Difference in Tableting of Lubricated Spray-Dried Mannitol and Fluid-Bed Granulated Isomalt
Abstract
1. Introduction
2. Materials and Methods
2.1. Loss on Drying (LoD)
2.2. Karl Fischer (KF) Titration
2.3. Powder X-Ray Diffraction (pXRD)
2.4. Scanning Electron Microscopy (SEM)
2.5. Specific Surface Area (SSA)
2.6. Particle Size Distribution (PSD) Analysis
2.7. Densification Profile
2.8. Mean Yield Pressure (Py) Determination
2.9. Strain Rate Sensitivity (SRS)
2.10. Sample Preparation for Tableting Process
2.11. Tableting
2.12. Calculated True Density
2.13. Apparent Density and Solid Fraction Calculation
2.14. Residual Radial Die-Wall Pressure (Prw)
2.15. Consolidation Pressure
2.16. Ejection Pressure or Ejection Shear Stress (Pej)
2.17. Pressure Transmission
2.18. Friction Coefficient (µ)
2.19. Out-of-Die Tablet Characterisations, Radial Tablet Hardness Measurement, and Radial Tensile Strength Calculation
2.20. Preparation of Dried Material
2.21. Determination of Tablet Friability
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paul, S.; Chang, S.Y.; Dun, J.; Sun, W.J.; Wang, K.; Tajarobi, P.; Boissier, C.; Sun, C.C. Comparative analyses of flow and compaction properties of diverse mannitol and lactose grades. Int. J. Pharm. 2018, 546, 39–49. [Google Scholar] [CrossRef]
- Gniazdowska, E.M.; Frolova, A.J.; Kukuls, K.; Horváth, Z.M.; Mohylyuk, V. Dataset: Intrinsic Dissolution Rate (IDR) of Polyols; Riga Stradins University: Riga, Latvia, 2025. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Tomita, T.; Kuroda, J.; Kageyu, A.; Yonekura, C.; Hiramura, Y.; Tahara, K.; Takeuchi, H. Characterization of mannitol granules and powder: A comparative study using two flowability testers. Int. J. Pharm. 2018, 547, 106–113. [Google Scholar] [CrossRef]
- Al-khattawi, A.; Mohammed, A.R. Compressed orally disintegrating tablets: Excipients evolution and formulation strategies. Expert. Opin. Drug Deliv. 2013, 10, 651–663. [Google Scholar] [CrossRef]
- Rodriguez-Pombo, L.; Awad, A.; Basit, A.W.; Alvarez-Lorenzo, C.; Goyanes, A. Innovations in Chewable Formulations: The Novelty and Applications of 3D Printing in Drug Product Design. Pharmaceutics 2022, 14, 1732. [Google Scholar] [CrossRef]
- Rice, T.; Zannini, E.; Arendt, E.K.; Coffey, A. A review of polyols-biotechnological production, food applications, regulation, labeling and health effects. Crit. Rev. Food Sci. Nutr. 2020, 60, 2034–2051. [Google Scholar] [CrossRef]
- Flores-Maltos, D.A.; Teixeira, J.A. Oligosaccharides, Polyols, and Polysaccharides. In Advances in Food Bioproducts and Bioprocessing Technologies; Chavez-Gonzalez, M.L., Balagurusamy, N., Aguilar, C., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 467–474. [Google Scholar]
- Msomi, N.Z.; Erukainure, O.L.; Islam, M.S. Suitability of sugar alcohols as antidiabetic supplements: A review. J. Food Drug Anal. 2021, 29, 1. [Google Scholar] [CrossRef]
- Kukuls, K.; Frolova, A.J.; Horváth, Z.M.; Gniazdowska, E.M.; Mohylyuk, V. Dataset: Optical Microscopy of Polyols; Riga Stradins University: Riga, Latvia, 2025. [Google Scholar] [CrossRef]
