elios, S.; Peroni, D.G. How much asthma is atopic in children? Front. Pediatr. 2017, 5, 122. [Google Scholar] [CrossRef] [PubMed]
- Martin-Orozco, E.; Norte-Munoz, M.; Martinez-Garcia, J. Regulatory T cells in allergy and asthma. Front. Pediatr. 2017, 5, 117. [Google Scholar] [CrossRef]
- Abuabara, K.; Yu, A.M.; Okhovat, J.P.; Allen, I.E.; Langan, S.M. The prevalence of atopic dermatitis beyond childhood: A systematic review and meta-analysis of longitudinal studies. Allergy 2018, 73, 696–704. [Google Scholar] [CrossRef]
- Zhu, J.; Paul, W.E. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol. Rev. 2010, 238, 247–262. [Google Scholar] [CrossRef]
- Lloyd, C.M.; Hessel, E.M. Functions of T cells in asthma: More than just TH2 cells. Nat. Rev. Immunol. 2010, 10, 838–848. [Google Scholar] [CrossRef]
- Gour, N.; Wills-Karp, M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015, 75, 68–78. [Google Scholar] [CrossRef]
- Steinke, J.W.; Borish, L. Th2 cytokines and asthma. Interleukin-4: Its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir. Res. 2001, 2, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, L.K.; Hummelshoj, L. Triggers of IgE class switching and allergy development. Ann. Med. 2007, 39, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, J.; Owyang, A.; Oldham, E.; Song, Y.L.; Murphy, E.; McClanahan, T.K.; Zurawski, G.; Moshrefi, M.; Qin, J.Z.; Li, X.; et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005, 23, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Carriere, V.; Roussel, L.; Ortega, N.; Lacorre, D.A.; Americh, L.; Aguilar, L.; Bouche, G.; Girard, J.P. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor. Proc. Natl. Acad. Sci. USA 2007, 104, 282–287. [Google Scholar] [CrossRef]
- Cayrol, C.; Girard, J.P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol. Rev. 2018, 281, 154–168. [Google Scholar] [CrossRef]
- Chan, B.C.; Lam, C.W.; Tam, L.S.; Wong, C.K. IL33: Roles in allergic inflammation and therapeutic perspectives. Front. Immunol. 2019, 10, 364. [Google Scholar] [CrossRef]
- Kondo, Y.; Yoshimoto, T.; Yasuda, K.; Futatsugi-Yumikura, S.; Morimoto, M.; Hayashi, N.; Hoshino, T.; Fujimoto, J.; Nakanishi, K. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol. 2008, 20, 791–800. [Google Scholar] [CrossRef]
- Kurowska-Stolarska, M.; Stolarski, B.; Kewin, P.; Murphy, G.; Corrigan, C.J.; Ying, S.; Pitman, N.; Mirchandani, A.; Rana, B.; van Rooijen, N.; et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol. 2009, 183, 6469–6477. [Google Scholar] [CrossRef]
- Préfontaine, D.; Nadigel, J.; Chouiali, F.; Audusseau, S.; Semlali, A.; Chakir, J.; Martin, J.G.; Hamid, Q. Increased IL-33 expression by epithelial cells in bronchial asthma. J. Allergy Clin. Immunol. 2010, 125, 752–754. [Google Scholar] [CrossRef]
- Skoner, D.P. Balancing safety and efficacy in pediatric asthma management. Pediatrics 2002, 109, 381–392. [Google Scholar] [CrossRef]
- Aasbjerg, K.; Torp-Pedersen, C.; Vaag, A.; Backer, V. Treating allergic rhinitis with depot-steroid injections increase risk of osteoporosis and diabetes. Respir. Med. 2013, 107, 1852–1858. [Google Scholar] [CrossRef] [PubMed]
