Sustainable Olive Pomace Extracts for Skin Barrier Support
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents, Chemicals, and Equipment
2.2. Olive Pomace Collection
2.3. Olive Pomace Extraction Process
2.4. Reducing Capacity of the Folin–Ciocalteu Reagent
2.5. Total Flavonoid Content
2.6. Deactivation of the 2,2′-Azinobis-3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS) Radical
2.7. Antioxidant Capacity Determination via DPPH Radical Analysis
2.8. Antioxidant Capacity of the Beta-Carotene/Linoleic Acid System
2.9. Stability Study
2.10. Simultaneous Determination of Hydroxytyrosol and Oleuropein via HPLC
2.11. Qualitative Analysis Via Ultrahigh-Efficiency Liquid Chromatography Coupled with Ultrahigh-Resolution Mass Spectrometry (QTOF) (UHPLC-QqTOF-MS)
2.12. Antiglycation Activity
2.13. Antioxidant Capacity of Cosmetic Formulations
2.14. Statistical Analysis
3. Results and Discussion
3.1. Olive Pomace Extraction
3.2. ABTS and DPPH Radical Analysis of the Antioxidant Capacity
3.3. Antioxidant Capacity of the Beta-Carotene/Linoleic Acid System
3.4. Stability Studies
3.5. Simultaneous Determination of Hydroxytyrosol and Oleuropein via HPLC-DAD
3.6. Qualitative Analysis by UHPLC-QqTOF-MS
3.7. Antiglycation Activity
3.8. Antioxidant Capacity of Cosmetic Formulations
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SC | Stratum corneum |
ROS | Reactive oxygen species |
TEWL | Transepidermal water loss |
OPE | Olive pomace extract |
OLE | Oleuropein |
HT | Hydroxytyrosol |
iNOS | Inducible nitric oxide synthase |
COX-2 | Cyclooxygenase-2 |
Ki-67 | Ki-67 antigen |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
PPAR- γ | Peroxisome proliferator-activated receptor gamma |
IFN-γ | Interferon gamma |
FTA FOPE3 FV | Cosmetic formulation containing tocopheryl acetate Cosmetic formulation containing OPE3 Cosmetic formulation vehicle |
References
- Suzuki, A.; Nomura, T.; Jokura, H.; Kitamura, N.; Fujii, A.; Hase, T. Beneficial effects of oral supplementation with ferulic acid, a plant phenolic compound, on the human skin barrier in healthy men. Int. J. Vitam. Nutr. Res. 2021, 93, 4–60. [Google Scholar] [CrossRef]
- Liu, G.-T.; Li, Y.-L.; Wang, J.; Dong, C.-Z.; Deng, M.; Tai, M.; Deng, L.; Che, B.; Lin, L.; Du, Z.-Y.; et al. Improvement of Skin Barrier Dysfunction by Phenolic-containing Extracts of Lycium barbarum via Nrf2/HO-1 Regulation. Photochem. Photobiol. 2022, 98, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Boo, Y.C. Can plant phenolic compounds protect the skin from airborne particulate matter? Antioxidants 2019, 8, 379. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.G.; Lee, B.H.; Kim, W.; Lee, J.S.; Kim, G.H.; Chun, O.K.; Koo, S.I.; Kim, D.O. Lithospermum erythrorhizon extract protects keratinocytes and fibroblasts against oxidative stress. J. Med. Food 2014, 17, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Butkeviciute, A.; Ramanauskiene, K.; Kurapkiene, V.; Janulis, V. Dermal penetration studies of potential phenolic compounds ex vivo and their antioxidant activity in vitro. Plants 2022, 11, 1901. [Google Scholar] [CrossRef] [PubMed]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Xie, Z.; Liu, G.; Sun, X.; Peng, G.; Lin, B.; Liao, Q. Isolation, identification and activities of natural antioxidants from Callicarpa kwangtungensis Chun. PLoS ONE 2014, 9, 93000. [Google Scholar] [CrossRef] [PubMed]
- Nisa, R.U.; Nisa, A.U.; Tantray, A.Y.; Shah, A.H.; Jan, A.T.; Shah, A.A.; Wani, I.A. Plant phenolics with promising therapeutic applications against skin disorders: A mechanistic review. J. Agric. Food Res. 2024, 101090. [Google Scholar] [CrossRef]
- Gomez-Molina, M.; Albaladejo-Marico, L.; Yepes-Molina, L.; Nicolas-Espinosa, J.; Navarro-León, E.; Garcia-Ibañez, P.; Carvajal, M. Exploring phenolic compounds in crop byproducts for cosmetic efficacy. Int. J. Mol. Sci. 2024, 25, 5884. [Google Scholar] [CrossRef] [PubMed]
