Microenvironmental pH-Modulated Dissolution of Albendazole Layered on Tartaric Acid Starter Pellet Cores
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coating Process
2.2.1. Drug Layering of Inert Cores
2.2.2. Coating of Drug-Layered Pellets
2.3. Shape and Size of the Pellets
2.4. Scanning Electron Microscope (SEM) Imaging
2.5. Thermodynamic Solubility Determination
2.6. In Vitro Drug Release Test
2.7. Microenvironmental pH Studies (Slurry Method)
2.8. The Investigation of Release of Tartaric Acid in the Microfluidic Setup Based on Image Analysis and CIELab Measurement
2.9. Osmolality Studies
3. Results
3.1. Morphological Properties of Pellets
3.2. Thermodynamic Solubility
3.3. In Vitro Drug Release
3.4. Microenvironmental pH Study
3.5. The Release of Tartaric Acid from Enteric-Coated Pellets
3.6. Osmolality Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABZ | Albendazole |
API | Active pharmaceutical ingredient |
BCS | Biopharmaceutical classification system |
EuRS | Eudragit® RS |
EuRL | Eudragit® RL |
EuRS-EuFS | Eudragit® RS-Eudragit® FS |
EuRL-EuFS | Eudragit® RL-Eudragit® FS |
EuFS | Eudragit® FS |
H | Hour/hours |
HPMC | Hydroxypropyl methylcellulose |
IC50 | Half-maximal inhibitory concentration |
MCC | Microcrystalline cellulose |
TAP | Tartaric acid pellets |
TNF | Tumor necrosis factor |
References
- Velik, J.; Baliharová, V.; Fink-Gremmels, J.; Bull, S.; Lamka, J.; Skálová, L. Benzimidazole drugs and modulation of biotransformation enzymes. Res. Vet. Sci. 2004, 76, 95–108. [Google Scholar] [CrossRef]
- Ghasemi, F.; Black, M.; Vizeacoumar, F.; Pinto, N.; Ruicci, K.M.; Le, C.; Lowerison, M.R.; Leong, H.S.; Yoo, J.; Fung, K.; et al. Repurposing Albendazole: New potential as a chemotherapeutic agent with preferential activity against HPV-negative head and neck squamous cell cancer. Oncotarget 2017, 8, 71512–71519. [Google Scholar] [CrossRef]
- Yang, T.; Cheng, C.; Xu, R.; Huo, J.; Peng, X.; Chen, Y.; Liang, Y.; Su, Z.; Zhang, Y. Albendazole exerts an anti-hepatocellular carcinoma effect through a WWOX-dependent pathway. Life Sci. 2022, 310, 121086. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.W.; Badar, S.; Morris, D.L.; Pourgholami, M.H. Potent inhibition of tubulin polymerisation and proliferation of paclitaxel-resistant 1A9PTX22 human ovarian cancer cells by albendazole. Anticancer Res. 2009, 29, 3791–3796. [Google Scholar] [PubMed]
- Noorani, L.; Pourgholami, M.H.; Liang, M.; Morris, D.L.; Stenzel, M. Albendazole loaded albumin nanoparticles for ovarian cancer therapy. Eur. J. Nanomed. 2014, 6, 227–236. [Google Scholar] [CrossRef]
- Khalilzadeh, A.; Wangoo, K.T.; Morris, D.L.; Pourgholami, M.H. Epothilone-paclitaxel resistant leukemic cells CEM/dEpoB300 are sensitive to albendazole: Involvement of apoptotic pathways. Biochem. Pharmacol. 2007, 74, 407–414. [Google Scholar] [CrossRef]
- Movahedi, F.; Liu, J.; Sun, B.; Cao, P.; Sun, L.; Howard, C.; Gu, W.; Xu, Z.P. PD-L1-Targeted Co-Delivery of Two Chemotherapeutics for Efficient Suppression of Skin Cancer Growth. Pharmaceutics 2022, 14, 1488. [Google Scholar] [CrossRef]
