Drug Nanocarriers for Pharmaceutical Applications
1. Introduction
2. An Overview of Published Articles
3. Conclusions and Future Perspectives
Conflicts of Interest
List of Contributions
- 1.
- Meinhard, S.; Erdmann, F.; Lucas, H.; Krabbes, M.; Krüger, S.; Wölk, C.; Mäder, K. T14diLys/DOPE Liposomes: An Innovative Option for siRNA-Based Gene Knockdown? Pharmaceutics 2025, 17, 25. https://doi.org/10.3390/pharmaceutics17010025.
- 2.
- Lee, S.; Park, S.; Kim, T.-i. Cationic Hydroxyethyl Cellulose Nanocomplexes and RANK siRNA/Zoledronate Co-Delivery Systems for Osteoclast Inhibition. Pharmaceutics 2024, 16, 1623. https://doi.org/10.3390/pharmaceutics16121623.
- 3.
- Velho, M.C.; Funk, N.L.; Deon, M.; Benvenutti, E.V.; Buchner, S.; Hinrichs, R.; Pilger, D.A.; Beck, R.C.R. Ivermectin-Loaded Mesoporous Silica and Polymeric Nanocapsules: Impact on Drug Loading, In Vitro Solubility Enhancement, and Release Performance. Pharmaceutics 2024, 16, 325. https://doi.org/10.3390/pharmaceutics16030325.
- 4.
- Francis, A.P.; Ahmad, A.; Nagarajan, S.D.D.; Yogeeswarakannan, H.S.; Sekar, K.; Khan, S.A.; Meenakshi, D.U.; Husain, A.; Bazuhair, M.A.; Selvasudha, N. Development of a Novel Red Clay-Based Drug Delivery Carrier to Improve the Therapeutic Efficacy of Acyclovir in the Treatment of Skin Cancer. Pharmaceutics 2023, 15, 1919. https://doi.org/10.3390/pharmaceutics15071919.
- 5.
- Syahputra, E.W.; Lee, H.; Cho, H.; Park, H.J.; Park, K.-S.; Hwang, D. PROTAC Delivery Strategies for Overcoming Physicochemical Properties and Physiological Barriers in Targeted Protein Degradation. Pharmaceutics 2025, 17, 501. https://doi.org/10.3390/pharmaceutics17040501.
- 6.
- Taheri, Z.; Mozafari, N.; Moradian, G.; Lovison, D.; Dehshahri, A.; De Marco, R. Integrin-Specific Stimuli-Responsive Nanomaterials for Cancer Theranostics. Pharmaceutics 2024, 16, 1441. https://doi.org/10.3390/pharmaceutics16111441.
References
- Joseph, T.M.; Kar Mahapatra, D.; Esmaeili, A.; Piszczyk, L.; Hasanin, M.S.; Kattali, M.; Haponiuk, J.; Thomas, S. Taking a Unique Position in Medicine. Nanomaterials 2023, 13, 574. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Yan, R.; Fu, Z.; Wu, T.; Ren, C. Impact of physicochemical properties on biological effects of lipid nanoparticles: Are they completely safe. Sci. Total Environ. 2024, 927, 172240. [Google Scholar] [CrossRef]
- Min, Y.; Suminda, G.G.D.; Heo, Y.; Kim, M.; Ghosh, M.; Son, Y.O. Metal-Based Nanoparticles and Their Relevant Consequences on Cytotoxicity Cascade and Induced Oxidative Stress. Antioxidants 2023, 12, 703. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, V. Exposure to Inorganic Nanoparticles: Routes of Entry, Immune Response, Biodistribution and In Vitro/In Vivo Toxicity Evaluation. Toxics 2017, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Ewii, U.E.; Attama, A.A.; Olorunsola, E.O.; Onugwu, A.L.; Nwakpa, F.U.; Chinonye Chijioke, C.A.; Ogbulie, T. Nanoparticles for drug delivery: Insight into in vitro and in vivo drug release from nanomedicines. Nano TransMed 2025, 4, 100083. [Google Scholar] [CrossRef]
