Insulin-Enhanced Biological Visual Rehabilitation in Neuroretinal Degeneration Patients Treated with Mesenchymal Cell-Derived Secretome
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADSCs | Adipose-derived stem cells |
AKT = PKB | Protein kinase B |
AMD | Age-related macular degeneration |
AS | Angioid streaks |
ASCs | Adipose stromal cells |
ATP | Adenosine triphosphate |
BCVA | Best-corrected visual acuity |
Ca2+ | Calcium |
CD | Cone dystrophy |
dB | Decibel |
DNA | Deoxyribonucleic acid |
DRP | Diabetic retinopathy |
EMEA | European Medicines Evaluation Agency |
ERK | Extracellular signal-regulated kinase |
FDA | Food and Drug Administration |
GAC | Gyrate atrophy of the choroid |
GFs | Growth factors |
GL | Glaucoma |
GLUT1/3 | Facilitative glucose transporters |
GON | Glaucomatous optic neuropathy |
IGFs | Insulin-like growth factors |
IRB | Institutional Review Board |
LogMAR | Logarithm of the minimum angle of resolution |
LRRT | Limoli Retinal Restoration Technique |
MEK | Mitogen-activated extracellular signal-regulated kinase |
MMD | Myopic macular degeneration |
mRNA | Messenger ribonucleic acid |
mTORC | Serine/threonine kinase complex |
MY | Microperimetry |
OA | Optic atrophy |
OMD | Occult macular dystrophy |
p110–p85 | Heterodimer, key component of phosphoinositide 3-kinases (PI3K) |
PI3K/AKT | Phosphatidylinositol 3-Kinase/Protein Kinase B intracellular signaling pathway |
PIP2 | Phosphatidylinositol 4,5-bisphosphate |
PLGA | Poly lactic-co-glycolic acid |
PRP | Platelet rich plasma |
RCD | Rod–cone dystrophy |
RGCs | Retinal ganglion cells |
RP | Retinitis pigmentosa |
S6K | Ribosomal protein p70S6 kinase |
SD | Standard deviation |
SMD | Stargardt’s macular degeneration |
References
- Viegas, F.O.; Neuhauss, S.C.F. A metabolic landscape for maintaining retina integrity and function. Front. Mol. Neurosci. 2021, 14, 656000. [Google Scholar] [CrossRef] [PubMed]
- Léveillard, T.; Philp, N.J.; Sennlaub, F. Is retinal metabolic dysfunction at the center of the pathogenesis of age-related macular degeneration? Int. J. Mol. Sci. 2019, 20, 762. [Google Scholar] [CrossRef]
- Blake, R.; Trounce, I.A. Mitochondrial dysfunction and complications associated with diabetes. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 1404–1412. [Google Scholar] [CrossRef]
- Yi, X.; Schubert, M.; Peachey, N.S.; Suzuma, K.; Burks, D.J.; Kushner, J.A.; Suzuma, I.; Cahill, C.; Flint, C.L.; Dow, M.A.; et al. Insulin receptor substrate 2 is essential for maturation and survival of photoreceptor cells. J. Neurosci. 2005, 25, 1240–1248. [Google Scholar] [CrossRef]
- Lee, J.; Pilch, P.F. The insulin receptor: Structure, function, and signaling. Am. J. Physiol. Cell Physiol. 1994, 266 Pt 1, C319–C334. [Google Scholar] [CrossRef] [PubMed]
- Baumann, C.A.; Ribon, V.; Kanzaki, M.; Thurmond, D.C.; Mora, S.; Shigematsu, S.; Bickel, P.E.; Pessin, J.E.; Saltiel, A.R. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 2000, 407, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Limoli, P.G.; Nebbioso, M. Immunophenotypic analysis of human adipose-derived stem cells through multi-color flow cytometry. Stem Cell Investig. 2023, 10, 13. [Google Scholar] [CrossRef]
