A pH-Responsive Poly Beta-Amino Ester Nanoparticulate Thermo-Responsive PEG-PCL-PEG Hydrogel Dispersed System for the Delivery of Interferon Alpha to the Ocular Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis and Purification of PEG-PCL-PEG Triblock Copolymer
2.2.2. Synthesis of Poly (Beta-Amino Ester) Copolymer
2.2.3. Preparation of Nanoparticles via the Solvent Evaporation Method
2.2.4. Preparation of the PECE Hydrogel and NP-Loaded/PECE Hydrogel
2.2.5. Fourier Transform Infrared Spectroscopy (FTIR) of the PECE Hydrogel and NP-Loaded/PECE Hydrogel
2.2.6. H-Nuclear Magnetic Resonance Analysis of the PECE Hydrogel and NP-Loaded/PECE Hydrogel
2.2.7. X-Ray Powder Diffraction (XRPD) Analysis of the PECE Hydrogel and NP-Loaded/PECE Hydrogel
2.2.8. Differential Scanning Calorimetry (DSC) of the PECE Hydrogel and NP-Loaded/PECE Hydrogel
2.2.9. Thermogravimetric (TGA) Analysis of the PECE Hydrogel and NP-Loaded/PECE Hydrogel
2.2.10. Particle Size Distribution, Polydispersity Index (PDI), and Zeta Potential Analysis of the Nanoparticles
2.2.11. Evaluation of Drug Entrapment Efficiency of IFN-α2b Loaded Nanoparticles
2.2.12. Morphological Analysis of the NPs and NP-Loaded/PECE Hydrogel
Transmission Electron Microscopy of the Nanoparticles
Scanning Electron Microscopy (SEM) of the NPs and NP-Loaded/PECE Hydrogel
2.2.13. Porositometric and Surface Topography Analysis of the PECE Hydrogel and NP-Loaded/PECE Hydrogel
2.2.14. Rheological Characterisation of the Hydrogels
2.2.15. Syringeability of the Hydrogels
2.2.16. In Vitro Release Analysis of IFN-α2b from IFNPs and IFNPH
2.2.17. Degradation Analysis of Formulations
2.2.18. In Vitro Cytotoxicity Analysis
2.2.19. Assessment of Bioactivity of the Released IFNα-2b from IFNPH
2.2.20. Statistical Analysis
3. Results
3.1. Assessment of the Structural Modification and Integrity
3.2. Evaluation of the Thermal Behaviour of the Hydrogels
3.3. Particle Size and Distribution, Zeta Potential and Entrapment Efficiency of the Nanoparticles
3.4. Assessment of Surface Morphology of the Hydrogels
3.5. Assessment of the Porosity Profile of the Hydrogels and NP-Loaded Hydrogels
3.6. Assessment of Rheological Properties of the Hydrogel
3.7. Assessment of the Syringeability of the Hydrogels
3.8. In Vitro Release Behaviour of IFN-α2b from IFNPs and IFNPH
3.9. Degradation Analysis of the Formulations
3.10. Biocompatibility Evaluation of the Formulations
3.11. Assessment of the Stability and Bioactivity of the Released IFN-α2b from the IFNPH
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3AP | 3-Amino-1-propanol |
ANOVA | Analysis of variance |
BJH | Barrett, Joyner and Halenda model |
BDDA | 1,4-Butanediol diacrylate |
BET | Brunauer–Emmett–Teller |
CGC | Critical gelling concentration |
CDCl3 | Deuterated chloroform |
DSC | Differential scanning calorimetry |
DOX | Doxorubicin |
DMEM F12 | Dulbecco’s modified Eagle medium mixture with Ham’s |
DLS | Dynamic light scattering |
EE | Encapsulation efficiency |
EPR | Enhanced permeation and retention |
ELISA | Enzyme-linked immunosorbent assay kit |
Ɛ-CL | Ɛ-caprolactone |
FBS | Foetal bovine serum albumin |
FTIR | Fourier transform infrared |