- Donner, M.; Radić, I. Innovative circular business models in the olive oil sector for sustainable mediterranean agrifood systems. Sustainability 2021, 13, 2588. [Google Scholar] [CrossRef]
- Nicodemou, A.; Kallis, M.; Koutinas, M. Biorefinery development for the production of polyphenols, algal biomass and lipids using olive processing industry waste. Sustain. Chem. Pharm. 2023, 32, 100998. [Google Scholar] [CrossRef]
- Rodrigues, F.; Pimentel, F.B.; Oliveira, M.B.P. Olive byproducts: Challenge application in cosmetic industry. Ind. Crops Prod. 2015, 70, 116–124. [Google Scholar] [CrossRef]
- Ramírez, I.M.; Vaz, D.A.; Banat, I.M.; Marchant, R.; Alameda, E.J.; Román, M.G. Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production. Bioresour. Technol. 2016, 205, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.; Romero, I.; Moya, M.; Castro, E. Olive-derived biomass as a renewable source of value-added products. Process Biochem. 2020, 97, 43–56. [Google Scholar] [CrossRef]
- Servili, M.; Esposto, S.; Taticchi, A.; Urbani, S.; Di Maio, I.; Veneziani, G.; Selvaggini, R. New approaches to virgin olive oil quality, technology, and by-products valorization. Eur. J. Lipid Sci. Technol. 2015, 117, 1882–1892. [Google Scholar] [CrossRef]
- Annab, H.; Fiol, N.; Villaescusa, I.; Essamri, A. A proposal for the sustainable treatment and valorization of olive mill wastes. J. Environ. Chem. Eng. 2019, 7, 102803. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- Katsinas, N.; Bento da Silva, A.; Enríquez-de-Salamanca, A.; Fernández, N.; Bronze, M.R.; Rodríguez-Rojo, S. Pressurized liquid extraction optimization from supercritical defatted olive pomace: A green and selective phenolic extraction process. ACS Sustain. Chem. Eng. 2021, 9, 5590–5602. [Google Scholar] [CrossRef]
- Faria-Silva, A.C.; Mota, A.L.; Costa, A.M.; Silva, A.M.; Ascenso, A.; Reis, C.; Marto, J.; Ribeiro, H.M.; Cavalheiro, M.; Simões, S. Application of natural raw materials for development of cosmetics through nanotechnology. In Nanotechnology for the Preparation of Cosmetics Using Plant-Based Extracts; Elsevier: Amsterdam, The Netherlands, 2022; pp. 157–201. [Google Scholar] [CrossRef]
- Pinto, J.R.; Monteiro e Silva, S.A.; Leonardi, G.R. Effects of 1, 3-propanediol associated, or not, with butylene glycol and/or glycerol on skin hydration and skin barrier function. Int. J. Cosm. Sci. 2024, 46, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Hordyjewicz-Baran, Z.; Wasilewski, T.; Zarębska, M.; Stanek-Wandzel, N.; Zajszły-Turko, E.; Tomaka, M.; Zagórska-Dziok, M. Micellar and Solvent Loan Chemical Extraction as a Tool for the Development of Natural Skin Care Cosmetics Containing Substances Isolated from Grapevine Buds. Appl. Sci. 2024, 14, 1420. [Google Scholar] [CrossRef]
- Cadiz-Gurrea, M.D.L.L.; Pinto, D.; Delerue-Matos, C.; Rodrigues, F. Olive fruit and leaf wastes as bioactive ingredients for cosmetics—A preliminary study. Antioxidants 2021, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Kishikawa, A.; Ashour, A.; Zhu, Q.; Yasuda, M.; Ishikawa, H.; Shimizu, K. Multiple biological effects of olive oil by-products such as leaves, stems, flowers, olive milled waste, fruit pulp, and seeds of the olive plant on skin. Phytother. Res. 2015, 29, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Alves, R.C.; Oliveira, M.B.P. Exploring olive pomace for skincare applications: A review. Cosmetics 2023, 10, 35. [Google Scholar] [CrossRef]
- UN. United Nations. Sustainable Development Goals. Goal 12: Ensure Sustainable Consumption and Production. Available online: https://www.unep.org/topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-12-9 (accessed on 11 October 2024).
