Development and Antitumor Evaluation of Doxorubicin-Loaded Two-Layered Sheets for Local Chemotherapy via Direct Drug Application to the Tumor Surface
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of DOX-Loaded Two-Layered Sheets
2.3. Measurement of DOX-Loaded Two-Layered Sheet Thickness
2.4. In Vitro Drug Release Studies
2.5. Animals
2.6. In Vivo Biodistribution Studies After DOX-Loaded Sheet Application to Subcutaneous Tissues
2.7. Cell Lines and Animal Models
2.8. Biodistribution and In Vivo Antitumor Effects of Additive-Containing DOX-Loaded Sheets
2.9. DOX Quantification Method
2.10. Detection of DOX
2.11. Statistical Analyses
3. Results
3.1. In Vitro Evaluation of DOX-Loaded Sheets
3.1.1. DOX-Loaded Two-Layered Sheet Thickness
3.1.2. In Vitro Cumulative DOX Release Profiles
3.2. In Vivo Biodistribution of DOX 1 Day After Application of DOX-Loaded Sheets to Mouse Subcutaneous Tissues
3.3. In Vivo Biodistribution of DOX 14 Days After Application of DOX-Loaded Sheets to the Tumor Site
3.4. Relative Body Weight Changes
3.5. In Vivo Antitumor Effects
3.6. Associations Between Antitumor Effects and Tumor Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DOX | Doxorubicin |
| PLGA | Poly(lactic-co-glycolic acid) |
| PEG | Polyethylene glycol |
| HPC | Hydroxypropyl cellulose |
| PVP | Polyvinylpyrrolidone |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, G.R.; Leong, D.P.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Gupta, R.; Diaz, R.; Avezum, A.; Oliveira, G.B.F.; Wielgosz, A.; et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): A prospective cohort study. Lancet 2020, 395, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Bhadran, A.; Polara, H.; Babanyinah, G.K.; Baburaj, S.; Stefan, M.C. Advances in doxorubicin chemotherapy: Emerging polymeric nanocarriers for drug loading and delivery. Cancers 2025, 17, 2303. [Google Scholar] [CrossRef] [PubMed]
- Tran, S.; DeGiovanni, P.-J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med. 2017, 6, 44. [Google Scholar] [CrossRef]
- Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310–1316. [Google Scholar] [CrossRef]
- Gao, B.; Luo, J.; Liu, Y.; Su, S.; Fu, S.; Yang, X.; Li, B. Intratumoral administration of thermosensitive hydrogel co-loaded with norcantharidin nanoparticles and doxorubicin for the treatment of hepatocellular carcinoma. Int. J. Nanomed. 2021, 16, 4073–4085. [Google Scholar] [CrossRef]
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OpenNano 2022, 7, 100048. [Google Scholar] [CrossRef]
- Pacheco, C.; Baião, A.; Ding, T.; Cui, W.; Sarmento, B. Recent advances in long-acting drug delivery systems for anticancer drug. Adv. Drug Deliv. Rev. 2023, 194, 114724. [Google Scholar] [CrossRef]
- Nkanga, C.I.; Fisch, A.; Rad-Malekshahi, M.; Romic, M.D.; Kittel, B.; Ullrich, T.; Wang, J.; Krause, R.W.M.; Adler, S.; Lammers, T.; et al. Clinically established biodegradable long acting injectables: An industry perspective. Adv. Drug Deliv. Rev. 2020, 167, 19–46. [Google Scholar] [CrossRef]
- Krukiewicz, K.; Zak, J.K. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 62, 927–942. [Google Scholar] [CrossRef]
- He, P.; Xu, S.; Guo, Z.; Yuan, P.; Liu, Y.; Chen, Y.; Zhang, T.; Que, Y.; Hu, Y. Pharmacodynamics and pharmacokinetics of PLGA-based doxorubicin-loaded implants for tumor therapy. Drug Deliv. 2022, 29, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Hu, J.; Zhang, L.; Zhang, L.; Sun, Y.; Xie, Y.; Wu, S.; Liu, L.; Gao, Z. Doxorubicin-loaded zein in situ gel for interstitial chemotherapy of colorectal cancer. Acta Pharm. Sin. B 2012, 2, 610–614. [Google Scholar] [CrossRef]
