Oral Delivery of Avocado Peel Extract Using Albumin Nanocarriers to Modulate Cholesterol Absorption
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals
2.1.2. Cell Culture
2.2. Methods
2.2.1. Preparation of Unloaded and Persea americana Aqueous Extract-Loaded BSA NPs
2.2.2. Morphological Characterization of BSA NPs
2.2.3. In Vitro Gastric Digestion Simulation
2.2.4. In Vitro Safety Assays of the Extract-Loaded BSA NPs
2.2.5. In Vivo Safety Assay of the Extract-Loaded BSA NPs
2.2.6. Antioxidant Activity of the Extract-Loaded BSA NPs
2.2.7. Cholesterol Permeability Analysis in a Gastrointestinal Model
2.2.8. Permeation Profile of Bioactive Compounds from the Extract
2.2.9. Statistical Analysis
3. Results
3.1. Characterizations of Extract-Loaded BSA NPs and Morphological Analysis
3.2. Gastric Digestion Simulation Study of the Extract and Extract-Loaded BSA NPs
3.3. In Vitro Safety Assay of Extract-Loaded BSA NPs
3.4. In Vivo Safety Assay of Extract-Loaded BSA NPs
3.5. Antioxidant Activity of Extract-Loaded BSA NPs
3.6. Effect of Extract-Loaded BSA NPs on Intestinal Cholesterol Permeation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFM | Atomic Force Microscopy |
BSA | Bovine Serum Albumin |
CVD | Cardiovascular Disease |
DDS | Drug Delivery System |
DE | Digested Extract |
DLNPs | Digested Lyophilized Nanoparticles |
DNPs | Digested Non-Lyophilized Nanoparticles |
DLS | Dynamic Light Scattering |
E | Extract |
GAE | Gallic Acid Equivalents |
HMGR | 3-hydroxy-3-methylglutaryl coenzyme A reductase |
HPLC-DAD | High-Performance Liquid Chromatography Coupled to a Diode-Array Detector |
NPC1L1 | Niemann-Pick C1-Like 1 |
NPs | Nanoparticles |
TPC | Total Phenolic Content |
Papp | Apparent Permeability Coefficient |
References
- Sharma, S.; Singh, A. Nanotechnology Based Targeted Drug Delivery: Current Status and Future Prospects for Drug Development. In Drug Discovery and Development; IntechOpen: London, UK, 2011. [Google Scholar]
- Pinto, S.; Gaspar, M.M.; Ascensão, L.; Faísca, P.; Reis, C.P.; Pacheco, R. Nanoformulation of Seaweed Eisenia Bicyclis in Albumin Nanoparticles Targeting Cardiovascular Diseases: In Vitro and In Vivo Evaluation. Mar. Drugs 2022, 20, 608. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Souto, E.B.; Durazzo, A.; Lucarini, M.; Novellino, E.; Tewari, D.; Wang, D.; Atanasov, A.G.; Santini, A. Big Impact of Nanoparticles: Analysis of the Most Cited Nanopharmaceuticals and Nanonutraceuticals Research. Curr. Res. Biotechnol. 2020, 2, 52–63. [Google Scholar] [CrossRef]
- Reis, C.; Neufeld, R.J.; Ribeiro, A.; Veiga, F. Design of Insulin-Loaded Alginate Nanoparticles: Influence of the Calcium Ion on Polymer Gel Matrix Properties. Chem. Ind. Chem. Eng. Q. 2006, 12, 47–52. [Google Scholar] [CrossRef]
- Reis, C.P.; Damgé, C. Nanotechnology as a Promising Strategy for Alternative Routes of Insulin Delivery. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2012; Volume 508, pp. 272–294. [Google Scholar]
- Verma, D.; Gulati, N.; Kaul, S.; Mukherjee, S.; Nagaich, U. Protein Based Nanostructures for Drug Delivery. J. Pharm. 2018, 2018, 9285854. [Google Scholar] [CrossRef]