- Waterhouse, A.L. Determination of Total Phenolics. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; John Wiley & Sons: New York, NY, USA, 2002; pp. I1.1.1–I1.1.8. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, M.; Villena, G.K.; Kitazono, A.A. Evaluation of the antioxidant activities of aqueous extracts from seven wild plants from the Andes using an in vivo yeast assay. Results Chem. 2021, 3, 100098. [Google Scholar] [CrossRef]
- Paim, L.F.N.A.; Dalla Lana, D.F.; Giaretta, M.; Danielli, L.J.; Fuentefria, A.M.; Apel, M.A.; Külkamp-Guerreiro, I.C. Poiretia latifolia essential oil as a promising antifungal and anti-inflammatory agent: Chemical composition, biological screening, and development of a nanoemulsion formulation. Ind. Crops Prod. 2018, 126, 280–286. [Google Scholar] [CrossRef]
- Kesente, M.; Kavetsou, E.; Roussaki, M.; Blidi, S.; Loupassaki, S.; Chanioti, S.; Siamandoura, P.; Stamatogianni, C.; Philippou, E.; Papaspyrides, C.; et al. Encapsulation of olive leaves extracts in biodegradable PLA nanoparticles for use in cosmetic formulation. Bioengineering. 2017, 4, 75. [Google Scholar] [CrossRef] [PubMed]
- Habibi, H.; Mohammadi, A.; Farhoodi, M.; Jazaeri, S. Application and optimization of microwave-assisted extraction and dispersive liquid–liquid microextraction followed by high-performance liquid chromatography for the determination of oleuropein and hydroxytyrosol in olive pomace. Food Anal. Method. 2018, 11, 3078–3088. [Google Scholar] [CrossRef]
- Peralbo-Molina, A.; Priego-Capote, F.; Luque de Castro, M.D. Tentative identification of phenolic compounds in olive pomace extracts using liquid chromatography–tandem mass spectrometry with a quadrupole–quadrupole-time-of-flight mass detector. J. Agric. Food Chem. 2012, 60, 11542–11550. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Xu, Z.; Sheng, Z. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal. Food Chem. 2017, 216, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Perazzo, A.; Preziosi, V.; Guido, S. Phase inversion emulsification: Current understanding and applications. Adv. Colloid Interface Sci. 2015, 222, 581–599. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, C.D.; Bond, D.R.; Jankowski, H.; Weidenhofer, J.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. The olive biophenols oleuropein and hydroxytyrosol selectively reduce proliferation, influence the cell cycle, and induce apoptosis in pancreatic cancer cells. Int. J. Mol. Sci. 2018, 19, 1937. [Google Scholar] [CrossRef] [PubMed]
- Vaou, N.; Voidarou, C.; Rozos, G.; Saldari, C.; Stavropoulou, E.; Vrioni, G.; Tsakris, A. Unraveling Nature’s Pharmacy: Transforming Medicinal Plants into Modern Therapeutic Agents. Pharmaceutics 2025, 17, 754. [Google Scholar] [CrossRef] [PubMed]
- Almeida Pontes, P.V.; Czaikoski, A.; Almeida, N.A.; Fraga, S.; de Oliveira Rocha, L.; Cunha, R.L.; Maximo, G.J.; Batista, E.A.C. Extraction optimization, biological activities, and application in O/W emulsion of deep eutectic solvents-based phenolic extracts from olive pomace. Food Res. Int. 2022, 161, 111753. [Google Scholar] [CrossRef] [PubMed]