- Liu, J.; Klinzing, G.R.; Nie, H. Effect of Material Properties and Variability of Mannitol on Tablet Formulation Development. Pharm. Res. 2023, 40, 2071–2085. [Google Scholar] [CrossRef]
- Tarlier, N.; Soulairol, I.; Sanchez-Ballester, N.; Baylac, G.; Aubert, A.; Lefevre, P.; Bataille, B.; Sharkawi, T. Deformation behavior of crystallized mannitol during compression using a rotary tablet press simulator. Int. J. Pharm. 2018, 547, 142–149. [Google Scholar] [CrossRef]
- de Backere, C.; Quodbach, J.; De Beer, T.; Vervaet, C.; Vanhoorne, V. Impact of alternative lubricants on process and tablet quality for direct compression. Int. J. Pharm. 2022, 624, 122012. [Google Scholar] [CrossRef]
- Sun, C.C.; Kleinebudde, P. Mini review: Mechanisms to the loss of tabletability by dry granulation. Eur. J. Pharm. Biopharm. 2016, 106, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Nagira, S.; Aikawa, M.; Yamamoto, H.; Kawashima, Y. Effect of lubrication on the compaction properties of pharmaceutical excipients as measured by die wall pressure. J. Drug Deliv. Sci. Technol. 2005, 15, 177–182. [Google Scholar] [CrossRef]
- Paul, S.; Sun, C.C. Gaining insight into tablet capping tendency from compaction simulation. Int. J. Pharm. 2017, 524, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Osamura, T.; Kikuoka, H.; Tanino, T.; Onoue, S. BIND, a novel analytical approach for monitoring powder adhesion at the die wall with use of the surface replication method. Int. J. Pharm. 2019, 567, 118467. [Google Scholar] [CrossRef] [PubMed]
- Vreeman, G.; Sun, C.C. Mean yield pressure from the in-die Heckel analysis is a reliable plasticity parameter. Int. J. Pharm. X 2021, 3, 100094. [Google Scholar] [CrossRef]
- Shi, L.; Sun, C.C. Understanding the roles of compaction pressure and crystal hardness on powder tabletability through bonding area-Bonding strength interplay. Int. J. Pharm. 2024, 659, 124253. [Google Scholar] [CrossRef]
- Michrafy, A.; Ringenbacher, D.; Tchoreloff, P. Modelling the compaction behaviour of powders: Application to pharmaceutical powders. Powder Technol. 2002, 127, 257–266. [Google Scholar] [CrossRef]
- Cunningham, J.C.; Sinka, I.C.; Zavaliangos, A. Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction. J. Pharm. Sci. 2004, 93, 2022–2039. [Google Scholar] [CrossRef]
- Michrafy, A.; Dodds, J.A.; Kadiri, M.S. Wall friction in the compaction of pharmaceutical powders: Measurement and effect on the density distribution. Powder Technol. 2004, 148, 53–55. [Google Scholar] [CrossRef]
- Diarra, H.; Mazel, V.; Busignies, V.; Tchoreloff, P. Sensitivity of elastic parameters during the numerical simulation of pharmaceutical die compaction process with Drucker-Prager/Cap model. Powder Technol. 2018, 332, 150–157. [Google Scholar] [CrossRef]