- Nishida, K.; Fujiwara, R.; Kodama, Y.; Fumoto, S.; Mukai, T.; Nakashima, M.; Sasaki, H.; Nakamura, J. Regional delivery of model compounds and 5-fluorouracil to the liver by their application to the liver surface in rats: Its implication for clinical use. Pharm. Res. 2005, 22, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Akagi, T.; Kariya, Y.; Hamasaki, H.; Sakaguchi, M.; Miyamoto, H.; Fumoto, S.; Nishida, K. Development of a two-layered sheet formulation of 5-fluorouracil for application to rat’s livers to ensure controlled release and local drug disposition. Chem. Pharm. Bull. 2023, 71, 277–281. [Google Scholar] [CrossRef]
- Vyas, M.; Simbo, D.A.; Mursalin, M.; Mishra, V.; Bashary, R.; Khatik, G.L. Drug delivery approaches for doxorubicin in the management of cancers. Curr. Cancer Ther. Rev. 2020, 16, 320–331. [Google Scholar] [CrossRef]
- Albakri, A. Drugs-related cardiomyopathy: A systematic review and pooled analysis of pathophysiology, diagnosis and clinical management. Int. Med. Care 2019, 3, 1–19. [Google Scholar] [CrossRef]
- Arshad, R.; Arshad, M.S.; Rahdar, A.; Hassan, D.; Behzadmehr, R.; Ghotekar, S.; Medina, D.I.; Pandey, S. Nanomaterials as an advanced nano-tool for the doxorubicin delivery/co-delivery—A comprehensive review. J. Drug Deliv. Sci. Technol. 2023, 83, 104432. [Google Scholar] [CrossRef]
- Imantay, A.; Mashurov, N.; Zhaisanbayeva, B.A.; Mun, E.A. Doxorubicin-conjugated nanoparticles for potential use as drug delivery systems. Nanomaterials 2025, 15, 133. [Google Scholar] [CrossRef]
- Almajidi, Y.Q.; Kadhim, M.M.; Alsaikhan, F.; Jalil, A.T.; Sayyid, N.H.; Ramírez-Coronel, A.A.; Jawhar, Z.H.; Gupta, J.; Nabavi, N.; Yu, W.; et al. Doxorubicin-loaded micelles in tumor cell-specific chemotherapy. Environ. Res. 2023, 227, 115722. [Google Scholar] [CrossRef]
- Jin, Z.-H.; Jin, M.-J.; Jiang, C.-G.; Yin, X.-Z.; Jin, S.-X.; Quan, X.-Q.; Gao, Z.-G. Evaluation of doxorubicin-loaded pH-sensitive polymeric micelle release from tumor blood vessels and anticancer efficacy using a dorsal skin-fold window chamber model. Acta Pharmacol. Sin. 2014, 35, 839–845. [Google Scholar] [CrossRef]
- Drinković, N.; Beus, M.; Barbir, R.; Debeljak, Ž.; Tariba Lovaković, B.; Kalčec, N.; Ćurlin, M.; Bekavac, A.; Gorup, D.; Mamić, I.; et al. Novel PLGA-based nanoformulation decreases doxorubicin-induced cardiotoxicity. Nanoscale 2024, 16, 9412–9425. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, L.; Mei, Z.; Zhang, F.; He, M.; Fletcher, C.; Wang, F.; Yang, J.; Bi, D.; Jiang, Y.; et al. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Mater. Des. 2020, 186, 108336. [Google Scholar] [CrossRef]
- Koshari, S.H.S.; Shi, X.; Jiang, L.; Chang, D.; Rajagopal, K.; Lenhoff, A.M.; Wagner, N.J. Design of PLGA-based drug delivery systems using a physically-based sustained release model. J. Pharm. Sci. 2022, 111, 345–357. [Google Scholar] [CrossRef]
- Kotla, N.G.; Pandey, A.; Kumar, Y.V.; Ramazani, F.; Fisch, A. Polyester-based long acting injectables: Advancements in molecular dynamics simulation and technological insights. Drug Discov. Today 2023, 28, 103463. [Google Scholar] [CrossRef] [PubMed]
- Song, C.X.; Labhasetwar, V.; Levy, R.J. Controlled release of U-86983 from double-layer biodegradable matrices: Effect of additives on release mechanism and kinetics. J. Control Release 1997, 45, 177–192. [Google Scholar] [CrossRef]
- Huang, C.L.; Steele, T.W.J.; Widjaja, E.; Boey, F.Y.C.; Venkatraman, S.S.; Loo, J.S.C. The influence of additives in modulating drug delivery and degradation of PLGA thin films. NPG Asia Mater. 2013, 5, e54. [Google Scholar] [CrossRef]
- Nieto, K.; Mallery, S.R.; Schwendeman, S.P. Microencapsulation of amorphous solid dispersions of fenretinide enhances drug solubility and release from PLGA in vitro and in vivo. Int. J. Pharm. 2020, 586, 119475. [Google Scholar] [CrossRef]