- Chanioti, S.; Tzia, C. Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Bradic, J.; Petrovic, A.; Kocovic, A.; Ugrinovic, V.; Popovic, S.; Ciric, A.; Markovic, Z.; Avdovic, E. Development and Optimization of Gelatin-Alginate Hydrogels Loaded with Grape Skin Extract: Evaluation of Antioxidant and Antimicrobial Properties. Pharmaceutics 2025, 17, 790. [Google Scholar] [CrossRef] [PubMed]
- Carrara, M.; Kelly, M.T.; Roso, F.; Larroque, M.; Margout, D. Potential of olive oil mill wastewater as a source of polyphenols for the treatment of skin disorders: A review. J. Agric. Food Chem. 2021, 69, 7268–7284. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.A.; Costa, A.S.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid-and water-soluble components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Karaosmanoglu, H.; Soyer, F.; Ozen, B.; Tokatli, F. Antimicrobial and antioxidant activities of Turkish extra virgin olive oils. J. Agric. Food Chem. 2010, 58, 8238–8245. [Google Scholar] [CrossRef] [PubMed]
- Schwenke, D.C.; Behr, S.R. Vitamin E combined with selenium inhibits atherosclerosis in hypercholesterolemic rabbits independently of effects on plasma cholesterol concentrations. Circ. Res. 1998, 83, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Iwasaki, T.; Uchiyama, R.; Nosaka, K. Difference in Antimicrobial Activity of Propan-1,3-diol and Propylene Glycol. Chem. Pharm. Bull. 2023, 71, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Denaro, M.; Mastracci, L.; Grillo, F.; Cornara, L.; Shirooie, S.; Mohammad, N.; Trombetta, D. Safety and efficacy of hydroxytyrosol-based formulation on skin inflammation: In vitro evaluation on reconstructed human epidermis model. DARU J. Pharm. Sci. 2019, 27, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res.Technol. 2017, 243, 89–99. [Google Scholar] [CrossRef]
- Nediani, C.; Ruzzolini, J.; Romani, A.; Calorini, L. Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in noncommunicable diseases. Antioxidants 2019, 8, 578. [Google Scholar] [CrossRef] [PubMed]
- Asghariazar, V.; Vahidian, F.; Karimi, A.; Abbaspour-Ravasjani, S.; Mansoori, B.; Safarzadeh, E. The Role of Oleuropein, Derived from Olives, in Human Skin Fibroblast Cells: Investigating the Underlying Molecular Mechanisms of Cytotoxicity and Antioxidant and Anti-Inflammatory Activities. Int. J. Clin. Pract. 2024, 1, 8827501. [Google Scholar] [CrossRef]
- Quirantes-Piné, R.; Zurek, G.; Barrajón-Catalán, E.; Bäßmann, C.; Micol, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A. A metabolite-profiling approach to assess the uptake and metabolism of phenolic compounds from olive leaves in SKBR3 cells by HPLC–ESI-QTOF-MS. J. Pharm. Biomed. Anal. 2013, 72, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Serrano-García, I.; Olmo-García, L.; Polo-Megías, D.; Serrano, A.; León, L.; de la Rosa, R.; Carrasco-Pancorbo, A. Fruit Phenolic and triterpenic composition of progenies of Olea europaea subsp. cuspidata, an interesting phytochemical source to be included in olive breeding programs. Plants 2022, 11, 1791. [Google Scholar] [CrossRef]