- Solanki, R.; Patel, K.; Patel, S. Bovine Serum Albumin Nanoparticles for the Efficient Delivery of Berberine: Preparation, Characterization and In Vitro Biological Studies. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125501. [Google Scholar] [CrossRef]
- Mota, A.H.; Duarte, N.; Serra, A.T.; Ferreira, A.; Bronze, M.R.; Custódio, L.; Gaspar, M.M.; Simões, S.; Rijo, P.; Ascensão, L.; et al. Further Evidence of Possible Therapeutic Uses of Sambucus Nigra l. Extracts by the Assessment of the in Vitro and in Vivo Anti-Inflammatory Properties of Its Plga and Pcl-Based Nanoformulations. Pharmaceutics 2020, 12, 1181. [Google Scholar] [CrossRef]
- Visentini, F.F.; Perez, A.A.; Santiago, L.G. Bioactive Compounds: Application of Albumin Nanocarriers as Delivery Systems. Crit. Rev. Food Sci. Nutr. 2023, 63, 7238–7268. [Google Scholar] [CrossRef]
- Gou, Y.; Miao, D.; Zhou, M.; Wang, L.; Zhou, H.; Su, G. Bio-Inspired Protein-Based Nanoformulations for Cancer Theranostics. Front. Pharmacol. 2018, 9, 421. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, N.; Ma, T.; Liu, L.; Zhao, L.; Xie, H. Engineered Bovine Serum Albumin-Based Nanoparticles with PH-Sensitivity for Doxorubicin Delivery and Controlled Release. Drug Deliv. 2020, 27, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Solanki, R.; Rostamabadi, H.; Patel, S.; Jafari, S.M. Anticancer Nano-Delivery Systems Based on Bovine Serum Albumin Nanoparticles: A Critical Review. Int. J. Biol. Macromol. 2021, 193, 528–540. [Google Scholar] [CrossRef]
- da Silva, N.I.O.; Salvador, E.A.; Rodrigues Franco, I.; de Souza, G.A.P.; de Souza Morais, S.M.; Prado Rocha, R.; Dias Novaes, R.; Paiva Corsetti, P.; Malaquias, L.C.C.; Leomil Coelho, L.F. Bovine Serum Albumin Nanoparticles Induce Histopathological Changes and Inflammatory Cell Recruitment in the Skin of Treated Mice. Biomed. Pharmacother. 2018, 107, 1311–1317. [Google Scholar] [CrossRef]
- Yedomon, B.; Fessi, H.; Charcosset, C. Preparation of Bovine Serum Albumin (BSA) Nanoparticles by Desolvation Using a Membrane Contactor: A New Tool for Large Scale Production. Eur. J. Pharm. Biopharm. 2013, 85, 398–405. [Google Scholar] [CrossRef]
- Santos-Rebelo, A.; Garcia, C.; Eleutério, C.; Bastos, A.; Coelho, S.C.; Coelho, M.A.N.; Molpeceres, J.; Viana, A.S.; Ascensão, L.; Pinto, J.F.; et al. Development of Parvifloron D-Loaded Smart Nanoparticles to Target Pancreatic Cancer. Pharmaceutics 2018, 10, 216. [Google Scholar] [CrossRef]
- Arshad, I.; Kanwal, A.; Zafar, I.; Unar, A.; Mouada, H.; Razia, I.T.; Arif, S.; Ahsan, M.; Kamal, M.A.; Rashid, S.; et al. Multifunctional Role of Nanoparticles for the Diagnosis and Therapeutics of Cardiovascular Diseases. Environ. Res. 2024, 242, 117795. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hervas, S.; Ascaso, J.F. Hypercholesterolemia. In Encyclopedia of Endocrine Diseases; Elsevire: Amesterdam, The Netherlands, 2018. [Google Scholar]
- Coelho, M.; Pacheco, R. Anti-Hypercholesterolemia Effects of Edible Seaweed Extracts and Metabolomic Changes in Hep-G2 and Caco-2 Cell Lines. Life 2023, 13, 1325. [Google Scholar] [CrossRef]