- Goddard, A.L.; Lio, P.A. Alternative, complementary, and forgotten remedies for atopic dermatitis. Evid.-Based Complement. Altern. Med. 2015, 2015, 676897. [Google Scholar] [CrossRef] [PubMed]
- Chiarella, S.E. Immunobiologic treatments for severe asthma, atopic dermatitis, and chronic urticaria. Allergy Asthma Proc. 2019, 40, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.D.; Leatherbarrow, R.J. Development of small molecules to target the IgE:FcεRI protein-protein interaction in allergies. Future Med. Chem. 2013, 5, 1423–1435. [Google Scholar] [CrossRef]
- Ramadan, A.M.; Daguindau, E.; Rech, J.C.; Chinnaswamy, K.; Zhang, J.L.; Hura, G.L.; Griesenauer, B.; Bolten, Z.; Robida, A.; Larsen, M.; et al. From proteomics to discovery of first-in-class ST2 inhibitors active in vivo. JCI Insight 2018, 3, e99208. [Google Scholar] [CrossRef]
- Kim, Y.; Ma, C.; Park, S.; Shin, Y.; Lee, T.; Paek, J.; Kim, K.H.; Jang, G.; Cho, H.; Son, S.; et al. Rational design, synthesis and evaluation of oxazolo[4,5-c]quinolinone analogs as novel interleukin-33 inhibitors. Chem. Asian J. 2021, 16, 3702–3712. [Google Scholar] [CrossRef]
- Desai, A.; Jung, M.Y.; Olivera, A.; Gilfillan, A.M.; Prussin, C.; Kirshenbaum, A.S.; Beaven, M.A.; Metcalfe, D.D. IL-6 promotes an increase in human mast cell numbers and reactivity through suppression of suppressor of cytokine signaling 3. J. Allergy Clin. Immunol. 2016, 137, 1863–1871. [Google Scholar] [CrossRef]
- Tobio, A.; Bandara, G.; Morris, D.A.; Kim, D.K.; O’Connell, M.P.; Komarow, H.D.; Carter, M.C.; Smrz, D.; Metcalfe, D.D.; Olivera, A. Oncogenic D816V-KIT signaling in mast cells causes persistent IL-6 production. Haematologica 2020, 105, 124–135. [Google Scholar] [CrossRef]
- Nials, A.T.; Uddin, S. Mouse models of allergic asthma: Acute and chronic allergen challenge. Dis. Model Mech. 2008, 1, 213–220. [Google Scholar] [CrossRef]
- Martel, B.C.; Lovato, P.; Baumer, W.; Olivry, T. Translational animal models of atopic dermatitis for preclinical studies. Yale J. Biol. Med. 2017, 90, 389–402. [Google Scholar]
- Störmer, E.; Roots, I.; Brockmöller, J. Benzydamine N-oxidation as an index reaction reflecting FMO activity in human liver microsomes and impact of FMO3 polymorphisms on enzyme activity. Br. J. Clin. Pharmacol. 2000, 50, 553–561. [Google Scholar] [CrossRef]
- Yanni, S.B.; Annaert, P.P.; Augustijns, P.; Bridges, A.; Gao, Y.; Benjamin, D.K.; Thakker, D.R. Role of Flavin-Containing Monooxygenase in oxidative metabolism of voriconazole by human liver microsomes. Drug Metab. Dispos. 2008, 36, 1119–1125. [Google Scholar] [CrossRef]
- Lin, J.H.; Lu, A.Y.H. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol. Rev. 1997, 49, 403–449. [Google Scholar] [CrossRef]
- Yanez, J.A.; Remsberg, C.M.; Sayre, C.L.; Forrest, M.L.; Davies, N.M. Flip-flop pharmacokinetics—Delivering a reversal of disposition:challenges and opportunities during drug development. Ther. Deliv. 2011, 2, 643–672. [Google Scholar] [CrossRef]
- Amidon, G.L.; Lennernas, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification—The correlation of in-vitro drug product dissolution and in-vivo bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef]