- Klen, T.J.; Vodopivec, B.M. The fate of olive fruit phenols during commercial olive oil processing: Traditional press versus continuous two-and three-phase centrifuge. LWT-Food Sci. Technol. 2012, 49, 267–274. [Google Scholar] [CrossRef]
- D’Antuono, I.; Garbetta, A.; Ciasca, B.; Linsalata, V.; Minervini, F.; Lattanzio, V.M.; Logrieco, A.F.; Cardinali, A. Biophenols from table olive cv Bella di Cerignola: Chemical characterization, bioaccessibility, and intestinal absorption. J. Agric. Food Chem. 2016, 64, 5671–5678. [Google Scholar] [CrossRef] [PubMed]
- Emma, M.R.; Augello, G.; Di Stefano, V.; Azzolina, A.; Giannitrapani, L.; Montalto, G.; Cervello, M.; Cusimano, A. Potential uses of olive oil secoiridoids for the prevention and treatment of cancer: A narrative review of preclinical studies. Int. J. Mol. Sci. 2021, 22, 1234. [Google Scholar] [CrossRef] [PubMed]
- Kalogiouri, N.P.; Kritikou, E.; Martakos, I.C.; Lazarou, C.; Pentogennis, M.; Thomaidis, N.S. Characterization of the Phenolic Fingerprint of Kolovi Extra Virgin Olive Oils from Lesvos with Regard to Altitude and Farming System Analyzed by UHPLC–QTOF–MS. Molecules 2021, 26, 5634. [Google Scholar] [CrossRef] [PubMed]
- Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.; Losito, I. Bioactive compounds in waste byproducts from olive oil production: Applications and structural characterization by mass spectrometry techniques. Foods 2021, 10, 1236. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.W.; Giacosa, A.; Hull, W.E.; Haubner, R.; Würtele, G.; Spiegelhalder, B.; Bartsch, H. Olive-oil consumption and health: The possible role of antioxidants. Lancet Oncol. 2000, 1, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Benincasa, C.; Pellegrino, M.; Veltri, L.; Claps, S.; Fallara, C.; Perri, E. Dried destoned virgin olive pomace: A promising new byproduct from pomace extraction process. Molecules 2021, 26, 4337. [Google Scholar] [CrossRef] [PubMed]
- Márquez, K.; Márquez, N.; Ávila, F.; Cruz, N.; Burgos-Edwards, A.; Pardo, X.; Carrasco, B. Oleuropein-Enriched Extract from Olive Mill Leaves by Homogenizer-Assisted Extraction and Its Antioxidant and Antiglycating Activities. Front. Nutr. 2022, 9, 895070. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, V.G.; Charisiadis, P.; Margianni, E.; Lamari, F.N.; Gerothanassis, I.P.; Tzakos, A.G. Olive leaf extracts are a natural source of advanced glycation end product inhibitors. J. Med. Food 2013, 16, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Ramkissoon, J.S.; Mahomoodally, M.F.; Ahmed, N.; Subratty, A.H. Antioxidant and anti–glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pac. J. Trop. Med. 2013, 6, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Kabach, I.; Bouchmaa, N.; Ben Mrid, R.; Zouaoui, Z.; Maadoudi, M.E.; Kounnoun, A.; Asraoui, F.; Mansouri, F.E.; Zyad, A.; Cacciola, F.; et al. Olea europaea var. Oleaster a promising nutritional food with in vitro antioxidant, antiglycation, antidiabetic and antiproliferative effects. J. Food Meas. Charact. 