- Morgan, A.E.; Mooney, K.M.; Wilkinson, S.J.; Pickles, N.A.; Mc Auley, M.T. Mathematically Modelling the Dynamics of Cholesterol Metabolism and Ageing. BioSystems 2016, 145, 19–32. [Google Scholar] [CrossRef]
- André, R.; Pacheco, R.; Bourbon, M.; Serralheiro, M.L. Brown Algae Potential as a Functional Food against Hypercholesterolemia: Review. Foods 2021, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhu, N.; Li, H.F.; Zhang, C.J.; Gong, Y.Z.; Liao, D.F.; Qin, L. Ezetimibe and Cancer: Is There a Connection? Front. Pharmacol. 2022, 13, 831657. [Google Scholar] [CrossRef] [PubMed]
- Camerino, G.M.; Musumeci, O.; Conte, E.; Musaraj, K.; Fonzino, A.; Barca, E.; Marino, M.; Rodolico, C.; Tricarico, D.; Camerino, C.; et al. Risk of Myopathy in Patients in Therapy with Statins: Identification of Biological Markers in a Pilot Study. Front. Pharmacol. 2017, 8, 500. [Google Scholar] [CrossRef]
- Kim, S.W.; Kang, H.J.; Jhon, M.; Kim, J.W.; Lee, J.Y.; Walker, A.J.; Agustini, B.; Kim, J.M.; Berk, M. Statins and Inflammation: New Therapeutic Opportunities in Psychiatry. Front. Psychiatry 2019, 10, 103. [Google Scholar] [CrossRef]
- Shaker, M.A.; Elbadawy, H.M.; Al Thagfan, S.S.; Shaker, M.A. Enhancement of Atorvastatin Oral Bioavailability via Encapsulation in Polymeric Nanoparticles. Int. J. Pharm. 2021, 592, 120077. [Google Scholar] [CrossRef] [PubMed]
- Elkhayat, D.; Abdelmalak, N.S.; Amer, R.; Awad, H.H. Ezetimibe Loaded Nanostructured Lipid Carriers Tablets: Response Methodology, In-Vitro Characterization, and Pharmacokinetics in Rats. J. Pharm. Innov. 2025, 20, 11. [Google Scholar] [CrossRef]
- Liu, H.; Jin, X.; Liu, S.; Liu, X.; Pei, X.; Sun, K.; Li, M.; Wang, P.; Chang, Y.; Wang, T.; et al. Recent Advances in Self-Targeting Natural Product-Based Nanomedicines. J. Nanobiotechnol. 2025, 23, 31. [Google Scholar] [CrossRef] [PubMed]
- Narayanankutty, A.; Famurewa, A.C.; Oprea, E. Natural Bioactive Compounds and Human Health. Molecules 2024, 29, 3372. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, L.I.; Kanwugu, O.N.; Ivantsova, M.N. Impact of Herbal Supplements Nowadays: An Overview. Chim. Techno Acta 2022, 9, 202292S4. [Google Scholar] [CrossRef]
- Brai, B.I.C.; Falode, J.A.; Adisa, R.A.; Odetola, A.A. Effects of Aqueous Leaf Extract of Avocado (Persea americana) on Total Cholesterol, Triacylglycerols, Protein and Haematological Parameters in CCl4-Intoxicated Rats. Clin. Phytosci. 2020, 6, 14. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef] [PubMed]
- Boggia, R.; Zunin, P.; Turrini, F. Functional Foods and Food Supplements. Appl. Sci. 2020, 10, 8538. [Google Scholar] [CrossRef]
- Nefzi, K.; Ben Jemaa, M.; Baraket, M.; Dakhlaoui, S.; Msaada, K.; Nasr, Z. In Vitro Antioxidant, Antibacterial and Mechanisms of Action of Ethanolic Extracts of Five Tunisian Plants against Bacteria. Appl. Sci. 2022, 12, 5038. [Google Scholar] [CrossRef]
- Amaral, G.P.; de Carvalho, N.R.; Barcelos, R.P.; Dobrachinski, F.; Portella, R.d.L.; da Silva, M.H.; Lugokenski, T.H.; Dias, G.R.M.; da Luz, S.C.A.; Boligon, A.A.; et al. Protective Action of Ethanolic Extract of Rosmarinus officinalis L. in Gastric Ulcer Prevention Induced by Ethanol in Rats. Food Chem. Toxicol. 2013, 55, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, R.; Ramachandran, A.; Shivalingaiah, S.B.; Bishir, M.; Bhojaraj, S.; Sridhar, S.; Mohan, S.K.; Veeraraghavan, V.P.; Chidambaram, S.B.; Essa, M.M.; et al. Cardioprotective Potential of Polyphenols Rich Thraatchathi Chooranam against Isoproterenol Induced Myocardial Necrosis in Experimental Rats. BMC Complement. Med. Ther. 2020, 20, 356. [Google Scholar] [CrossRef]