- Fatima, I.; Ahmad, R.; Barman, S.; Gowrikumar, S.; Pravoverov, K.; Primeaux, M.; Fisher, K.W.; Singh, A.B.; Dhawan, P. Albendazole inhibits colon cancer progression and therapy resistance by targeting ubiquitin ligase RNF20. Br. J. Cancer 2024, 130, 1046–1058. [Google Scholar] [CrossRef]
- Wildenberg, M.E.; Levin, A.D.; Ceroni, A.; Guo, Z.; Koelink, P.J.; Hakvoort, T.B.M.; Westera, L.; Bloemendaal, F.M.; Brandse, J.F.; Simmons, A.; et al. Benzimidazoles Promote Anti-TNF Mediated Induction of Regulatory Macrophages and Enhance Therapeutic Efficacy in a Murine Model. J. Crohns Colitis 2017, 11, 1480–1490. [Google Scholar] [CrossRef]
- Guo, Y.; Patel, H.J.; Patel, A.S.; Squillante, E.; Patel, K. Albendazole nanosuspension coated granules for the rapid localized release and treatment of colorectal cancer. Colloids Surf. B Biointerfaces 2025, 245, 114320. [Google Scholar] [CrossRef]
- Lindenberg, M.; Kopp, S.; Dressman, J.B. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 2004, 58, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Torrado, S.; Torrado, S.; Cadorniga, R.; Torrado, J.J. Formulation parameters of albendazole solution. Int. J. Pharm. 1996, 140, 45–50. [Google Scholar] [CrossRef]
- Fülöp, V.; Jakab, G.; Bozó, T.; Tóth, B.; Endrésik, D.; Balogh, E.; Kellermayer, M.; Antal, I. Study on the dissolution improvement of albendazole using reconstitutable dry nanosuspension formulation. Eur. J. Pharm. Sci. 2018, 123, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Medina, L.; García, L.; Fuentes, I.; Moreno-Esparza, R. Absorption Studies of Albendazole and Some Physicochemical Properties of the Drug and Its Metabolite Albendazole Sulphoxide. J. Pharm. Pharmacol. 1998, 50, 43–48. [Google Scholar] [CrossRef]
- Prieto, J.G.; Alonso, M.L.; Justel, A.; Santos, L. Tissue levels of albendazole after in vivo intestinal and gastric absorption in rats. J. Pharm. Biomed. Anal. 1988, 6, 1059–1063. [Google Scholar] [CrossRef]
- McCarthy, J.S.; Moore, T.A. 42—Drugs for Helminths. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 8th ed.; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2015; pp. 519–527. [Google Scholar] [CrossRef]
- Cristòfol, C.; Navarro, M.; Franquelo, C.; Valladares, J.E.; Carretero, A.; Ruberte, J.; Arboix, M. Disposition of Netobimin, Albendazole, and Its Metabolites in the Pregnant Rat: Developmental Toxicity. Toxicol. Appl. Pharmacol. 1997, 144, 56–61. [Google Scholar] [CrossRef]
- JECFA. Albendazole: In Evaluation of Certain Veterinary Drug Residues in Food; Thirty-Fourth Report of the Joint WHO/FAO Expert Committee on Food Additives; WHO: Geneva, Switzerland, 1989; pp. 14–19. [Google Scholar]
- Shyale, S.; Chowdhary, K.P.R.; Krishnaiah, Y.S.R. Development of colon-targeted albendazole-β-cyclodextrin-complex drug delivery systems. Drug Dev. Res. 2005, 65, 76–83. [Google Scholar] [CrossRef]
- Yan, H.; Zhong, X.; Liu, Y. Improving the Solubility, Stability, and Bioavailability of Albendazole through Synthetic Salts. Molecules 2024, 29, 3571. [Google Scholar] [CrossRef]
- Han, M.-J.; Zou, Z.Z. Enabling a novel solvent method on Albendazole solid dispersion to improve the in vivo bioavailability. Eur. J. Pharm. Sci. 2024, 196, 106751. [Google Scholar] [CrossRef]