2023, 17, 882–894. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Y.; Zhao, C. The effects of advanced glycation end-products on skin and potential anti-glycation strategies. Exp. Dermatol. 2024, 33, 15065. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.M.D.; Lima, C.R.R.D.C.; Quenca-Guillen, J.S.; Moscardini Filho, E.; Mercuri, L.P.; Santoro, M.I.R.M.; Kedor-Hackmann, E.R.M. Stability evaluation of tocopheryl acetate and ascorbyl tetraisopalmitate in isolation and incorporated in cosmetic formulations using thermal analysis. Braz. J. Pharm. Sci. 2010, 46, 129–134. [Google Scholar] [CrossRef]
Component | Concentration (%) | Function |
---|---|---|
Potassium cetyl phosphate | 0.5 | emulsifier, surfactant |
Cetearyl olivate (and) sorbitan olivate | 1.0 | emulsifier, stabilizer |
Caprylic/Capric triglycerides | 5.0 | emollient |
Lonicera japonica flower extract and Lonicera caprifolium flower extract | 1.0 | preservative |
Ultrapure water | 92.5 | vehicle |
Extracts | Reducing Capacity (mg GAE/g) | Total Flavonoid (mg QE/g) |
---|---|---|
OPE1 | 14.9 ± 0.5 b | 4.0 ± 0.7 c |
OPE2 | 29.0 ± 1.3 a | 5.0 ± 0.2 b |
OPE3 | 33.0 ± 5.7 a | 5.3 ± 0.2 a |
Antioxidant | IC50 (mg/mL) |
---|---|
Butyl hydroxytoluene (BHT) | 0.024 ± 0.02 e |
Tocopheryl acetate | 183 ± 0.6 a |
OPE1 | 19 ± 0.02 b |
OPE2 | 16 ± 0.02 c |
OPE3 | 11 ± 0.01 d |
Antioxidant | IC50 (mg/mL) |
---|---|
Butyl hydroxytoluene (BHT) | 0.1 ± 0.00 c |
Tocopheryl acetate | 49.1 ± 1.04 a |
OPE3 | 4.4 ± 0.08 b |
Compounds (Molecular Formula) | Error | mSigma * | TR | m/z theo | m/z exp | Fragments |
---|---|---|---|---|---|---|
Hydroxytyrosol C8H10O3 | −1.4 | 5.6 | 1.7 | 153.0559 | 153.0557 | 123.0405 105.0339 135.0451 123.0000 135.0000 |
Tyrosol C8H10O2 | 2.2 | n.a. | 5.6 | 137.0611 | 137.0608 | 119.0505 137.0603 |
Dihydroxytyrosol C14H20O8 | 0.3 | 6.9 | 0.9 | 315.1086 | 315.1085 | 151.0397 123.0448 151.0398 |
Tyrosol glucoside C14H20O7 | −0.3 | 15.0 | 2.3 | 299.1135 | 299.1136 | 119.0505 299.1139 119.0349 101.0244 089.0245 |
Hydroxytyrosol glucoside C14H20O8 | −0.3 | 2.1 | 1.8 | 315.1085 | 315.1085 | 315.1074 123.0446 153.0570 |
Loganin C17H26O10 | −0.4 | 20.8 | 2.1 | 389.1452 | 389.1453 | 151.0776 113.0348 101.0206 228.0902 |
Secologanin C17H24O10 | 0.0 | 19.2 | 2.8 | 387.1297 | 387.1297 | 147.0443 |
Loganic acid C16H24O10 | 0.6 | 7.8 | 2.0 | 375.1299 | 375.1297 | 107.0506 101.0245 213.0000 113.0248 |
Secologanoside C16H22O11 | −0.1 | 5.6 | 5.5 | 555.1719 | 555.1719 | 059.0139 089.0234 |
Comselogoside C25H28O13 | 0.5 | 3.3 | 7.7 | 535.1460 | 535.1457 | 491.1558 345.1197 145.0296 535.0000 |
Caffeoyl-6′-secologanoside C25H28O14 | −0.8 | 10.5 | 6.9 | 551.1411 | 551.1406 | 507.1504 345.1193 281.0673 161.0245 |
Oleoside C16H22O11 | −1.1 | 1.8 | 3.1 | 389.1094 | 389.1089 | 121.0660 101.0243 209.0477 345.1253 |
Oleoside dimethylester C18H26O11 | 0.1 | 4.5 | 3.2 | 417.1402 | 417.1402 | 185.0000 101.0000 244.0000 |
Oleoside glucoside C22H32O16 | −0.2 | 31.6 | 3.2 | 551.1617 | 551.1618 | 551.1707 507.1805 209.0480 |