- Garakani, S.S.; Davachi, S.M.; Bagher, Z.; Heraji Esfahani, A.; Jenabi, N.; Atoufi, Z.; Khanmohammadi, M.; Abbaspourrad, A.; Rashedi, H.; Jalessi, M. Fabrication of chitosan/polyvinylpyrrolidone hydrogel scaffolds containing PLGA microparticles loaded with dexamethasone for biomedical applications. Int. J. Biol. Macromol. 2020, 164, 356–370. [Google Scholar] [CrossRef]
- Yang, M.; Xie, S.; Li, Q.; Wang, Y.; Chang, X.; Shan, L.; Sun, L.; Huang, X.; Gao, C. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets. Int. J. Pharm. 2014, 465, 187–196. [Google Scholar] [CrossRef]
- Marucci, M.; Ragnarsson, G.; von Corswant, C.; Welinder, A.; Jarke, A.; Iselau, F.; Axelsson, A. Polymer leaching from film coating: Effects on the coating transport properties. Int. J. Pharm. 2011, 411, 43–48. [Google Scholar] [CrossRef]
- Cremer, G.; Danthine, S.; Van Hoed, V.; Dombree, A.; Laveaux, A.-S.; Damblon, C.; Karoui, R.; Blecker, C. Variability in the substitution pattern of hydroxypropyl cellulose affects its physico-chemical properties. Heliyon 2023, 9, e13604. [Google Scholar] [CrossRef] [PubMed]
- Ainiwaer, J.; Abudureyimu, A.; Jing, X.; Sun, Q.; Awut, E.; Deng, Y.; Zhang, L. Novel biocompatible pH-fluorescence responsive MOF nanocarriers for lung cancer treatment. Inorg. Chim. Acta 2024, 572, 122317. [Google Scholar] [CrossRef]
- Shi, J.; Yu, L.; Ding, J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater. 2021, 128, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Ramadan, E.; Elsadek, N.E.; Emam, S.E.; Shimizu, T.; Ando, H.; Ishima, Y.; Elgarhy, O.H.; Sarhan, H.A.; Hussein, A.K.; et al. Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control Release 2022, 351, 215–230. [Google Scholar] [CrossRef]
- Hua, Y.; Su, Y.; Zhang, H.; Liu, N.; Wang, Z.; Gao, X.; Gao, J.; Zheng, A. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: A review. Drug Deliv. 2021, 28, 1342–1355. [Google Scholar] [CrossRef]
- Tan, L.P.; Venkatraman, S.S.; Sung, P.F.; Wang, X.T. Effect of plasticization on heparin release from biodegradable matrices. Int. J. Pharm. 2004, 283, 89–96. [Google Scholar] [CrossRef]
- Wu, X.S. Synthesis, Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: Part III. Drug delivery application. Artif. Cells Blood Substit. Biotechnol. 2004, 32, 575–591. [Google Scholar] [CrossRef]
- Grune, C.; Zens, C.; Czapka, A.; Scheuer, K.; Thamm, J.; Hoeppener, S.; Jandt, K.D.; Werz, O.; Neugebauer, U.; Fischer, D. Sustainable preparation of anti-inflammatory atorvastatin PLGA nanoparticles. Int. J. Pharm. 2021, 599, 120404. [Google Scholar] [CrossRef]
- Faisant, N.; Siepmann, J.; Benoit, J.P. PLGA-based microparticles: Elucidation of mechanisms and a new, simple mathematical model quantifying drug release. Eur. J. Pharm. Sci. 2002, 15, 355–366. [Google Scholar] [CrossRef]
- Klose, D.; Siepmann, F.; Willart, J.F.; Descamps, M.; Siepmann, J. Drug release from PLGA-based microparticles: Effects of the “microparticle:bulk fluid” ratio. Int. J. Pharm. 2010, 383, 123–131. [Google Scholar] [CrossRef]
- Kodama, Y.; Horishita, M.; Fumoto, S.; Mine, T.; Miyamoto, H.; Yoshikawa, N.; Hirata, H.; Sasaki, H.; Nakamura, J.; Nishida, K. Effect of viscous additives on the absorption and hepatic disposition of 5-fluorouracil (5-FU) after application to liver surface in rats. J. Pharm. Pharmacol. 2012, 64, 1438–1444. [Google Scholar] [CrossRef]