- Műzes, G.; Sipos, F. Mesenchymal stem cell-derived secretome: A potential therapeutic option for autoimmune and immune-mediated inflammatory diseases. Cells 2022, 11, 2300. [Google Scholar] [CrossRef]
- Trigo, C.M.; Rodrigues, J.S.; Camões, S.P.; Solá, S.; Miranda, J.P. Mesenchymal stem cell secretome for regenerative medicine: Where do we stand? J. Adv. Res. 2024, 46, 125–144. [Google Scholar] [CrossRef]
- Urrata, V.; Trapani, M.; Franza, M.; Moschella, F.; Di Stefano, A.B.; Toia, F. Analysis of MSCs’ secretome and EVs cargo: Evaluation of functions and applications. Life Sci. 2022, 308, 120990. [Google Scholar] [CrossRef]
- Bai, J.; Yu, B.; Li, C.; Cheng, H.; Guan, Y.; Ren, Z.; Zhang, T.; Song, X.; Jia, Z.; Su, T.; et al. Mesenchymal stem cell-derived mitochondria enhance extracellular matrix-derived grafts for the repair of nerve defect. Adv. Healthc. Mater. 2024, 13, e2302128. [Google Scholar] [CrossRef]
- Limoli, P.G.; Vingolo, E.M.; Limoli, C.; Scalinci, S.Z.; Nebbioso, M. Regenerative therapy by suprachoroidal cell autograft in dry age-related macular degeneration: Preliminary in vivo report. J. Vis. Exp. 2018, 132, e56469. [Google Scholar] [CrossRef]
- Limoli, P.G.; Limoli, C.; Vingolo, E.M.; Franzone, F.; Nebbioso, M. Mesenchymal stem and non-stem cell surgery, rescue, and regeneration in glaucomatous optic neuropathy. Stem Cell Res. Ther. 2021, 12, 275. [Google Scholar] [CrossRef] [PubMed]
- Limoli, P.G.; Limoli, C.; Nebbioso, M. Restorative action of stem cells in neuroretinal degenerations as a possible application by ocular mesenchymal autograft. In Comprehensive Hematology and Stem Cell Research, 1st ed.; Rezaei, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 481–529. [Google Scholar] [CrossRef]
- Hsieh, J.Y.; Wang, H.W.; Chang, S.J.; Liao, K.H.; Lee, I.H.; Lin, W.S.; Wu, C.H.; Lin, W.Y. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS ONE 2013, 8, e72604. [Google Scholar] [CrossRef]
- Oner, A.; Gonen, Z.B.; Sevim, D.G.; Kahraman, N.S.; Unlu, M. Suprachoroidal Adipose Tissue-Derived Mesenchymal Stem Cell Implantation in Patients with Dry-Type Age-Related Macular Degeneration and Stargardt’s Macular Dystrophy: 6-Month Follow-Up Results of a Phase 2 Study. Cell. Reprogram. 2018, 20, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, N.S.; Gonen, Z.B.; Sevim, D.G.; Oner, A. First year results of suprachoroidal adipose tissue derived mesenchymal stem cell implantation in degenerative macular diseases. Int. J. Stem Cells 2021, 14, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Özkan, B.; Yılmaz Tuğan, B.; Hemşinlioğlu, C.; Sır Karakuş, G.; Şahin, Ö.; Ovalı, E. Suprachoroidal spheroidal mesenchymal stem cell implantation in retinitis pigmentosa: Clinical results of 6 months follow-up. Stem Cell Res. Ther. 2023, 14, 252. [Google Scholar] [CrossRef]
- Scholl, H.P.N.; Boyer, D.; Giani, A.; Chong, V. The use of neuroprotective agents in treating geographic atrophy. Ophthalmic Res. 2021, 64, 888–902. [Google Scholar] [CrossRef]
- Usategui-Martín, R.; Puertas-Neyra, K.; Galindo-Cabello, N.; Ortega-Alonso, A.; Fernández-Pereira, L.M.; Cernuda-Morollón, E.; Diez-Fernández, J.; Cordero-Rivera, C.; Álvarez-Suarez, S.; Llorente-González, S.; et al. Retinal neuroprotective effect of mesenchymal stem cells secretome through modulation of oxidative stress, autophagy, and programmed cell death. Investig. Ophthalmol. Vis. Sci. 2022, 63, 27. [Google Scholar] [CrossRef]