- Shah, A.K.; Agnihotri, S.A. Recent advances and novel strategies in pre-clinical formulation development: An overview. J. Control. Release 2011, 156, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R. The Convergence of Nanotechnology and Biotechnology in Modern Medicine. Nanomaterials 2025, 15, 182. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Zhao, Y.-G.; Zhang, Y. Enhancing Drug Solubility, Bioavailability, and Targeted Therapeutic Applications through Magnetic Nanoparticles. Molecules 2024, 29, 4854. [Google Scholar] [CrossRef] [PubMed]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. Int. Sch. Res. Not. 2012, 2012, 195727. [Google Scholar] [CrossRef] [PubMed]
- Barzegar-Jalali, M.; Adibkia, K.; Valizadeh, H.; Shadbad, M.R.; Nokhodchi, A.; Omidi, Y.; Mohammadi, G.; Nezhadi, S.H.; Hasan, M. Kinetic analysis of drug release from nanoparticles. J. Pharm. Pharm. Sci. 2008, 11, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Chenxi, Z.; Hemmat, A.; Thi, N.H.; Afrand, M. Nanoparticle-enhanced drug delivery systems: An up-to-date review. J. Mol. Liq. 2025, 424, 126999. [Google Scholar] [CrossRef]
- Sheng, Y.; Zheng, X.; Li, L.; He, H.; Wu, W.; Lu, Y. Ionic co-aggregates based intravenous drug delivery: Evaluation on kinetics and distribution of the drug payloads and nanocarriers. Int. J. Pharm. 2024, 665, 124657. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A. Niosomes as Efficient Nanocarriers for Targeted Drug Delivery. Asian J. Pharm. 2024, 18, 822–831. [Google Scholar] [CrossRef]
- Wróblewska, A.M.; Łukawska, E.; Wakuła, Z.; Zajda, J.; Keppler, B.K.; Timerbaev, A.R.; Matczuk, M. Toward the boosted loading of cisplatin drug into liposome nanocarriers. Eur. J. Pharm. Biopharm. 2024, 198, 114245. [Google Scholar] [CrossRef] [PubMed]
- Raeispour, S.; Rahmandoust, M.; Kouchakzadeh, H. A nanocarrier system based on CQDs for efficient mitoxantrone drug delivery. Heliyon 2024, 10, e31674. [Google Scholar] [CrossRef] [PubMed]
- Szczepanowicz, K.; Procner, M.; Szczęch, M.; Łopuszyńska, N.; Jantas, D.; Regulska, M.; Leśkiewicz, M.; Jasiński, K.; Stachurski, K.; Szyk-Warszyńska, L.; et al. Polymeric-Based Theranostic Nanocarriers of Neuroprotective Drugs: Development, Imaging, and Bioanalysis. Mol. Pharm. 2025. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grueso, E.M.; Giráldez-Pérez, R.M.; Prado-Gotor, R. Drug Nanocarriers for Pharmaceutical Applications. Pharmaceutics 2025, 17, 960. https://doi.org/10.3390/pharmaceutics17080960
Grueso EM, Giráldez-Pérez RM, Prado-Gotor R. Drug Nanocarriers for Pharmaceutical Applications. Pharmaceutics. 2025; 17(8):960. https://doi.org/10.3390/pharmaceutics17080960
Chicago/Turabian StyleGrueso, Elia M., Rosa M. Giráldez-Pérez, and Rafael Prado-Gotor. 2025. "Drug Nanocarriers for Pharmaceutical Applications" Pharmaceutics 17, no. 8: 960. https://doi.org/10.3390/pharmaceutics17080960
APA StyleGrueso, E. M., Giráldez-Pérez, R. M., & Prado-Gotor, R. (2025). Drug Nanocarriers for Pharmaceutical Applications. Pharmaceutics, 17(8), 960. https://doi.org/10.3390/pharmaceutics17080960