- Su, D.; Bai, M.; Wei, C.; Long, X.; Liu, X.; Shen, X.; Ding, H. Combining solubilization and controlled release strategies to prepare pH-sensitive solid dispersion loaded with albendazole: In vitro and in vivo studies. Front. Vet. Sci. 2024, 11, 1522856. [Google Scholar] [CrossRef]
- Sawatdee, S.; Atipairin, A.; Sae Yoon, A.; Srichana, T.; Changsan, N.; Suwandecha, T. Formulation development of albendazole-loaded self-microemulsifying chewable tablets to enhance dissolution and bioavailability. Pharmaceutics 2019, 11, 134. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.; Al-Anazi, F.K. Enhancement of the dissolution of albendazole from pellets using MTR technique. Saudi Pharm. J. 2013, 21, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Pareek, S.; Omray, A.; Koli, A.R. InstaSpheres TA (Tartaric acid) as functional starter core for extended release formulations. J. Drug Deliv. Sci. Technol. 2019, 54, 101262. [Google Scholar] [CrossRef]
- McCoubrey, L.E.; Favaron, A.; Awad, A.; Orlu, M.; Gaisford, S.; Basit, A.W. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. J. Control. Release 2023, 353, 1107–1126. [Google Scholar] [CrossRef]
- Zhang, F. Melt-Extruded Eudragit® FS-Based Granules for Colonic Drug Delivery. AAPS PharmSciTech 2016, 17, 56–67. [Google Scholar] [CrossRef]
- Balogh, A.; Farkas, B.; Domokos, A.; Farkas, A.; Démuth, B.; Borbás, E.; Nagy, B.; Marosi, G.; Nagy, Z.K. Controlled-release solid dispersions of Eudragit® FS 100 and poorly soluble spironolactone prepared by electrospinning and melt extrusion. Eur. Polym. J. 2017, 95, 406–417. [Google Scholar] [CrossRef]
- Dash, T.R.; Verma, P. Matrix tablets: An approach towards oral extended release drug delivery. Int. J. Pharm. Res. Rev. 2013, 2, 12–24. [Google Scholar]
- Jaweed, L.; Dilshad, H.; Sarwar, G. Application of Eudragit RS 30D as a potential drug release retardant of acetaminophen and caffeine for prolonged duration of comfort. Int. J. Polym. Sci. 2019, 2019, 3830670. [Google Scholar] [CrossRef]
- Kállai, N.; Luhn, O.; Dredán, J.; Kovács, K.; Lengyel, M.; Antal, I. Evaluation of Drug Release from Coated Pellets Based on Isomalt, Sugar, and Microcrystalline Cellulose Inert Cores. AAPS PharmSciTech 2010, 11, 383–391. [Google Scholar] [CrossRef]
- Varshosaz, J.; Emami, J.; Tavakoli, N.; Minaiyan, M.; Rahmani, N.; Dorkoosh, F. Development and Evaluation of a Novel Pellet-Based Tablet System for Potential Colon Delivery of Budesonide. J. Drug Deliv. 2012, 2012, 905191. [Google Scholar] [CrossRef]
- Huyghebaert, N.; Vermeire, A.; Remon, J.P. In vitro evaluation of coating polymers for enteric coating and human ileal targeting. Int. J. Pharm. 2005, 298, 26–37. [Google Scholar] [CrossRef]
- Lengyel, M.; Balogh, E.; Szerőczei, D.; Dobó-Nagy, C.; Pápay, Z.; Stömmer, V.; Klebovich, I.; Antal, I. Study on process parameters and optimization of microencapsulation based on phase separation. Eur. J. Pharm. Sci. 2018, 122, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. European Pharmacopeia. In Delayed-Release Dosage Forms, Gastroresistant Dosage Forms, 10th ed.; Council of Europe: Strasburg, France, 2019. [Google Scholar]