- Robertson, A.; Andrès, C. How can the heterogeneous distribution of a component in low concentration in the mixture at the radial surface of a tablet modify the mechanical properties of a tablet? J. Drug Deliv. Sci. Technol. 2025, 104, 106491. [Google Scholar] [CrossRef]
- van der Haven, D.L.H.; Jensen, R.; Mikoroni, M.; Zafar, U.; Elliott, J.A.; Fragkopoulos, I.S. Tablet ejection: A systematic comparison between force, static friction, and kinetic friction. Int. J. Pharm. 2024, 661, 124369. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.C. Dependence of ejection force on tableting speed—A compaction simulation study. Powder Technol. 2015, 279, 123–126. [Google Scholar] [CrossRef]
- Uzondu, B.; Leung, L.Y.; Mao, C.; Yang, C.Y. A mechanistic study on tablet ejection force and its sensitivity to lubrication for pharmaceutical powders. Int. J. Pharm. 2018, 543, 234–244. [Google Scholar] [CrossRef]
- Polak, P.; Sinka, I.C.; Reynolds, G.K.; Roberts, R.J. Successful Formulation Window for the design of pharmaceutical tablets with required mechanical properties. Int. J. Pharm. 2024, 650, 123705. [Google Scholar] [CrossRef] [PubMed]
- Frolova, A.J.; Kukuls, K.; Horvath, Z.M.; Gniazdowska, E.M.; Mohylyuk, V. Dataset: Loss on Drying (LoD) of Polyols; Riga Stradins University: Riga, Latvia, 2025. [Google Scholar] [CrossRef]
- Frolova, A.J.; Kukuls, K.; Horvath, Z.M.; Buczkowska, E.M.; Pētersone, L.; Mohylyuk, V. Dataset: Karl Fischer (KF) Titration of Polyols; Riga Stradins University: Riga, Latvia, 2025. [Google Scholar] [CrossRef]
- Horváth, Z.M.; Frolova, A.J.; Kukuls, K.; Gniazdowska, E.M.; Mohylyuk, V. Dataset: Powder X-Ray Diffraction (pXRD) Profiles of Polyols; Riga Stradins University: Riga, Latvia, 2025. [Google Scholar] [CrossRef]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the bet equation applicable to microporous adsorbents? In Characterization of Porous Solids VII—Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26–28 May 2005; Elsevier: Amsterdam, The Netherlands, 2007; pp. 49–56. [Google Scholar]
- Kukuls, K.; Frolova, A.J.; Horváth, Z.M.; Gniazdowska, E.M.; Mohylyuk, V. Dataset: Particle Size Distribution (PSD) Profiles of Polyols; Riga Stradins University: Riga, Latvia, 2025. [Google Scholar] [CrossRef]
- Frolova, A.J.; Kukuls, K.; Horvath, Z.M.; Gniazdowska, E.M.; Mohylyuk, V. Dataset: Densification Profiles of Polyols; Riga Stradins University: Riga, Latvia, 2025. [Google Scholar] [CrossRef]
- Fell, J.T.; Newton, J.M. Effect of particle size and speed of compaction on density changes in tablets of crystalline and spray-dried lactose. J. Pharm. Sci. 1971, 60, 1866–1869. [Google Scholar] [CrossRef]
- Heckel, R.W. Density-pressure relationships in powder compaction. Trans. Metall. Soc. AIME 1961, 221, 671–675. [Google Scholar]
- Doktorovova, S.; Stone, E.H.; Henriques, J. A Fundamental Study on Compression Properties and Strain Rate Sensitivity of Spray-Dried Amorphous Solid Dispersions. AAPS Pharm. Sci. Tech. 2022, 23, 96. [Google Scholar] [CrossRef]
- Roberts, R.J.; Rowe, R.C. The effect of punch velocity on the compaction of a variety of materials. J. Pharm. Pharmacol. 1985, 37, 377–384. [Google Scholar] [CrossRef]