HMDI | 1,6-hexamethylene diisocyanate |
1H-NMR | 1H-nuclear magnetic resonance |
HRPE | Human retinal pigment epithelial cells |
IFN-α2b | Interferon-alpha2b |
IFNPs | Interferon-alpha2b loaded PBAE-NPs |
IFNPH | Interferon-alpha2b loaded PBAE-NPs/PECE hydrogel |
IFN-β | Interferon beta |
(G″) | Loss modulus |
MTT | 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
NPs | Nanoparticles |
PECE | Poly (ethylene glycol)-poly (caprolactone)-poly (ethylene glycol) |
PEG-PCL-PEGE | Poly (ethylene glycol)-poly (caprolactone)-poly (ethylene glycol) |
PECE-1 | 20% w/v PECE hydrogel |
PECE-2 | NPs dispersed into 20% w/v PECE hydrogel |
PECE-3 | 25% w/v PECE hydrogel |
PECE-4 | NPs dispersed into 25% w/v PECE hydrogel |
PEGIFN-α2b | Pegylated interferon |
PBS | Phosphate buffer saline |
PBAE | Poly (beta-amino ester) |
PBAE-NPs | Poly (beta-amino ester) nanoparticles |
PEG | Poly (ethelyene glycol) |
PCL | Poly (caprolactone) |
mPEG | Poly(ethylene glycol) methyl ether |
mPEGA | Poly(ethylene glycol) methyl ether acrylate |
PDI | Polydispersity index |
RES | Reticuloendothelial system |
SEM | Scanning electron microscopy |
SD | Standard deviation |
Sn(Oct)2 | Stannous octoate |
(G′) | Storage modulus |
TGA | Thermogravimetric analysis |
(WNPs + WPECE) | Total mass of the solid component |
TEM | Transmission Electron Microscopy |
WNPs | Mass ratio of the NPs |
XRPD | X-ray powder diffraction |
References
- Pe’er, J. Ocular surface squamous neoplasia: Evidence for topical chemotherapy. Int. Ophthalmol. Clin. 2015, 55, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, N.; Mercado, C.; Galor, A.; Karp, C.L. Comparison of topical 5-fluorouracil and interferon alfa-2b as primary treatment modalities for ocular surface squamous neoplasia. Am. J. Ophthalmol. 2019, 199, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Nanji, A.A.; Sayyad, F.E.; Karp, C.L. Topical chemotherapy for ocular surface squamous neoplasia. Curr. Opin. Ophthalmol. 2013, 24, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Han, J.; Chung, T.-Y.; Lim, D.H.; Choi, C.Y. Pegylated Interferon Alpha 2a for the Treatment of Ocular Surface Squamous Neoplasia. Cornea 2022, 41, 1271–1275. [Google Scholar] [CrossRef]
- Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004, 202, 8–32. [Google Scholar] [CrossRef]
- Asmana Ningrum, R. Human interferon alpha-2b: A therapeutic protein for cancer treatment. Scientifica 2014, 2014, 970315. [Google Scholar] [CrossRef]
- Galor, A.; Karp, C.L.; Chhabra, S.; Barnes, S.; Alfonso, E.C. Topical interferon alpha 2b eye-drops for treatment of ocular surface squamous neoplasia: A dose comparison study. Br. J. Ophthalmol. 2010, 94, 551–554. [Google Scholar] [CrossRef]
- Karp, C.L.; Galor, A.; Chhabra, S.; Barnes, S.D.; Alfonso, E.C. Subconjunctival/perilesional recombinant interferon α2b for ocular surface squamous neoplasia: A 10-year review. Ophthalmology 2010, 117, 2241–2246. [Google Scholar] [CrossRef]
- Beilharz, M.W.; Cummins, M.J.; Bennett, A.L.; Cummins, J.M. Oromucosal Administration of Interferon to Humans. Pharmaceuticals 2010, 3, 323–344. [Google Scholar] [CrossRef]