- Mihaylova, D.; Dimitrova-Dimova, M.; Popova, A. Dietary Phenolic Compounds—Wellbeing and Perspective Applications. Int. J. Mol. Sci. 2024, 25, 4567. [Google Scholar] [CrossRef]
- Dubois-deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef] [PubMed]
- Recharla, N.; Riaz, M.; Ko, S.; Park, S. Novel Technologies to Enhance Solubility of Food-Derived Bioactive Compounds: A Review. J. Funct. Foods 2017, 39, 63–73. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant Capacities, Procyanidins and Pigments in Avocados of Different Strains and Cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; De Alencar, S.M. Exploration of Avocado By-Products as Natural Sources of Bioactive Compounds. PLoS ONE 2018, 13, e0192577. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, C.S.; Andrade, J.K.S.; Rajan, M.; Narain, N. Influence of the Phytochemical Profile on the Peel, Seed and Pulp of Margarida, Breda and Geada Varieties of Avocado (Persea americana Mill) Associated with Their Antioxidant Potential. Food Sci. Technol. 2022, 42, e25822. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive Identification of Bioactive Compounds of Avocado Peel by Liquid Chromatography Coupled to Ultra-High-Definition Accurate-Mass Q-TOF. Food Chem. 2018, 245, 707–716. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Andrade, M.J.; Kylli, P.; Estevez, M. Avocado (Persea americana Mill.) Phenolics, in Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.M.; Reis, C.P.; Pacheco, R. Potential of Application of Natural Product Nanoparticles in Hypercholesterolemia. Chem. Proc. 2024, 16, 84. [Google Scholar] [CrossRef]
- Teixeira, L.M.; Reis, C.P.; Pacheco, R. Bioactive Properties of Persea Americana Peel Extract and Their Role in Hypercholesterolemia Management and Cardiovascular Health. Foods 2025, 14, 2482. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Lopes, J.; Ferreira-Gonçalves, T.; Ascensão, L.; Viana, A.S.; Carvalho, L.; Catarino, J.; Faísca, P.; Oliva, A.; de Barros, D.P.C.; Rodrigues, C.M.P.; et al. Safety of Gold Nanoparticles: From In Vitro to In Vivo Testing Array Checklist. Pharmaceutics 2023, 15, 1120. [Google Scholar] [CrossRef]
- Arantes, A.A.; Falé, P.L.; Costa, L.C.B.; Pacheco, R.; Ascensão, L.; Serralheiro, M.L. Inhibition of HMG-CoA Reductase Activity and Cholesterol Permeation through Caco-2 Cells by Caffeoylquinic Acids from Vernonia Condensata Leaves. Rev. Bras. De Farmacogn. 2016, 26, 738–743. [Google Scholar] [CrossRef]
- Salay, G.; Lucarelli, N.; Gascón, T.M.; Sanches, S.d.C.; Veiga, G.R.L.d.; Reis, B.d.C.A.A.; Fonseca, F.L.A.F. Acute Toxicity Assays with the Artemia Salina Model: Assessment of Variables. Altern. Lab. Anim. 2024, 52, 142–148. [Google Scholar] [CrossRef]
- Maares, M.; Haase, H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of in Vitro Intestinal Models. Nutrients 2020, 12, 762. [Google Scholar] [CrossRef]