- Mohylyuk, V. Dwell time on tableting: Dwell time according to force versus geometric dwell time. Pharm. Dev. Technol. 2024, 29, 719–726. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.J.; Owen, S.C. (Eds.) Handbook of Pharmaceutical Excipients, 5th ed.; Pharmaceutical Press: London, UK, 2006. [Google Scholar]
- Mohylyuk, V.; Bandere, D. High-speed tableting of high drug-loaded tablets prepared from fluid-bed granulated isoniazid. Pharmaceutics 2023, 15, 1236. [Google Scholar] [CrossRef]
- Tye, C.K.; Sun, C.C.; Amidon, G.E. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J. Pharm. Sci. 2005, 94, 465–472. [Google Scholar] [CrossRef]
- Ach-Hubert, D.; Pelloux, A. Radial Die Wall Pressure Measurement; MEDELPHARM Science Lab: Beynost, France, 2022. [Google Scholar]
- Jannin, V.; Berard, V.; N’Diaye, A.; Andres, C.; Pourcelot, Y. Comparative study of the lubricant performance of Compritol 888 ATO either used by blending or by hot melt coating. Int. J. Pharm. 2003, 262, 39–45. [Google Scholar] [CrossRef]
- Abdel-Hamid, S.; Koziolek, M.; Betz, G. Study of radial die-wall pressure during high speed tableting: Effect of formulation variables. Drug Dev. Ind. Pharm. 2012, 38, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Fell, J.T.; Newton, J.M. Determination of tablet strength by the diametral-compression test. J. Pharm. Sci. 1970, 59, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Fritzsching, B.; Luhn, O.; Schoch, A. Isomalt. In Handbook of Pharmaceutical Excipients; Rowe, R.C., Sheskey, P.J., Owen, S.C., Eds.; Pharmaceutical Press: London, UK, 2006; pp. 366–370. [Google Scholar]
- Abdel-Hamid, S.; Betz, G. Radial die-wall pressure as a reliable tool for studying the effect of powder water activity on high speed tableting. Int. J. Pharm. 2011, 411, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Paulausks, A.; Kolisnyk, T.; Mohylyuk, V. The Increase in the Plasticity of Microcrystalline Cellulose Spheres’ When Loaded with a Plasticizer. Pharmaceutics 2024, 16, 945. [Google Scholar] [CrossRef]
- Malamataris, S.; Goidas, P.; Dimitriou, A. Moisture sorption and tensile strength of some tableted direct compression excipients. Int. J. Pharm. 1991, 68, 51–60. [Google Scholar] [CrossRef]
- Nokhodchi, A.; Ford, J.L.; Rowe, P.H.; Rubinstein, M.H. The effect of moisture on the heckel and energy analysis of hydroxypropylmethylcellulose 2208 (HPMC K4M). J Pharm Pharmacol 1996, 48, 1122–1127. [Google Scholar] [CrossRef]
- Wang, C.; Sun, C.C. Mechanisms of Crystal Plasticization by Lattice Water. Pharm. Res. 2022, 39, 3113–3122. [Google Scholar] [CrossRef]
- Kukuls, K.; Frolova, A.J.; Horváth, Z.M.; Gniazdowska, E.M.; Mohylyuk, V. Dataset: Mean Yield Pressure (Py) and Strain Rate Sensitivity (SRS) of Polyols; Riga Stradins University: Riga, Latvia, 2025. [Google Scholar] [CrossRef]














| Ingredients | Moisture Content | Particle Size Distribution | |||
|---|---|---|---|---|---|