- Feczkó, T.; Fodor-Kardos, A.; Sivakumaran, M.; Shubhra, Q.T.H. In vitro IFN-α release from IFN-α- and pegylated IFN-α-loaded poly(lactic-co-glycolic acid) and pegylated poly(lactic-co-glycolic acid) nanoparticles. Nanomedicine 2016, 11, 2029–2034. [Google Scholar] [CrossRef]
- Gulia, M.; Rai, S.; Jain, U.K.; Katare, O.P.; Katyal, A.; Madan, J. Sustained-release protamine sulphate-impregnated microspheres may reduce the frequent administration of recombinant interferon α-2b in ovarian cancer: In-vitro characterization. Anti-Cancer Drugs 2014, 25, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Fodor-Kardos, A.; Kiss, Á.F.; Monostory, K.; Feczkó, T. Sustained in vitro interferon-beta release and in vivo toxicity of PLGA and PEG-PLGA nanoparticles. RSC Adv. 2020, 10, 15893–15900. [Google Scholar] [CrossRef]
- Kristó, K.; Szekeres, M.; Makai, Z.; Márki, Á.; Kelemen, A.; Bali, L.; Pallai, Z.; Dékány, I.; Csóka, I. Preparation and investigation of core-shell nanoparticles containing human interferon-α. Int. J. Pharm. 2020, 573, 118825. [Google Scholar] [CrossRef]
- Mehvar, R. Modulation of the pharmacokinetics and pharmacodynamics of proteins by polyethylene glycol conjugation. J. Pharm. Pharm. Sci. 2000, 3, 125–136. Available online: https://digitalcommons.chapman.edu/pharmacy_articles/110 (accessed on 20 June 2023). [PubMed]
- Navya, P.; Kaphle, A.; Srinivas, S.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019, 6, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Kakde, D.; Jain, D.; Shrivastava, V.; Kakde, R.; Patil, A. Cancer therapeutics-opportunities, challenges and advances in drug delivery. J. Appl. Pharm. Sci. 2011, 1, 1–10. [Google Scholar]
- Dai, Y.; Xu, C.; Sun, X.; Chen, X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 2017, 46, 3830–3852. [Google Scholar] [CrossRef]
- Gong, C.Y.; Dong, P.W.; Shi, S.; Fu, S.Z.; Yang, J.L.; Guo, G.; Zhao, X.; Wei, Y.Q.; Qian, Z.Y. Thermosensitive PEG–PCL–PEG hydrogel controlled drug delivery system: Sol–gel–sol transition and in vitro drug release study. J. Pharm. Sci. 2009, 98, 3707–3717. [Google Scholar] [CrossRef]
- Song, W.; Tang, Z.; Li, M.; Lv, S.; Yu, H.; Ma, L.; Zhuang, X.; Huang, Y.; Chen, X. Tunable pH-sensitive poly (β-amino ester) s synthesized from primary amines and diacrylates for intracellular drug delivery. Macromol. Biosci. 2012, 12, 1375–1383. [Google Scholar] [CrossRef]
- An, T.; Zhang, C.; Han, X.; Wan, G.; Wang, D.; Yang, Z.; Wang, Y.; Zhang, L.; Wang, Y. Hyaluronic acid-coated poly (β-amino) ester nanoparticles as carrier of doxorubicin for overcoming drug resistance in breast cancer cells. RSC Adv. 2016, 6, 38624–38636. [Google Scholar] [CrossRef]
- Gupta, P.; Authimoolam, S.P.; Hilt, J.Z.; Dziubla, T.D. Quercetin conjugated poly (β-amino esters) nanogels for the treatment of cellular oxidative stress. Acta Biomater. 2015, 27, 194–204. [Google Scholar] [CrossRef]