- Badawy, S.I.F.; Badawy, S.; Williams, R.C.; Gilbert, D.L. Effect of different acids on solid-state stability of an ester prodrug of a IIb/IIIa glycoprotein receptor antagonist. Pharm. Dev. Technol. 1999, 4, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Badawy, S.I.F.; Hussain, M.A. Microenvironmental pH modulation in solid dosage forms. J. Pharm. Sci. 2007, 96, 948–959. [Google Scholar] [CrossRef]
- Amoyav, B.; Goldstein, Y.; Steinberg, E.; Benny, O. 3D printed microfluidic devices for drug release assays. Pharmaceutics 2021, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Murawsky, M.; La Count, T.; Wanasathop, A.; Hao, X.; Kelm, G.R.; Kozak, D.; Qin, B.; Li, S.K. Dissolution chamber for small drug delivery system in the periodontal pocket. AAPS J. 2019, 21, 51. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, S.; Ma, D.; Liu, B.; Lin, H.; Li, S. Meteorological factors affecting pan evaporation in the Haihe River Basin, China. Water 2019, 11, 317. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. (Eds.) Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press: London, UK; American Pharmacists Association: Chicago, IL, USA, 2009; p. 917. [Google Scholar]
- Kállai-Szabó, N.; Lengyel, M.; Farkas, D.; Barna, Á.T.; Fleck, C.; Basa, B.; Antal, I. Review on starter pellets: Inert and functional cores. Pharmaceutics 2022, 14, 1299. [Google Scholar] [CrossRef]
- Kotagale, N.R.; Parkhe, A.P.; Jumde, A.B.; Khandelwal, H.M.; Umekar, M.J. Ranitidine hydrochloride-loaded ethyl cellulose and Eudragit RS 100 buoyant microspheres: Effect of pH modifiers. Indian J. Pharm. Sci. 2011, 73, 626–633. [Google Scholar] [CrossRef]
- Gutsche, S.; Krause, M.; Kranz, H. Strategies to overcome pH-dependent solubility of weakly basic drugs by using different types of alginates. Drug Dev. Ind. Pharm. 2008, 34, 1277–1284. [Google Scholar] [CrossRef]
- Gancel, A.-L.; Payan, C.; Koltunova, T.; Jourdes, M.; Christmann, M.; Teissedre, P.-L. Solubility, acidifying power and sensory properties of fumaric acid in water, hydro-alcoholic solutions, musts and wines compared to tartaric, malic, lactic and citric acids. OENO One 2022, 56, 137–154. [Google Scholar] [CrossRef]
- Guthmann, C.; Lipp, R.; Wagner, T.; Kranz, H. Development of a multiple unit pellet formulation for a weakly basic drug. Drug Dev. Ind. Pharm. 2007, 33, 341–349. [Google Scholar] [CrossRef]
- Glaessl, B.; Siepmann, F.; Tucker, I.; Rades, T.; Siepmann, J. Mathematical modeling of drug release from Eudragit RS-based delivery systems. J. Drug Deliv. Sci. Technol. 2010, 20, 127–133. [Google Scholar] [CrossRef]
- Ploen, J.; Andersch, J.; Heschel, M.; Leopold, C.S. Citric acid as a pH-modifying additive in an extended release pellet formulation containing a weakly basic drug. Drug Dev. Ind. Pharm. 2009, 35, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Streubel, A.; Siepmann, J.; Dashevsky, A.; Bodmeier, R. pH-independent release of a weakly basic drug from water-insoluble and—Soluble matrix tablets. J. Control. Release 2000, 67, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.F.; Pye, G.; Bramley, R.; Clark, A.G.; Dyson, T.J.; Hardcastle, J.D. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988, 29, 1035–1041. [Google Scholar] [CrossRef]