| LoD | Karl Fisher | ||||
| wt.% | wt.% | D10%, µm | D50%, µm | D90%, µm | |
| Mannogem® | 0.80 ± 0.00 | 0.028 ± 0.003 | 78.0 ± 0.7 | 157 ± 0.7 | 285 ± 2.4 |
| Pearlitol® | 0.85 ± 0.11 | 0.028 ± 0.002 | 26.3 ± 2.7 | 135 ± 0.6 | 242 ± 2.0 |
| galenIQ™ 720 | 5.78 ± 0.15 | 5.133 ± 0.053 | 18.8 ± 1.0 | 114 ± 3.5 | 425 ± 16.9 |
| galenIQ™ 721 | 3.44 ± 0.15 | 2.659 ± 0.053 | 31.7 ± 3.0 | 186 ± 4.0 | 423 ± 43.5 |
| Ingredients | Apparent Density, mg/mL | Solid Fraction | ||||||
|---|---|---|---|---|---|---|---|---|
| 0.5 wt.% MgSt | 3.0 wt.% MgSt | 0.5 wt.% MgSt | 3.0 wt.% MgSt | |||||
| @100 MPa | @300 MPa | @100 MPa | @300 MPa | @100 MPa | @300 MPa | @100 MPa | @300 MPa | |
| Mannogem® | 1.131 | 1.232 | 1.157 | 1.341 | 0.748 | 0.815 | 0.771 | 0.893 |
| Pearlitol® | NA | NA | 1.168 | 1.345 | NA | NA | 0.778 | 0.896 |
| galenIQ™ 720 | 1.252 | 1.439 | 1.254 | 1.416 | 0.839 | 0.954 | 0.845 | 0.955 |
| galenIQ™ 721 | 1.211 | 1.418 | 1.219 | 1.417 | 0.804 | 0.942 | 0.815 | 0.948 |
| Ingredients | 0.5 wt.% MgSt | 3.0 wt.% MgSt | ||
|---|---|---|---|---|
| @100 MPa | @300 MPa | @100 MPa | @300 MPa | |
| Mannogem® | 1.55 | 1.68 | 1.32 | 1.01 |
| Pearlitol® | NA | NA | 0.90 | 1.32 |
| galenIQ™ 720 | 1.09 | 1.34 | 0.92 | 0.81 |
| galenIQ™ 721 | 0.60 | 0.69 | 0.82 | 0.30 |
| Ingredients | Py (without MgSt) | Friction Coefficient (µ) | ||||
|---|---|---|---|---|---|---|
| Py Slow | Py Fast | 0.5 wt.% MgSt | 3.0 wt.% MgSt | |||
| MPa | MPa | @100 MPa | @300 MPa | @100 MPa | @300 MPa | |
| Mannogem® | 147.3 | 156.3 | 0.298 | 0.252 | 0.123 | 0.204 |
| Pearlitol® | 160.8 | 167.5 | NA | NA | 0.825 | 0.333 |
| galenIQ™ 720 | 99.5 | 119.6 | 0.060 | 0.040 | 0.087 | 0.059 |
| galenIQ™ 721 | 108.6 | 123.0 | 0.104 | 0.057 | 0.097 | 0.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohylyuk, V.; Kukuls, K.; Frolova, A.J.; Horváth, Z.M.; Kolisnyk, T.; Buczkowska, E.M.; Pētersone, L.; Pelloux, A. Difference in Tableting of Lubricated Spray-Dried Mannitol and Fluid-Bed Granulated Isomalt. Pharmaceutics 2025, 17, 1566. https://doi.org/10.3390/pharmaceutics17121566
Mohylyuk V, Kukuls K, Frolova AJ, Horváth ZM, Kolisnyk T, Buczkowska EM, Pētersone L, Pelloux A. Difference in Tableting of Lubricated Spray-Dried Mannitol and Fluid-Bed Granulated Isomalt. Pharmaceutics. 2025; 17(12):1566. https://doi.org/10.3390/pharmaceutics17121566
Chicago/Turabian StyleMohylyuk, Valentyn, Kirils Kukuls, Alīna Jaroslava Frolova, Zoltán Márk Horváth, Tetiana Kolisnyk, Elżbieta Maria Buczkowska, Līga Pētersone, and Adrien Pelloux. 2025. "Difference in Tableting of Lubricated Spray-Dried Mannitol and Fluid-Bed Granulated Isomalt" Pharmaceutics 17, no. 12: 1566. https://doi.org/10.3390/pharmaceutics17121566
APA StyleMohylyuk, V., Kukuls, K., Frolova, A. J., Horváth, Z. M., Kolisnyk, T., Buczkowska, E. M., Pētersone, L., & Pelloux, A. (2025). Difference in Tableting of Lubricated Spray-Dried Mannitol and Fluid-Bed Granulated Isomalt. Pharmaceutics, 17(12), 1566. https://doi.org/10.3390/pharmaceutics17121566