- Gong, C.; Shi, S.; Dong, P.; Kan, B.; Gou, M.; Wang, X.; Li, X.; Luo, F.; Zhao, X.; Wei, Y. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int. J. Pharm. 2009, 365, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Lynn, D.M.; Langer, R. Degradable poly (β-amino esters): Synthesis, characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc. 2000, 122, 10761–10768. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Keskin, D.; Shi, L. Poly (β-Amino Esters): Synthesis, formulations, and their biomedical applications. Adv. Healthc. Mater. 2019, 8, 1801359. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tang, H.; Zhan, Y.; Van Kirk, E.A.; Murdoch, W.J. Degradable poly (β-amino ester) nanoparticles for cancer cytoplasmic drug delivery. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 192–201. [Google Scholar] [CrossRef]
- Zhang, Q.; Fassihi, M.A.; Fassihi, R. Delivery considerations of highly viscous polymeric fluids mimicking concentrated biopharmaceuticals: Assessment of injectability via measurement of total work done “WT”. AAPS PharmSciTech 2018, 19, 1520–1528. [Google Scholar] [CrossRef]
- Cilurzo, F.; Selmin, F.; Minghetti, P.; Adami, M.; Bertoni, E.; Lauria, S.; Montanari, L. Injectability evaluation: An open issue. AAPS PharmSciTech 2011, 12, 604–609. [Google Scholar] [CrossRef]
- Lee, J.W.; Hua, F.-j.; Lee, D.S. Thermoreversible gelation of biodegradable poly (ε-caprolactone) and poly (ethylene glycol) multiblock copolymers in aqueous solutions. J. Control. Release 2001, 73, 315–327. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Chen, S.; Qin, J.; Chen, X.; Zhou, D.; Wu, H. Synthesis, characterization, and crystallization behaviors of poly (D-lactic acid)-based triblock copolymer. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Fu, S.; Guo, G.; Gong, C.; Zeng, S.; Liang, H.; Luo, F.; Zhang, X.; Zhao, X.; Wei, Y.; Qian, Z. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. preparation and characterization of nanohydroxyapatite/poly (ethylene glycol)− poly (ε-caprolactone)− poly (ethylene glycol) hydrogel nanocomposites. J. Phys. Chem. B 2009, 113, 16518–16525. [Google Scholar] [CrossRef]
- Uematsu, Y. Ion adsorption and zeta potential of hydrophobic interfaces. In Encyclopedia of Solid-Liquid Interfaces, 1st ed.; Wandelt, K., Bussetti, G., Eds.; Elsevier: Oxford, UK, 2024; pp. 519–529. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Miller, A.; Orellana, M.F. Characterization of the porosity of human dental enamel and shear bond strength in vitro after variable etch times: Initial findings using the BET method. Angle Orthod. 2011, 81, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Ramburrun, P.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Pillay, V. Design of chitospheres loaded with pristine polymer particles for extended drug delivery via polyelectrolyte complexation and particulate leaching. Int. J. Pharm. 2015, 479, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Groen, J.C.; Peffer, L.A.; Pérez-Ramírez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Allahham, A.; Mainwaring, D.; Stewart, P.; Marriott, J. Development and application of a micro-capillary rheometer for in-vitro evaluation of parenteral injectability. J. Pharm. Pharmacol. 2004, 56, 709–716. [Google Scholar] [CrossRef]
- Budhwani, M.; Mazzieri, R.; Dolcetti, R. Plasticity of type I interferon-mediated responses in cancer therapy: From anti-tumor immunity to resistance. Front. Oncol. 2018, 8, 322. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneve, Switzerland, 2009.