Oleoside riboside C20H26O15 | 0.8 | 27.8 | 4.0 | 505.1203 | 505.1199 | 389.1166 505.1298 345.1256 |
Oleoside dimethylester C18H26O11 | 0.1 | 4.5 | 3.2 | 417.1402 | 417.1402 | 185.0000 101.0000 244.0000 |
Luteolin C21H20O10 | −1.1 | 23.5 | 6.9 | 431.0989 | 431.0984 | 431.0973 255.0295 284.0276 |
Luteolin glucoside C21H20O11 | 0.1 | 5.3 | 6.2 | 447.0933 | 447.0933 | 285.0423 |
Taxifolin C15H12O7 | −0.7 | 15.9 | 6.6 | 303.0512 | 303.0510 | 179.0000 255.1114 |
Rutin C27H30O16 | −0.2 | 7.6 | 6.0 | 609.1462 | 609.1461 | 300.0274 497.0000 |
Vanillin C8H8O3 | 1.6 | 5.6 | 1.8 | 151.0403 | 151.0401 | 151.0397 105.0341 135.9000 |
Benzyl b-primeveroside C18H26O10 | 0.0 | 20.3 | 3.5 | 401.1453 | 401.1453 | 223.0000 |
Oleuropein C25H32O13 | 0.0 | 6.2 | 7.4 | 539.1770 | 539.1770 | 539.1759 377.1306 307.0874 275.0962 |
Oleuropein aglycone C19H22O8 | −0.2 | 2.4 | 10.5 | 377.1243 | 377.1242 | 111.0088 149.0244 195.0645 275.0913 307.0823 |
Luteolin glucoside C21H20O11 | 0.1 | 5.3 | 6.2 | 447.0933 | 447.0933 | 285.0423 |
Dihydro-oleuropein C25H36O13 | −0.5 | 34.6 | 6.3 | 543.2086 | 543.2083 | 377.1522 |
Oleuropein diglucoside C25H36O12 | 0.0 | 8.3 | 7.2 | 527.2134 | 527.2134 | 377.1481 |
10-hydroxy-oleuropein C25H32O14 | −0.1 | 5.6 | 5.5 | 555.1719 | 555.1719 | 537.1647 376.1114 |
Oleacein C17H20O6 | 0.6 | 17.4 | 8.5 | 319.1187 | 319.1187 | 139.0602 165.0556 183.0660 |
Acetoxypinoresinol C22H24O8 | −0.8 | 23.5 | 9.2 | 415.1395 | 415.1398 | 280.0951 343.1188 |
Apigenin glucoside C21H20O10 | 1.1 | 23.5 | 6.9 | 431.0989 | 431.0984 | 269.0446 240.0462 |
p-HPEA-EA C19H22O7 | −0.2 | 2.4 | 12.1 | 361.1294 | 361.1293 | 361.0000 139.0000 |
Pinoresinol C20H22O6 | 0.9 | 17.9 | 7.8 | 357.1347 | 357.1344 | 311.1363 175.0787 85.9461 214.3294 |
Verbascoside C29H36O15 | −0.8 | 7.7 | 6.1 | 623.1986 | 623.1981 | 461.1744 161.0254 161.0000 |
Extracts | Concentration (mg/mL) | Antiglycation Capacity (%) |
---|---|---|
OPE3 | 2.0 | 24.4 ± 3.2 c |
OPE3 | 3.5 | 40.4 ± 3.1 b |
Carnosine | 0.3 | 91.0 ± 3.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riéffel, R.C.; Agostini, L.; Rodrigues, N.P.; Berlitz, S.J.; Marczak, L.D.F.; Külkamp-Guerreiro, I.C. Sustainable Olive Pomace Extracts for Skin Barrier Support. Pharmaceutics 2025, 17, 962. https://doi.org/10.3390/pharmaceutics17080962
Riéffel RC, Agostini L, Rodrigues NP, Berlitz SJ, Marczak LDF, Külkamp-Guerreiro IC. Sustainable Olive Pomace Extracts for Skin Barrier Support. Pharmaceutics. 2025; 17(8):962. https://doi.org/10.3390/pharmaceutics17080962
Chicago/Turabian StyleRiéffel, Roberta Cougo, Lucas Agostini, Naira Poener Rodrigues, Simone Jacobus Berlitz, Lígia Damasceno Ferreira Marczak, and Irene Clemes Külkamp-Guerreiro. 2025. "Sustainable Olive Pomace Extracts for Skin Barrier Support" Pharmaceutics 17, no. 8: 962. https://doi.org/10.3390/pharmaceutics17080962
APA StyleRiéffel, R. C., Agostini, L., Rodrigues, N. P., Berlitz, S. J., Marczak, L. D. F., & Külkamp-Guerreiro, I. C. (2025). Sustainable Olive Pomace Extracts for Skin Barrier Support. Pharmaceutics, 17(8), 962. https://doi.org/10.3390/pharmaceutics17080962