- Ozeki, K.; Kato, M.; Sakurai, Y.; Ishigai, M.; Kudo, T.; Ito, K. Evaluation of the Appropriate Time Range for Estimating the Apparent Permeability Coefficient (Papp) in a Transcellular Transport Study. Int. J. Pharm. 2015, 495, 963–971. [Google Scholar] [CrossRef]
- He, C.; Yin, L.; Tang, C.; Yin, C. Size-Dependent Absorption Mechanism of Polymeric Nanoparticles for Oral Delivery of Protein Drugs. Biomaterials 2012, 33, 8569–8578. [Google Scholar] [CrossRef] [PubMed]
- Swami, A.; Shi, J.; Gadde, S.; Votruba, A.R.; Kolishetti, N.; Farokhzad, O.C. Nanoparticles for Targeted and Temporally Controlled Drug Delivery; Springer: Boston, MA, USA, 2012. [Google Scholar]
- Kulig, K.; Ziabka, M.; Pilarczyk, K.; Owczarzy, A.; Rogóż, W.; Maciażek-Jurczyk, M. Physicochemical Study of Albumin Nanoparticles with Chlorambucil. Processes 2022, 10, 1170. [Google Scholar] [CrossRef]
- Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-Based Nanoparticles as Potential Controlled Release Drug Delivery Systems. J. Control. Release 2012, 157, 168–182. [Google Scholar] [CrossRef]
- Reis, C.P.; Ribeiro, A.J.; Veiga, F.; Neufeld, R.J.; Damgé, C. Polyelectrolyte Biomaterial Interactions Provide Nanoparticulate Carrier for Oral Insulin Delivery. Drug Deliv. 2008, 15, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Ressaissi, A.; Attia, N.; Pacheco, R.; Falé, P.L.; Serralheiro, M.L.M. Cholesterol Transporter Proteins in HepG2 Cells Can Be Modulated by Phenolic Compounds Present in Opuntia Ficus-Indica Aqueous Solutions. J. Funct. Foods 2020, 64, 103674. [Google Scholar] [CrossRef]
- Charbonneau, D.M.; Tajmir-Riahi, H.-A. Study on the Interaction of Cationic Lipids with Bovine Serum Albumin. J. Phys. Chem. B 2010, 114, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
Compounds | Reduction in Quantity (%) |
---|---|
Chlorogenic Acid | 69.5 ± 1.4 |
Catechin | 63.5 ± 0.1 |
Epicatechin | 56.6 ± 1.5 |
AA | 25.1 ± 0.7 |
Sample | Compound | Papp (10−6 cm/s) |
---|---|---|
Extract-Loaded BSA NPs + Cholesterol | Chlorogenic Acid | N.D. |
Catechin | 2.9 | |
Epicatechin | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, L.M.; Viana, A.S.; Reis, C.P.; Pacheco, R. Oral Delivery of Avocado Peel Extract Using Albumin Nanocarriers to Modulate Cholesterol Absorption. Pharmaceutics 2025, 17, 1061. https://doi.org/10.3390/pharmaceutics17081061
Teixeira LM, Viana AS, Reis CP, Pacheco R. Oral Delivery of Avocado Peel Extract Using Albumin Nanocarriers to Modulate Cholesterol Absorption. Pharmaceutics. 2025; 17(8):1061. https://doi.org/10.3390/pharmaceutics17081061
Chicago/Turabian StyleTeixeira, Laura M., Ana S. Viana, Catarina P. Reis, and Rita Pacheco. 2025. "Oral Delivery of Avocado Peel Extract Using Albumin Nanocarriers to Modulate Cholesterol Absorption" Pharmaceutics 17, no. 8: 1061. https://doi.org/10.3390/pharmaceutics17081061
APA StyleTeixeira, L. M., Viana, A. S., Reis, C. P., & Pacheco, R. (2025). Oral Delivery of Avocado Peel Extract Using Albumin Nanocarriers to Modulate Cholesterol Absorption. Pharmaceutics, 17(8), 1061. https://doi.org/10.3390/pharmaceutics17081061