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef]
- Uwaezuoke, O.; Du Toit, L.C.; Kumar, P.; Ally, N.; Choonara, Y.E. Linoleic Acid-Based Transferosomes for Topical Ocular Delivery of Cyclosporine A. Pharmaceutics 2022, 14, 1695. [Google Scholar] [CrossRef]
- Bracarda, S.; Eggermont, A.M.; Samuelsson, J. Redefining the role of interferon in the treatment of malignant diseases. Eur. J. Cancer 2010, 46, 284–297. [Google Scholar] [CrossRef]
- Gong, C.; Qian, Z.; Liu, C.; Huang, M.; Gu, Y.; Wen, Y.; Kan, B.; Wang, K.; Dai, M.; Li, X. A thermosensitive hydrogel based on biodegradable amphiphilic poly (ethylene glycol)–polycaprolactone–poly (ethylene glycol) block copolymers. Smart Mater. Struct. 2007, 16, 927. [Google Scholar] [CrossRef]
- Hwang, M.J.; Suh, J.M.; Bae, Y.H.; Kim, S.W.; Jeong, B. Caprolactonic poloxamer analog: pEG-PCL-PEG. Biomacromolecules 2005, 6, 885–890. [Google Scholar] [CrossRef]
- Luo, Z.; Jin, L.; Xu, L.; Zhang, Z.L.; Yu, J.; Shi, S.; Li, X.; Chen, H. Thermosensitive PEG–PCL–PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium. Drug Deliv. 2016, 23, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Kissel, T.; Li, Y.; Unger, F. ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly (ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv. Drug Deliv. Rev. 2002, 54, 99–134. [Google Scholar] [CrossRef]
- Ni, P.Y.; Fan, M.; Qian, Z.Y.; Luo, J.C.; Gong, C.Y.; Fu, S.Z.; Shi, S.; Luo, F.; Yang, Z.M. Synthesis and characterization of injectable, thermosensitive, and biocompatible acellular bone matrix/poly (ethylene glycol)-poly (ε-caprolactone)-poly (ethylene glycol) hydrogel composite. J. Biomed. Mater. Res. Part A 2012, 100, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.J.; Suh, J.M.; Sohn, Y.S.; Bae, Y.H.; Kim, S.W.; Jeong, B. Thermogelling poly (caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules 2005, 38, 5260–5265. [Google Scholar] [CrossRef]
- El Kechai, N.; Bochot, A.; Huang, N.; Nguyen, Y.; Ferrary, E.; Agnely, F. Effect of liposomes on rheological and syringeability properties of hyaluronic acid hydrogels intended for local injection of drugs. Int. J. Pharm. 2015, 487, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Wang, L.L.; Chung, J.J.; Kim, Y.-H.; Atluri, P.; Burdick, J.A. Methods to assess shear-thinning hydrogels for application as injectable biomaterials. ACS Biomater. Sci. Eng. 2017, 3, 3146–3160. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, C.; Xu, B.; Tu, J.; Shen, Y. Synthesis, physicochemical properties and ocular pharmacokinetics of thermosensitive in situ hydrogels for ganciclovir in cytomegalovirus retinitis treatment. Drug Deliv. 2018, 25, 59–69. [Google Scholar] [CrossRef]
- Ban, J.; Zhang, Y.; Huang, X.; Deng, G.; Hou, D.; Chen, Y.; Lu, Z. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone. Int. J. Nanomed. 2017, 12, 1329. [Google Scholar] [CrossRef]
- Tseng, C.-L.; Chen, K.-H.; Su, W.-Y.; Lee, Y.-H.; Wu, C.-C.; Lin, F.-H. Cationic gelatin nanoparticles for drug delivery to the ocular surface: In vitro and in vivo evaluation. J. Nanomater. 2013, 2013, 238351. [Google Scholar] [CrossRef]
- Chaw, S.Y.; Novera, W.; Chacko, A.-M.; Wong, T.T.L.; Venkatraman, S. In vivo fate of liposomes after subconjunctival ocular delivery. J. Control. Release 2021, 329, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Park, K.; Kim, Y.-S.; Kim, M.S.; Han, J.K.; Kim, K.; Park, R.-W.; Kim, I.-S.; Song, H.K.; Lee, D.S. Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly (β-amino ester) block copolymer micelles for cancer therapy. J. Control. Release 2007, 123, 109–115. [Google Scholar] [CrossRef] [PubMed]