- LeRoith, D.; Holly, J.M.P.; Forbes, B.E. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol. Metab. 2021, 52, 101245. [Google Scholar] [CrossRef]
- Nesci, S. Cellular Metabolism Therapy. J. Transl. Med. 2022, 20, 297. [Google Scholar] [CrossRef] [PubMed]
- Garone, C.; Pietra, A.; Nesci, S. From the Structural and (Dys) Function of ATP Synthase to Deficiency in Age-Related Diseases. Life 2022, 12, 401. [Google Scholar] [CrossRef]
- Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; et al. Brain Energy Rescue: An Emerging Therapeutic Concept for Neurodegenerative Disorders of Ageing. Nat. Rev. Drug Discov. 2020, 19, 609–633. [Google Scholar] [CrossRef]
- Fennel, Z.J.; Bourrant, P.E.; Kurian, A.S.; Petrocelli, J.J.; de Hart, N.M.M.P.; Yee, E.M.; Boudina, S.; Keirstead, H.S.; Nistor, G.; Greilach, S.A.; et al. Stem Cell Secretome Treatment Improves Whole-Body Metabolism, Reduces Adiposity, and Promotes Skeletal Muscle Function in Aged Mice. Aging Cell 2024, 23, e14144. [Google Scholar] [CrossRef] [PubMed]
- Kucera, M.L.; Graham, J.P. Insulin lispro, a new insulin analog. Pharmacotherapy 1998, 18, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Koivisto, V.A. The human insulin analogue insulin lispro. Ann. Med. 1998, 30, 260–266. [Google Scholar] [CrossRef]
- Selivanova, O.M.; Suvorina, M.Y.; Surin, A.K.; Dovidchenko, N.V.; Galzitskaya, O.V. Insulin and Lispro Insulin: What is Common and Different in their Behavior? Curr. Protein Pept. Sci. 2017, 18, 57–64. [Google Scholar] [CrossRef]
- Sugumar, V.; Ang, K.P.; Alshanon, A.F.; Sethi, G.; Yong, P.V.C.; Looi, C.Y.; Wong, W.F. A Comprehensive Review of the Evolution of Insulin Development and Its Delivery Method. Pharmaceutics 2022, 14, 1406. [Google Scholar] [CrossRef]
- Agostinone, J.; Alarcon-Martinez, L.; Gamlin, C.; Yu, W.Q.; Wong, R.O.L.; Di Polo, A. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain 2018, 141, 1963–1980. [Google Scholar] [CrossRef]
- Zhang, X.; Xing, H.; Qi, F.; Liu, H.; Gao, L.; Wang, X. Local delivery of insulin/IGF-1 for bone regeneration: Carriers, strategies, and effects. Nanotheranostics 2020, 4, 242–255. [Google Scholar] [CrossRef]
- El Hajji, S.; Shiga, Y.; Belforte, N.; Solorio, Y.C.; Tastet, O.; D’Onofrio, P.; Dotigny, F.; Prat, A.; Arbour, N.; Fortune, B.; et al. Insulin restores retinal ganglion cell functional connectivity and promotes visual recovery in glaucoma. Sci. Adv. 2024, 10, eadl5722. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, S.; Wu, Z.; Zhang, M.; Bao, M.; He, B. Exploring the causal relationships between type 2 diabetes and neurological disorders using a Mendelian randomization strategy. Medicine 2024, 103, e40412. [Google Scholar] [CrossRef]
- Teixeira, F.G.; Carvalho, M.M.; Sousa, N.; Salgado, A.J. Mesenchymal stem cells secretome: A new paradigm for central nervous system regeneration? Cell. Mol. Life Sci. 2013, 70, 3871–3882. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.G.; Salgado, A.J. Mesenchymal stem cells secretome: Current trends and future challenges. Neural Regen. Res. 2020, 15, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Harrison, E. Enhancement strategies for mesenchymal stem cells and related secretome: Pharmacological drugs and small molecules. Stem Cell Res. Ther. 2022, 13, 75. [Google Scholar] [CrossRef]