Parameter | KB-1517 | KB-1518 | ||
---|---|---|---|---|
IV | PO | IV | PO | |
Dose (mg/kg) | 5 | 10 | 5 | 10 |
t1/2 (h) | ND | ND | 2.6 ± 0.3 | 6.2 ± 1.9 |
tmax (h) | NA | 5.6 ± 3.5 | NA | 1.6 ± 0.8 |
Cmax (ng/mL) | NA | 289.0 ± 34.1 | NA | 156.8 ± 103.9 |
AUClast (ng⋅h/mL) | 1832.1 ± 348.1 | 4370.1 ± 738.3 | 3460.2 ± 474.5 | 868.4 ± 267.4 |
AUCinf (ng⋅h/mL) | ND | ND | 3464.6 ± 476.3 | 941.9 ± 234.0 |
CL (L/h/kg) | ND | NA | 1.5 ± 0.2 | NA |
Vss (L/kg) | ND | NA | 4.6 ± 1.4 | NA |
F (%) | NA | 119.3 ± 20.1 | NA | 13.6 ± 3.4 |
Compound | fu (%) | |
---|---|---|
Human | Mouse | |
KB-1517 | 1.2 ± 0.03 | 1.8 ± 0.05 |
KB-1518 | 0.30 ± 0.01 | 0.25 ± 0.005 |
Propranolol | 26.2 ± 2.6 | 24.7 ± 0.5 |
Ranitidine | 85.0 ± 0.6 | 88.8 ± 5.4 |
Compound | fu (%) | |
---|---|---|
Human | Mouse | |
KB-1517 | 19.1 ± 0.7 | 15.1 ± 0.8 |
KB-1518 | 6.1 ± 0.1 | 4.3 ± 0.5 |
Itraconazole | 2.8 ± 0.6 | 1.9 ± 0.2 |
Antipyrine | 94.6 ± 2.6 | 93.7 ± 1.1 |
No. | Biotransformation | Formula | [M+H]+ a (m/z) | △m b (ppm) | tr c (min) | Species | Product ions (m/z) |
---|---|---|---|---|---|---|---|
M0 | Parent | C21H18F3N3O2 | 402.1425 | 0.2 | 3.96 | NA | 72, 114, 313, 331, 357 |
M1 | Mono-demethylation | C20H16F3N3O2 | 388.1267 | 0.0 | 3.92 | H, M | 58, 114, 313, 331, 357 |
M2 | N-oxidation | C21H18F3N3O3 | 418.1373 | 0.0 | 3.99 | H, M | 58, 88, 114, 313, 331, 357 |
M3 | Di-oxygenation | C21H18F3N3O4 | 434.1323 | 0.2 | 3.99 | M | 72, 104, 330, 373 |
No. | Biotransformation | Formula | [M+H]+ a (m/z) | △m b (ppm) | tr c (min) | Species | Productions (m/z) |
---|---|---|---|---|---|---|---|
M0 | Parent | C21H18F3N3O2 | 402.1428 | 1.0 | 4.01 | NA | 72, 357 |
M1 | Mono-demethylation + rearrangement | C20H16F3N3O2 | 388.1261 | −1.5 | 4.03 | H, M | 315, 329, 344, 354, 370 |
M2 | Di-demethylation + rearrangement | C19H14F3N3O2 | 374.1109 | −0.3 | 3.99 | H, M | 313, 330, 356 |
M3 | N-oxidation | C21H18F3N3O3 | 418.1373 | 1.7 | 4.03 | H, M | 58, 88, 313, 331, 357 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, H.; Jang, G.; Ban, M.-A.; Son, S.-H.; Byun, Y.; Lee, K. Drug Metabolism and Pharmacokinetics of Oxazolo[4,5-c]quinoline Analogs as Novel Interleukin-33 Inhibitors. Pharmaceutics 2025, 17, 1153. https://doi.org/10.3390/pharmaceutics17091153
Jeon H, Jang G, Ban M-A, Son S-H, Byun Y, Lee K. Drug Metabolism and Pharmacokinetics of Oxazolo[4,5-c]quinoline Analogs as Novel Interleukin-33 Inhibitors. Pharmaceutics. 2025; 17(9):1153. https://doi.org/10.3390/pharmaceutics17091153
Chicago/Turabian StyleJeon, Hayoung, Geonhee Jang, Min-A Ban, Sang-Hyun Son, Youngjoo Byun, and Kiho Lee. 2025. "Drug Metabolism and Pharmacokinetics of Oxazolo[4,5-c]quinoline Analogs as Novel Interleukin-33 Inhibitors" Pharmaceutics 17, no. 9: 1153. https://doi.org/10.3390/pharmaceutics17091153
APA StyleJeon, H., Jang, G., Ban, M.-A., Son, S.-H., Byun, Y., & Lee, K. (2025). Drug Metabolism and Pharmacokinetics of Oxazolo[4,5-c]quinoline Analogs as Novel Interleukin-33 Inhibitors. Pharmaceutics, 17(9), 1153. https://doi.org/10.3390/pharmaceutics17091153