- du Toit, L.C.; Choonara, Y.E.; Pillay, V. An injectable nano-enabled thermogel to attain controlled delivery of p11 peptide for the potential treatment of ocular angiogenic disorders of the posterior segment. Pharmaceutics 2021, 13, 176. [Google Scholar] [CrossRef]
- Koutsopoulos, S.; Unsworth, L.D.; Nagai, Y.; Zhang, S. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc. Natl. Acad. Sci. USA 2009, 106, 4623–4628. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.; Tobío, M.; González, L.; Fabra, A.; Alonso, M.J. Biodegradable micro-and nanoparticles as long-term delivery vehicles for interferon-alpha. Eur. J. Pharm. Sci. 2003, 18, 221–229. [Google Scholar] [CrossRef]
Sample | Size (nm) | PDI (a.u) | Zeta Potential (mV) | % EE |
---|---|---|---|---|
NP | 137.1 ± 0.47 | 0.270 ± 0.002 | −23.9 ± 0.58 | - |
IFNP | 151 ± 1.46 | 0.148 ± 0.03 | −16.4 ± 0.25 | 89 ± 0.35 |
Formulation/Media | Size (nm) | PDI (a.u) | Zeta Potential (mV) |
---|---|---|---|
NP/H2O | 137.1 ± 0.47 | 0.270 ± 0.002 | −23.9 ± 0.58 |
NP/PBS 7.4 | 179.9 ± 1.72 | 0.115 ± 0.12 | −11.4 ± 0.61 |
NP/PBS 6.6 | 216.9 ± 4.70 | 0.079 ± 0.009 | −6.12 ± 1.05 |
NP/PBS 5.5 | 230.6 ± 5.62 | 0.137 ± 0.018 | −3.36 ± 0.67 |
Porositometric Parameters | PECE-1 | PECE-2 | PECE-3 | PECE-4 |
---|---|---|---|---|
Surface Area | ||||
Single point surface area (m2/g) | 0.1637 | 0.2112 | 0.2330 | 0.2085 |
BET Surface Area (m2/g) | 0.1462 | 0.2088 | 0.4479 | 0.2398 |
BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter (m2/g) | 0.032 | 0.084 | 0.272 | 0.355 |
BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter (m2/g) | 0.1172 | 0.2823 | ||
Pore Volume | ||||
Single point adsorption total pore volume of pores (cm3/g) | 0.001478 | 0.00032 | 0.00075 | 0.003647 |
BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter (cm3/g) | 0.002437 | 0.00222 | 0.00126 | 0.003468 |
BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter (cm3/g) | 0.002500 | 0.00217 | 0.00125 | |
Pore Size | ||||
Adsorption average pore width (4V/A by) (Å) | 1916.746 | 61.5310 | 67.1867 | 608.3260 |
BJH Adsorption average pore diameter (4V/A) (Å) | 98.191 | 1054.71 | 185.162 | 390.541 |
BJH Desorption average pore diameter (4V/A) (Å) | 47.168 | 742.370 | 177.708 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, Y.; du Toit, L.C.; Ubanako, P.; Choonara, Y.E. A pH-Responsive Poly Beta-Amino Ester Nanoparticulate Thermo-Responsive PEG-PCL-PEG Hydrogel Dispersed System for the Delivery of Interferon Alpha to the Ocular Surface. Pharmaceutics 2025, 17, 709. https://doi.org/10.3390/pharmaceutics17060709
Abdalla Y, du Toit LC, Ubanako P, Choonara YE. A pH-Responsive Poly Beta-Amino Ester Nanoparticulate Thermo-Responsive PEG-PCL-PEG Hydrogel Dispersed System for the Delivery of Interferon Alpha to the Ocular Surface. Pharmaceutics. 2025; 17(6):709. https://doi.org/10.3390/pharmaceutics17060709
Chicago/Turabian StyleAbdalla, Yosra, Lisa Claire du Toit, Philemon Ubanako, and Yahya Essop Choonara. 2025. "A pH-Responsive Poly Beta-Amino Ester Nanoparticulate Thermo-Responsive PEG-PCL-PEG Hydrogel Dispersed System for the Delivery of Interferon Alpha to the Ocular Surface" Pharmaceutics 17, no. 6: 709. https://doi.org/10.3390/pharmaceutics17060709
APA StyleAbdalla, Y., du Toit, L. C., Ubanako, P., & Choonara, Y. E. (2025). A pH-Responsive Poly Beta-Amino Ester Nanoparticulate Thermo-Responsive PEG-PCL-PEG Hydrogel Dispersed System for the Delivery of Interferon Alpha to the Ocular Surface. Pharmaceutics, 17(6), 709. https://doi.org/10.3390/pharmaceutics17060709