- Miceli, V.; Zito, G.; Bulati, M.; Gallo, A.; Busà, R.; Iannolo, G.; Conaldi, P.G. Different priming strategies improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: Potential implications for their clinical use. World J. Stem Cells 2023, 15, 400–420. [Google Scholar] [CrossRef] [PubMed]
- Castro Mora, M.P.; Palacio Varona, J.; Perez Riaño, B.; Laverde Cubides, C.; Rey-Rodriguez, D.V. Effectiveness of topical insulin for the treatment of surface corneal pathologies. Arch. Soc. Esp. Oftalmol. Engl. Ed. 2023, 98, 220–232. [Google Scholar] [CrossRef]
- Wouters, C.; Saelens, I.; Delbeke, H. Topical Insulin for Neurotrophic-Related Epithelial Defects: Where do We Stand? A Systematic Review. J. Curr. Ophthalmol. 2024, 36, 9–22. [Google Scholar] [CrossRef]
- Moin, K.A.; Pandiri, S.; Manion, G.N.; Brown, A.H.; Moshirfar, M.; Hoopes, P.C. The utilization of topical insulin for ocular surface diseases: A narrative review. Cureus 2024, 16, e62065. [Google Scholar] [CrossRef]
- Jaworski, M.; Lorenc, A.; Leszczyński, R.; Mrukwa-Kominek, E. Topical insulin in neurotrophic keratopathy: A review of current understanding of the mechanism of action and therapeutic approach. Pharmaceutics 2023, 16, 15. [Google Scholar] [CrossRef]
- Vicario-de-la-Torre, M.; Puebla-García, V.; Ybañez-García, L.; López-Cano, J.J.; González-Cela-Casamayor, M.A.; Brugnera, M.; Burgos-Blasco, B.; Díaz-Valle, D.; Gegúndez-Fernández, J.A.; Benítez-Del-Castillo, J.M.; et al. Topical insulin eye drops: Stability and safety of two compounded formulations for treating persistent corneal epithelial defects. Pharmaceutics 2024, 16, 580. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Valle, D.; Burgos-Blasco, B.; Rego-Lorca, D.; Puebla-Garcia, V.; Perez-Garcia, P.; Benitez-Del-Castillo, J.M.; Herrero-Vanrell, R.; Vicario-de-la-Torre, M.; Gegundez-Fernandez, J.A. Comparison of the efficacy of topical insulin with autologous serum eye drops in persistent epithelial defects of the cornea. Acta Ophthalmol. 2022, 100, e912–e919. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.L.; Weinlander, E.; Metcalf, B.M.; Barney, N.P.; Gamm, D.M.; Nehls, S.M.; Struck, M.C. Use of topical insulin to treat refractory neurotrophic corneal ulcers. Cornea 2017, 36, 1426–1428. [Google Scholar] [CrossRef]
- Choi, E.; Bai, X.C. The Activation Mechanism of the Insulin Receptor: A Structural Perspective. Annu. Rev. Biochem. 2023, 92, 247–272. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, C.S.; Raony, Í.; Medina, S.V.; de Mello Silva, E.; Dos Santos, A.A.; Giestal-de-Araujo, E. Insulin-like growth factor-1 stimulates retinal cell proliferation via activation of multiple signaling pathways. Curr. Res. Neurobiol. 2022, 4, 100068. [Google Scholar] [CrossRef] [PubMed]
- Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 2011, 50, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Lantz, C.; Thorp, E.B. Metabolism: How removal of damaged cells impacts energy availability in the retina. Curr. Biol. 2023, 33, R279–R282. [Google Scholar] [CrossRef] [PubMed]