- Nugent, S.G.; Kumar, D.; Rampton, D.S.; Evans, D.F. Intestinal luminal pH in inflammatory bowel disease: Possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 2001, 48, 571–577. [Google Scholar] [CrossRef]
- Ibekwe, V.C.; Fadda, H.M.; Parsons, G.E.; Basit, A.W. A comparative in vitro assessment of the drug release performance of pH-responsive polymers for ileo-colonic delivery. Int. J. Pharm. 2006, 308, 52–60. [Google Scholar] [CrossRef]
- Handali, S.; Moghimipour, E.; Rezaei, M.; Kouchak, M.; Ramezani, Z.; Dorkoosh, F.A. In vitro and in vivo evaluation of coated capsules for colonic delivery. J. Drug Deliv. Sci. Technol. 2018, 47, 492–498. [Google Scholar] [CrossRef]
- Siepe, S.; Lueckel, B.; Kramer, A.; Ries, A.; Gurny, R. Strategies for the design of hydrophilic matrix tablets with controlled microenvironmental pH. Int. J. Pharm. 2006, 316, 14–20. [Google Scholar] [CrossRef]
I. | II. | III. | ||
---|---|---|---|---|
a | b | |||
Process | ABZ Layering | EuRS Coating | EuRL Coating | EuFS Coating |
Batch size (g) | 600 | 200 | 200 | 150 |
Spray-nozzle diameter (mm) | 0.8 | 0.8 | 0.8 | 1.2 |
Set temperature (°C) | 50 | 50 | 50 | 25 |
Inlet air temperature (°C) | 49 | 44–45 | 44–45 | 22 |
Outlet air temperature (°C) | 41 | 35–36 | 35–36 | 18 |
Air pressure (bar) | 0.8 | 0.8 | 1.0 | 1.0 |
The capacity of the fan | 2–3 | 2–3 | 4 | 2 |
Feeding rate (g/min) | 2.0–3.0 | 3.0 | 3.0 | 3.7 |
Drying temperature (°C) | 45 | 45 | 45 | 22 |
Dry polymer increase (%) | 0.6 | 10 | 10 | 15.6 |
Weight increase (%) | 4.1 | 19.5 | 19.5 | 25.8 |
Cumulative Drug Release (%) | |||
---|---|---|---|
TAP-EuRS10% | TAP-EuRS10%-EuFS25% | ||
ΔE* | Medium | 0.91 | 0.81 |
Pellet core | 0.91 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlahovic, K.; Lengyel, M.; Fleck, C.; Kállai-Szabó, N.; Balogh, E.; Laki, A.J.; Antal, I. Microenvironmental pH-Modulated Dissolution of Albendazole Layered on Tartaric Acid Starter Pellet Cores. Pharmaceutics 2025, 17, 1133. https://doi.org/10.3390/pharmaceutics17091133
Vlahovic K, Lengyel M, Fleck C, Kállai-Szabó N, Balogh E, Laki AJ, Antal I. Microenvironmental pH-Modulated Dissolution of Albendazole Layered on Tartaric Acid Starter Pellet Cores. Pharmaceutics. 2025; 17(9):1133. https://doi.org/10.3390/pharmaceutics17091133
Chicago/Turabian StyleVlahovic, Kristina, Miléna Lengyel, Christian Fleck, Nikolett Kállai-Szabó, Emese Balogh, András József Laki, and István Antal. 2025. "Microenvironmental pH-Modulated Dissolution of Albendazole Layered on Tartaric Acid Starter Pellet Cores" Pharmaceutics 17, no. 9: 1133. https://doi.org/10.3390/pharmaceutics17091133
APA StyleVlahovic, K., Lengyel, M., Fleck, C., Kállai-Szabó, N., Balogh, E., Laki, A. J., & Antal, I. (2025). Microenvironmental pH-Modulated Dissolution of Albendazole Layered on Tartaric Acid Starter Pellet Cores. Pharmaceutics, 17(9), 1133. https://doi.org/10.3390/pharmaceutics17091133