- Yuan, F.; Torigoe, A.; Mitsudome, N.; Miyamoto, H.; Fumoto, S.; Toriba, A.; Nishida, K. Predicting absorption of compounds from an in vivo liver surface based on molecular weight or in vitro release using a dialysis membrane in combination with lipophilicity. RSC Pharm. 2025, 2, 761–771. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Q.; Li, J.; Xiao, M.; Gao, T.; Zhang, X.; Lu, G.; Wang, J.; Guo, Y.; Wen, P.; et al. Co-treatment with resveratrol and FGF1 protects against acute liver toxicity after doxorubicin treatment via the AMPK/NRF2 pathway. Front. Pharmacol. 2022, 13, 940406. [Google Scholar] [CrossRef]
- Peng, J.; Chen, F.; Liu, Y.; Zhang, F.; Cao, L.; You, Q.; Yang, D.; Chang, Z.; Ge, M.; Li, L.; et al. A light-driven dual-nanotransformer with deep tumor penetration for efficient chemo-immunotherapy. Theranostics 2022, 12, 1756–1768. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, R.; Guo, W.; Yan, T.; He, X.; Hu, F.; Ren, F.; Ma, X.; Lei, J.; Zheng, W. PEGylated-PLGA nanoparticles coated with pH-responsive tannic acid-Fe(III) complexes for reduced premature doxorubicin release and enhanced targeting in breast cancer. Mol. Pharm. 2021, 18, 2161–2173. [Google Scholar] [CrossRef]
- Duan, F.; Simeone, S.; Wu, R.; Grady, J.; Mandoiu, I.; Srivastava, P.K. Area under the curve as a tool to measure kinetics of tumor growth in experimental animals. J. Immunol. Methods 2012, 382, 224–228. [Google Scholar] [CrossRef]








| Formulation | Drug-Loaded Layers | Drug-Free Layers | ||||
|---|---|---|---|---|---|---|
| PLGA (µL) | DOX (µL) | Additive | Additive Amount (µL) | Additive Content (w/w, %) | PLGA (µL) | |
| PLGA | – | – | – | – | – | 400 |
| DOX | 800 | 9 | – | 0 | 0 | 400 |
| 10% PEG-DOX | 800 | 9 | PEG | 899 | 10 | 400 |
| 20% PEG-DOX | 800 | 9 | PEG | 2022 | 20 | 400 |
| 10% HPC-DOX | 800 | 9 | HPC | 899 | 10 | 400 |
| 20% HPC-DOX | 800 | 9 | HPC | 2022 | 20 | 400 |
| 10% PVP-DOX | 800 | 9 | PVP | 899 | 10 | 400 |
| 20% PVP-DOX | 800 | 9 | PVP | 2022 | 20 | 400 |
| Samples | Unit | 20% PEG-DOX | 20% HPC-DOX |
|---|---|---|---|
| Liver | µg/g tissue | 3.47 ± 0.270 | 3.12 ± 0.908 |
| Kidney | µg/g tissue | 1.83 ± 0.267 | 3.23 ± 0.671 |
| Spleen | µg/g tissue | 0.880 ± 0.880 | 4.19 ± 1.01 |
| Lung | µg/g tissue | 1.15 ± 0.232 | 2.28 ± 0.422 |
| Heart | µg/g tissue | 0.493 ± 0.256 | 1.67 ± 0.433 |
| Plasma | µg/mL | 0.0962 ± 0.0114 | 0.119 ± 0.0631 |
| Tumor | µg/g tissue | 190 ± 108 | 496 ± 324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsudome, N.; Matsumoto, M.; Murakami, Y.; Yuan, F.; Miyamoto, H.; Fumoto, S.; Toriba, A.; Nishida, K. Development and Antitumor Evaluation of Doxorubicin-Loaded Two-Layered Sheets for Local Chemotherapy via Direct Drug Application to the Tumor Surface. Pharmaceutics 2025, 17, 1565. https://doi.org/10.3390/pharmaceutics17121565
Mitsudome N, Matsumoto M, Murakami Y, Yuan F, Miyamoto H, Fumoto S, Toriba A, Nishida K. Development and Antitumor Evaluation of Doxorubicin-Loaded Two-Layered Sheets for Local Chemotherapy via Direct Drug Application to the Tumor Surface. Pharmaceutics. 2025; 17(12):1565. https://doi.org/10.3390/pharmaceutics17121565
Chicago/Turabian StyleMitsudome, Nao, Mayuko Matsumoto, Yui Murakami, Fei Yuan, Hirotaka Miyamoto, Shintaro Fumoto, Akira Toriba, and Koyo Nishida. 2025. "Development and Antitumor Evaluation of Doxorubicin-Loaded Two-Layered Sheets for Local Chemotherapy via Direct Drug Application to the Tumor Surface" Pharmaceutics 17, no. 12: 1565. https://doi.org/10.3390/pharmaceutics17121565
APA StyleMitsudome, N., Matsumoto, M., Murakami, Y., Yuan, F., Miyamoto, H., Fumoto, S., Toriba, A., & Nishida, K. (2025). Development and Antitumor Evaluation of Doxorubicin-Loaded Two-Layered Sheets for Local Chemotherapy via Direct Drug Application to the Tumor Surface. Pharmaceutics, 17(12), 1565. https://doi.org/10.3390/pharmaceutics17121565