- Ola, M.S.; Nawaz, M.I.; Khan, H.A.; Alhomida, A.S. Neurodegeneration and neuroprotection in diabetic retinopathy. Int. J. Mol. Sci. 2013, 14, 2559–2572. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Tseng, Y.; White, M.F. Insulin signaling meets mitochondria in metabolism. Trends Endocrinol. Metab. 2010, 21, 589–598. [Google Scholar] [CrossRef]
- Galizzi, G.; Di Carlo, M. Insulin and its key role for mitochondrial function/dysfunction and quality control: A shared link between dysmetabolism and neurodegeneration. Biology 2022, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Ruegsegger, G.N.; Creo, A.L.; Cortes, T.M.; Dasari, S.; Nair, K.S. Altered mitochondrial function in insulin-deficient and insulin-resistant states. J. Clin. Investig. 2018, 128, 3671–3681. [Google Scholar] [CrossRef] [PubMed]
Type of Disease | Group 1 (n = 39) | Group 2 (n = 25) | Group 3 (n = 26) | |
---|---|---|---|---|
Glaucomatous optic neuropathy (GON) | 3 (7.69%) | 1 (4.0%) | 2 (7.69%) | |
Angioid streaks | 0 (0.0%) | 1 (4.0%) | 1 (3.8%) | |
Myopic macular degeneration | 2 (5.13%) | 2 (8.0%) | 1 (3.8%) | |
Myopic macular degeneration + GON | 5 (12.82%) | 4 (16.0%) | 4 (15.4%) | |
Rod–cone dystrophy | 1 (2.56%) | 1 (4.0%) | 0 (0.0%) | |
Stargardt’s macular degeneration | 6 (15.38%) | 5 (20.0%) | 2 (7.7%) | |
Dry age-related macular degeneration | 4 (10.26%) | 2 (8.0%) | 1 (3.8%) | |
Optic atrophy | 2 (5.13%) | 3 (12.0%) | 4 (15.4%) | |
Retinitis pigmentosa | 10 (25.64%) | 5 (20.0%) | 8 (30.8%) | |
Occult macular dystrophy | 1 (2.56%) | 1 (4.0%) | 1 (3.8%) | |
Diabetic retinopathy | 2 (5.13%) | 1 (4.0%) | 0 (0.0%) | |
Gyrate atrophy of the choroid | 1 (2.56%) | 0 (0.0%) | 1 (3.8%) | |
Cone dystrophy | 2 (5.13%) | 0 (0.0%) | 1 (3.8%) | |
p | ||||
Age (in years) mean (±SD) | 56.46 (±17.4) | 56.81 (±18.5) | 47.98 (±18.2) | 0.694 |
Female, n (%) | 16 (41.0) | 13 (52.0) | 12 (46.2) | 0.060 |
Male, n (%) | 23 (59.0) | 12 (48.0) | 14 (53.8) | 0.060 |
BCVA, logMar mean (±SD) t0 | 0.49 (0.33) | 0.56 (0.99) | 0.51 (0.34) | 0.290 |
BCVA, logMar mean (±SD) t1 | 0.49 (0.32) | 0.56 (0.99) | 0.54 (0.41) | 0.312 |
Sensitivity (dB) t0 mean (±SD) | 11.22 (6.98) | 9.75 (6.95) | 11.39 (8.12) | 0.526 |
Sensitivity (dB) t1 mean (±SD) | 11.33 (7.01) | 10.06 (7.05) | 11.73 (8.27) | 0.713 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limoli, P.G.; Limoli, C.; Nebbioso, M. Insulin-Enhanced Biological Visual Rehabilitation in Neuroretinal Degeneration Patients Treated with Mesenchymal Cell-Derived Secretome. Pharmaceutics 2025, 17, 901. https://doi.org/10.3390/pharmaceutics17070901
Limoli PG, Limoli C, Nebbioso M. Insulin-Enhanced Biological Visual Rehabilitation in Neuroretinal Degeneration Patients Treated with Mesenchymal Cell-Derived Secretome. Pharmaceutics. 2025; 17(7):901. https://doi.org/10.3390/pharmaceutics17070901
Chicago/Turabian StyleLimoli, Paolo Giuseppe, Celeste Limoli, and Marcella Nebbioso. 2025. "Insulin-Enhanced Biological Visual Rehabilitation in Neuroretinal Degeneration Patients Treated with Mesenchymal Cell-Derived Secretome" Pharmaceutics 17, no. 7: 901. https://doi.org/10.3390/pharmaceutics17070901
APA StyleLimoli, P. G., Limoli, C., & Nebbioso, M. (2025). Insulin-Enhanced Biological Visual Rehabilitation in Neuroretinal Degeneration Patients Treated with Mesenchymal Cell-Derived Secretome. Pharmaceutics, 17(7), 901. https://doi.org/10.3390/pharmaceutics17070901